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Abstract: Performing accurate calculations on large mo-
lecular systems is desirable for closed- and open-shell
systems. In this work, the fragment molecular orbital
method is extended to open-shell systems and imple-
mented in the GAMESS (General Atomic and Molecular
Electronic Structure System) program package. The ac-
curacy of the method is tested, and the ability to reproduce
reaction enthalpies is demonstrated. These tests also
demonstrate its utility in providing an efficient means to
model large open-shell systems.

1. Introduction
Recently, a large number of fragment-based methods1-6 have
been developed, including the fragment molecular orbital (FMO)
method.7-10 The aim of these methods is to treat complex
molecular species efficiently, while retaining ab initio accuracy,
by dividing the system into many much smaller fragments.
However, few of these methods are capable of treating open
shells.11 Several wave function types have already been
interfaced with FMO;12-17 however, most of them are for
closed-shell methods. The only exception is the multiconfigu-
ration self-consistent field (MCSCF method),14 which can treat
both closed- and open-shell species. Although the MCSCF
method is very useful in some systems, it is also desirable to
have a single-reference open-shell method, which could be
efficiently combined with restricted open-shell (RO) second-
order Møller-Plesset perturbation theory (MP2)18 or coupled
cluster theory (CC).19

Open-shell systems play a very important role in many
processes, for instance, in radical chemistry,21 electron transfer,22

and many transition metal compounds.23 In addition, transition
states in chemical reactions involve breaking chemical bonds
and thus possess considerable open-shell character. Although
more difficult cases such as transition metal complexes may
require a more sophisticated treatment (e.g., MCSCF), in many
organic, inorganic, and biochemical systems, the open-shell
character can be well described by an open-shell single-reference
wave function. Therefore, it is useful to be able to perform large-
scale calculations of open-shell systems with single-reference
methods. The FMO method is particularly appealing in this
regard, since it has been shown to accurately reproduce fully
ab initio calculations with high accuracy.9,10 Due to the
inherently parallel nature of the method, it also scales almost
linearly with system size.

2. Methodology
The n-body FMO energy (FMOn) of N fragments is given by8

EFMO2 ) ∑
I

N

EI + ∑
I>J

N

(EIJ - EI - EJ) (1)

EFMO3 ) EFMO2 + ∑
I>J>K

N

(EIJK - EI - EJ - EK - ∆EIJ -

∆EJK - ∆EIK) (2)

where

∆EIJ ) EIJ - EI - EJ (3)

and EI, EIJ, and EIJK are the monomer (single fragment), dimer
(fragment pair), and trimer (fragment triple) energies, respec-
tively, computed in the electrostatic field of other fragments.8

This expression is also used for the restricted open-shell FMO
method, which is an extension of the closed-shell method,
described in detail elsewhere.10 The computational scheme is
methodologically similar to that of the FMO-based MCSCF or
time-dependent23 density functional theory (TDDFT), with one
fragment chosen to be the open-shell fragment. There are two
types of dimers and trimers in an open-shell system: (a) open-
shell, if they include the open shell fragment; (b) closed-shell
otherwise. The electrostatic field added to all monomer, dimer,
and trimer calculations is computed from the total density of
either open- or closed-shell fragments. The covalent boundaries
are treated exactly as in the closed-shell FMO,7,9,10 that is, by
assigning two electrons from the detached bond to one fragment
and none to the other, for the pair of fragments between which
a bond is detached.
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The FMO energy has been implemented for the RO-based
Hartree-Fock method (ROHF), MP2 (ROMP2), and CC
(ROCC). In FMO-ROHF, the densities of all fragments are
optimized self-consistently on the basis of the ROHF density
of the open-shell fragment, whereas in FMO-TDDFT all
densities are optimized for the ground state, from which
excitations are evaluated following the TDDFT theory.

In addition, a multilayer scheme25 was also implemented in
which several layers with varying levels of electronic structure
theory (HF, MP2, and CC) can be defined. The multilayer FMO
method uses the notation of listing the wave functions in
increasing order of layers, for example, FMO2-ROMP2:ROCC
means that the fragment densities are obtained self-consistently
at the uncorrelated level (ROHF) and used in the correlated

calculations at the ROMP226 (Z-averaged perturbation theory)
level for the less important fragments (substituents) and
ROCC19,20 (completely renormalized CR-CC(2,3) method) for
(for example) a reaction center. Dimer calculations are per-
formed at the lower level of the two layers to which the two
fragments belong. In the case of the reaction described below,
there was only one fragment in the higher level, so that all dimer
calculations were done with ROMP2. The same basis set is used
in both layers.

Especially for CC, which is a very steeply scaling method
(N7) with the system size N, the use of FMO is beneficial even
for very small systems, such as that with only three fragments
discussed below. In addition to the computational cost scaling,
CC requires very large memory; the huge memory demand
prevented the full ab initio CC calculations while the FMO-CC
computations are feasible.

The open-shell FMO code was parallelized with the general-
ized distributed data interface (GDDI),27,28 using a two-level
hierarchical scheme. Since the open-shell MP2 method in
GAMESS (General Atomic and Molecular Electronic Structure
System)29 is fully parallelized, it can take advantage of both
levels of GDDI. This is not the case for the open-shell CC code,
which can only take advantage of the inherent coarse-grained
level parallelism of the FMO method using GDDI. The load
balancing is dynamic (optionally static) and follows a general
algorithm28 with all fragments (closed- and open-shell) distrib-
uted over groups in GDDI. All methods discussed here have
been implemented in GAMESS.

All calculations discussed here used the default values of
thresholds. The exception is that, for water clusters, the Mulliken
point charge representation8 of the electrostatic potentials in the
FMO method was used (i.e., fragment calculations are done in
the field of point charges derived self-consistently from the
fragment densities, and fragment calculations are repeated until
their densities converge with respect to the field;7,8,10 dimers
are computed in the converged field only once). Spherical basis
functions were used throughout, and the core electrons (e.g.,
1s on C and O) were not correlated in MP2 and CC.

3. Tests

3.1. Open-Shell FMO2 and FMO3 Calculations on
OH(H2O)5 Clusters. A preliminary test of the open-shell FMO
method employed clusters of six water molecules. The ability
to accurately model the solvated OH radical has implications
in biological applications and atmospheric processes.30 The large
charge transfer present in solvated OH clusters adds an
additional degree of difficulty, providing an excellent test case
for the open-shell FMO method.

The structures of the six clusters shown in Figure 1 were
determined by optimizing previously determined minima31 with
MP2 and the aug-cc-pVTZ basis set.32 To create the open-shell
test systems, one hydrogen atom was arbitrarily removed from
one of the water molecules in each cluster (doublet spin
multiplicity). Fragments were chosen by placing the open-shell
OH in a fragment with both nearest neighbor H2O molecules,
while placing the other H2O molecules in fragments by
themselves, with the exception of the prism and bag isomers.
For these two isomers, there were two other H2O molecules
with a significant interaction between them. This required them

Figure 1. The six isomers of OH(H2O)5 clusters used for
testing. Open-shell OH molecules are circled, and the naming
convention is from ref 26.

Table 1. Absolute Errors between ab Initio ROMP2 and
FMO-ROHF for Six OH(H2O)5 Clusters

absolute errors (kcal/mol)

aug-cc-pVTZ

isomer
FMO2-
ROHF

FMO3-
ROHF

FMO2-
ROMP2

FMO3-
ROMP2

prism 0.2 0.0 0.0 -0.1
cage 1.4 0.1 1.3 0.1
bag 2.8 0.0 2.7 0.1
cyclic 1.7 0.1 1.6 0.3
boat 1.7 0.1 1.6 0.3
book 1.4 0.1 1.3 0.2

Table 2. Comparison of the ROMP2 Relative Energiesa of
Six OH(H2O)5 Clusters

relative energies (kcal/mol)

aug-cc-pVTZ

isomer ROMP2 FMO2-ROMP2 FMO3-ROMP2

prism 0.0 0.0 0.0
cage 1.4 2.7 1.6
bag 2.5 5.2 2.7
cyclic 3.9 5.5 4.3
boat 4.7 6.3 5.0
book 8.8 10.2 9.1

a Zero energy for all methods is set to be the prism isomer.
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to be placed into one fragment together, while the open-shell
OH was placed in a fragment with only one nearest neighbor.
The final fragmentation scheme created four FMO monomers
for all isomers.

Errors for FMO2-ROHF calculations (Table 1) relative to ab
initio calculations are between 0.2 and 2.8 kcal/mol, while the
errors are between 0.0 and 2.7 kcal/mol for FMO2-ROMP2.
The addition of ab initio three-body interactions with FMO3-
ROHF significantly reduces the error to 0.0-0.1 kcal/mol, while
the error for FMO3-ROMP2 falls to 0.1-0.3 kcal/mol. The
improvement in accuracy for FMO3 is not a surprising result,
as the importance of three-body effects in water has been shown
previously.12,33

Relative energetics (Table 2) are of similar accuracy, with
the ordering of isomers being captured correctly with both
FMO2 and FMO3, illustrated in Figure 2. The choice of
fragments is important for the accurate reproduction of the
relative energies, especially for FMO2 and in systems in which

fragments may have very strong interactions such as charge
transfer. These strongly interacting fragments should be grouped
together to improve accuracy.

For the small water clusters computed, we note that FMO2-
ROMP2 takes about the same time as ab initio ROMP2, whereas
FMO3-ROMP2 takes about three times more, and the crossover
size (when FMO owing to its nearly linear scaling becomes
faster) may be just a few more molecules. Considering the
distributed memory requirements of the ab initio ROMP2
calculations (∼2 GB of RAM) versus that of the FMO2-ROMP2
calculation (∼512 MB of RAM) or the FMO3-ROMP2 calcula-
tion (∼1 GB of RAM), the open-shell FMO method is capable
of providing accurate energies at a much lower cost. One can
imagine that, as the size of the cluster N increases, the memory
requirement of the ab initio calculation will also increase
substantially (∼N4); however, for FMO it will remain the same,
no matter how large the cluster is.

3.2. Multilayer FMO2 Calculation of the Reversible
Addition-Fragmentation Chain Transfer (RAFT) Reaction
Enthalpy (Figure 3). As a further test of the open-shell FMO
method, the initiation step in the RAFT reaction34,35 was chosen
as a small test case. The initiation step consists of two reactants,
one an open-shell radical (doublet spin multiplicity), that
combine to form an open-shell radical product. Initial structures
were optimized using DFT with the B3LYP functional and the

Figure 3. Reaction scheme for the RAFT reaction with the choice of FMO fragments shown in blue.

Figure 4. Reaction scheme for the RAFT reaction with the multilayer FMO details: higher layer fragments (CC) are circled in
red, and lower levels fragments (MP2) are in green dashed circles.

Table 3. Absolute Errors between ab Initio ROMP2
Calculations and FMO2-ROMP2 for the RAFT Reaction

absolute errors (a.u.)

6-311G(d,p)

ROMP2 FMO2-ROMP2 error (kcal/mol)

reactant 1 -518.94377299 -518.94481925 -0.7
reactant 2 -1235.33260039 -1235.33407266 -0.9
product -1754.31552043 -1754.31616825 -0.4

Figure 2. Graph of the relative energies of the six OH(H2O)5

clusters computed using ab initio ROMP2, FMO2-ROMP2,
and FMO3-ROMP2.
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6-31G(d) basis set.36 FMO2-ROMP2 single point energy
calculations using the 6-311G(d,p) basis set were performed
with the fragmentation scheme shown in Figure 3 (the unpaired
electron is shown schematically; in practice, it is delocalized).
Higher-level calculations were also performed, using the
completely renormalized coupled cluster single and double
excitations using left eigenstates for perturbative triple excitation
corrections (CR-CC(2,3))19,20 method with the 3-21G basis set
to model the open-shell fragment, and MP2 with the 3-21G basis
set to model the closed-shell fragments (FMO2-MP2:CR-
CC(2,3)), shown in Figure 4. The reason for using a smaller
basis set is the huge memory requirements for the CC code,
which even for 3-21G was 8 GB, while for the 6-31G(d) basis
set, the requirements are more than 32 GB.

Table 3 gives the absolute energy differences between ab
initio ROMP2 and FMO2-ROMP2 for both reactants and the
product of the RAFT reaction. The FMO2-ROMP2 method
gives accurate energies, with errors between 0.4 and 0.9 kcal/
mol. This accuracy in absolute energies translates to equivalent
accuracy when calculating the reaction enthalpy (Table 4).
Comparing the enthalpy from FMO2-ROMP2 using the
6-311G(d,p) basis set with the ab initio ROMP2 enthalpy,
the error is only 0.9 kcal/mol. Calculations performed with the
3-21G basis set also show very good agreement between ab
initio ROMP2 and FMO2-ROMP2 calculations. With the
addition of the CC correction in the FMO2-MP2:CR-CC(2,3)
calculation, the enthalpy changes by +2.2 kcal/mol. This
suggests that the use of ROMP2 to calculate enthalpies is
adequate in this case; however, a higher level of theory may be
required in other instances to properly describe open-shell
systems.

3.3. Excitation Energy Calculation of a Small Protein
(1L2Y). As a model application to a larger system, consider
the FMO2-ROMP2 triplet excitation energy using the 6-31+G(d)
basis set of the Trp-cage miniprotein construct (1L2Y), with
diffuse functions added to the carboxyls. The geometry has been
taken from previous studies.9 The protein consists of 20 amino
acid residues and a total of 304 atoms. When a triplet excitation
of one of the Trp-6 residue in the protein is specified and also
the ground-state closed-shell calculation is performed, the
calculations took 160 min each on four nodes containing two
2.66 GHz quad core Intel Xeon processors (32 CPUs total). In
contrast, the full ab initio ROMP2 calculation containing 2610
basis functions, if the calculation was feasible, would require
1024 CPUs with 16 GB of RAM per CPU. The FMO-ROMP2
excitation energy was found to be 93.35 kcal/mol (4.05 eV).

4. Conclusions
The open-shell FMO method has been implemented in the
GAMESS program package and parallelized using GDDI for

the HF, MP2, and CC levels of electronic structure theory. The
accuracy of the method was tested by calculating the absolute
and relative energetics of open-shell molecular clusters. The
ability of the method to reproduce reaction enthalpies was also
tested using the RAFT reaction. It was demonstrated that in
both cases the open-shell FMO method provides energies and
properties within 0.0-2.0 kcal/mol of ab initio calculations.

The need for a single reference open-shell FMO method was
fulfilled through this work, providing a scalable method for use
on large chemical systems such as the RAFT reaction. The
combination of accuracy and reduction in computational expense
provides a means for accurate calculations on much larger open-
shell radical chemical systems than was previously available.
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Abstract: We present a new least-action variational approximation for tunneling in polyatomic
reactions based on the procedure developed by Garrett and Truhlar for atom-diatom reactions.63

The method calculates the semiclassical ground-state tunneling probability at every tunneling
energy by minimizing the value of imaginary action integral along a family of paths ranging from
the minimum energy path to the straight path. The method is illustrated by applications to two
hydrogen-atom abstraction reactions from methane using analytical potential energy surfaces.

1. Introduction

Tunneling is a quantum mechanical effect by which a particle
can penetrate into classically forbidden regions of coordinate
space.1-3 Less than 10 years after the formulation of modern
quantum mechanics, Wigner4 and Bell5 pointed out the
importance of this effect in chemical kinetics. Tunneling is
very sensitive to the mass of the particles involved in the
tunneling motion and to the shape and height of the effective
barrier being crossed. Tunneling often competes well with
overbarrier processes at low temperatures for processes that
involve the transfer of a proton or deuteron. It is well
established that quantum tunneling effects require a multi-
dimensional treatment and that they are important processes
even at room temperature.6-9 Because the likelihood of
tunneling depends on the mass that is being transferred, the
analysis of kinetic isotope effects is one of the chief means
of getting insight into the reaction mechanisms of many
processes of biological and technological importance.10,11

Therefore, the treatment of quantum tunneling within a
multidimensional framework is very important.

Variational transition-state theory with multidimensional
tunneling contributions12,13 (VTST/MT) has been shown to
be capable of accounting for quantum effects on large
systems14,15 but the methodology for treating those effects

still allows for some improvements. Here, we present a new
approximation that leads to a more complete treatment of
quantum tunneling effects in polyatomic chemical reactions.

In section 2, we present background necessary to under-
stand the new work in the context of VTST/MT. Section 3
presents the new LAG4 approximation. Section 4 presents
the application of the LAG4 method to the H + CH4 f H2

+ CH3 and 15H + CH4 f
15H - H + CH3 reactions using

the Jordan and Gilbert (JG) potential energy surface.16

Section 5 has concluding remarks.

2. Background

Variational transition-state theory (VTST)12,13,17-26 is based
on transition-state theory (TST), also called conventional
transition-state theory, which was originally formulated by
Eyring27 and Evans and Polanyi.28 TST calculates the one-
way equilibrium flux through the transition state (a surface
dividing reactants from products in phase space) and assumes
that the transition state is a reaction bottleneck that separates
reactants from products such that all trajectories that start in
the reactants’ region and cross the transition state do not
recross it before becoming equilibrated as products; this is
known as the no recrossing assumption. Furthermore, TST
assumes that the Born-Oppenheimer approximation is valid
and that the reactants are equilibrated canonically (in a fixed-
temperature ensemble) or microcanonically (in a fixed-total-
energy ensemble).

* Corresponding author. E-mail: qf.ramos@usc.es.
† University of Santiago de Compostela.
‡ University of Minnesota.
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TST and VTST can be formulated unambiguously in a
classical world,29 and quantum effects on all degrees of
freedom except the reaction coordinate can reasonably be
included by quantizing their partition functions,27 as justified
to order p2 by Wigner.4 Quantum effects on the reaction
coordinate can be incorporated by the addition of a multi-
plicative multidimensional factor, called the tunneling trans-
mission coefficient,30-32 but this can only be accomplished
consistently in VTST.33 In fact, VTST/MT incorporates both
recrossing (with respect to conventional TST) and quantum
tunneling effects, although it needs more information than
TST about the potential energy surface of the reaction. TST
(without tunneling) needs information only about reactants
and the transition state, whereas VTST/MT needs information
at least about the reaction path that joins the transition state
with reactants and products and sometimes also about a wider
region called the reaction swath, which includes additional
geometries on the concave side of the reaction path. In the
present work, the reaction path is chosen as the minimum
energy path (MEP) in isoinertial coordinates,31,34 scaled to
a reduced mass of µ, and the signed distance along this path
is labeled as s. By convention, s ) 0 indicates the location
of the transition state, whereas s < 0 and s > 0 correspond to
the reactant and product sides, respectively. The variational
method that minimizes the one-way flux from reactants to
products through trial dividing surfaces that cross the reaction
path at various values of s in a fixed-temperature ensemble
is called canonical variational transition-state theory or
canonical variational theory (CVT).20,35 The CVT rate
constant for a bimolecular reaction at temperature T is given
by

where σ is the symmetry number,36,37 kB and h are the
Boltzmann and Planck constants respectively and
VMEP(s*

CVT(T)) is the value of the potential on the reaction
path at s*

CVT, which is the location along the reaction
coordinate of the dividing surface that minimizes the one-
way flux rate constant. The quantized reactant partition
function per unit volume is ΦR(T), and QGT(T, s*

CVT(T)) is
the quantized generalized transition-state partition function
at s*

CVT(T).
In this article, we are concerned with quantum effects on

the reaction coordinate, which are incorporated by multiply-
ing the CVT rate constant by a transmission coefficient, κ.
The resulting rate constant is given by

where SAG denotes semiclassical (vibrationally) adiabatic
ground state. Neglecting κ is called the quasiclassical
approximation.15 The transmission coefficient, which rigor-
ously is the ratio of the averaged quantum mechanical
reaction probabilities to the model underlying TST or VTST
without the transmission coefficient, is approximated by the
ratio of the averaged SAG and quasiclassical probabilities.
The SAG transmission coefficient is evaluated by using an

effective potential that (in the first approximation under
discussion here) is vibrationally adiabatic with the further
approximation21 that the vibrationally adiabatic potential
curves of all of the vibrational excited states have the same
shape as the ground-state vibrationally adiabatic potential
curve, Va

G(s), so that all of the tunneling probabilities are
evaluated with this potential, which is given in the harmonic
approximation by

where ωm(s) is a frequency of one of the 3N-7 (3N-6 for linear
molecules) generalized normal modes at s. In general, the
harmonic approximation used in the evaluation of the vibra-
tionally adiabatic potential is reasonable for polyatomic systems,
a major exception being those systems presenting low-frequency
internal rotations, for which it is important to include anhar-
monicity on those torsional modes.38,39 (Low-frequency modes
that are not torsions are also usually anharmonic.) Because the
barrier height, Va

AG, of the ground-state vibrationally adiabatic
potential curve may be different from Va

G(s*
CVT(T)), the CVT/

SAG transmission coefficient on the right-hand side of eq 2 is
equal to an intrinsic transmission coefficient κSAG times the
factor exp{�[Va

G(s*
CVT(T)) - Va

AG]} to make the transmission
coefficient consistent in spite of the difference in the effective
thresholds of the transmission coefficient and of the CVT rate
constant. The intrinsic transmission coefficient is given by

where PC(E) is the classical probability, which equals zero
below Va

AG and unity otherwise, so the transmission factor can
be written as:

The semiclassical adiabatic reaction probability of the
ground state PSAG(E) for the whole range of energies is given
by

where E0 is the lowest energy at which it is possible to have
tunneling (this is the energy of the reactant zero-point level
when the reaction is written in the exoergic direction) and
θ(E) is the so-called action integral, actually the magnitude
of the imaginary part of the action integral:

where µeff(s) is the effective mass of the tunneling motion,
and s̃0 and s̃1 are the classical turning points at a given

kCVT ) σ
kBT

h

QGT(T, s/
CVT(T))

ΦR(T)
exp [-VMEP(s/

CVT(T))/kBT]

(1)

kCVT/SAG(T) ) κ
CVT/SAG(T)kCVT(T) (2)

Va
G(s) ) VMEP(s) + p

2 ∑
m

ωm(s) (3)

κ
SAG(T) )

∫0

∞
dEPSAG(E) exp (-�E)

∫Va
AG

∞
dEPC(E) exp (-�E)

(4)

κ
SAG(T) ) � exp (�Va

AG)∫0

∞
dEPSAG(E) exp (-�E)

(5)

PSAG(E) )

{0, E < E0

{1 + exp [2θ(E)]}-1, E0 e E e Va
AG

1 - PSAG(2Va
AG - E), Va

AG e E e 2Va
AG - E0

1, 2Va
AG - E0 < E

(6)

θ(E) ) p-1 ∫s̃0

s̃1 ds{2µeff(s)(Va
G(s) - E)}1/2 (7)
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tunneling energy, E, in the reactant and product valleys,
respectively. Both turning points have to obey the resonance
condition:

The simplest case for the evaluation of the action integral
of eq 7 is when the coupling between the reaction coordinate
and the transverse modes is neglected. In that case, the
effective mass equals that of the isoinertial coordinate system,
that is, µeff(s) ) µ. This method is known as the zero-
curvature tunneling (ZCT) approximation.31 The ZCT method
is not recommended for general use because it often seriously
underestimates the tunneling contribution.40,41 Wyatt42 and
Marcus and Coltrin43,44 showed that the coupling enters the
reaction-path Hamiltonian through the kinetic energy term
producing a negative centrifugal effect that shortens the
tunneling path by moving it toward the concave side of the
reaction path. This is now called corner-cutting tunneling.
Marcus and Coltrin derived a corner-cutting approximation
to the transmission coefficient for the collinear H + H2

reaction (for which the curvature of the MEP in isoinertial
coordinates is small) by finding for that case a least-action
path, that is, the tunneling path that minimizes eq 7, by
incorporating the reaction path curvature (the centrifugal
effect) into the effective mass. This method was extended
to polyatomic systems by making the vibrationally adiabatic
approximation for all bound modes of the transition state,45

by modifying the effective mass to avoid the singularity in
the reaction path Hamiltonian due to the breakdown of the
natural collision coordinates when the reaction path curvature
is large46,47 and by properly including the simultaneous
corner cutting in more than one mode of vibration.48,49 The
resulting method is called the centrifugal-dominant small-
curvature semiclassical adiabatic ground-state (CD-SCSAG)
approximation or simply the small-curvature tunneling (SCT)
approximation.

For systems with large curvature of the isoinertial MEP,
such as bimolecular reactions in which the hydrogen atom
is transferred between two heavy atoms,50 tunneling may
be dominated by paths that lie very far from the MEP and,
therefore, the adiabatic approximation may breakdown. The
large-curvatureground-statetunneling(LCT)method12,13,48,51-56

was designed for such cases. Other straight-path methods57-59

have been put forward as well. The latest version of the LCT
approximation is called LCG4.13,56 At each tunneling energy,
LCT includes a set of tunneling paths that are the straight
trajectory between the two classical turning points at that
energy plus the set of all lower-energy tunneling paths. To
evaluate action integrals along these paths requires not only
information in the potential valley around the MEP (the
regions close to the MEP, which can be treated within
the adiabatic approximation) but also information about the
broader reaction swath on the concave-side of the MEP; this
region is the locus of deep-tunneling paths that are vibra-
tionally nonadiabatic. In the LCT approximation, tunneling
into excited vibrational states of the products in the exoergic
direction is also included;55 tunneling into excited states is
also included for thermoneutral reactions.60 The LCG4

approximation is more accurate than the previous LCG3
approximation because it includes a nonquadratic correction
in the nonadiabatic region. In general, the evaluation of the
LCG4 transmission coefficients is quite demanding from the
computational point of view, so two interpolated large
curvature tunneling (ILCT) methods, called ILCT1D61 and
ILCT2D,62 were proposed. The latter evaluates the LCG4
transmission coefficient with an error (with respect to the
uninterpolated calculation) smaller than 1% but it reduces
the computer time by more than one order of magnitude.

The SCT and LCT transmission coefficients cover the
whole range of reaction-path curvatures, so it seems natural
to built a transmission coefficient which, at every tunneling
energy, chooses the largest between the SCT and LCT
tunneling probabilities, or similarly (essentially equivalently),
the smallest between the SCT and LCT imaginary action
integrals. This approximation is called microcanonical
optimized multidimensional tunneling (µOMT) method.55

The µOMT tunneling probabilities are, therefore,

where PSCT(E) and PLCT(E) are the SCT and LCT prob-
abilities evaluated within the CD-SCSAG and LCG4 ap-
proximations, respectively. However, these two approxima-
tions are just two particular cases of a more general method
in which the tunneling path is variationally optimized by
employing a criterion of least imaginary action. This method,
which is called least-action ground-state tunneling (LAT)
approximation, was developed some years ago for atom-
diatom reactions, and it was shown to be superior to the SCT
and LCT methods.63,64 Other LAT methods using a family
of paths similar to that described by Garrett and Truhlar63

have also been developed for polyatomic reactions, although
those methods were only used to compute tunneling split-
tings. For instance, Taketsugu and Kimihiko65 used a
multidimensional LAT method to obtain the least-action
integral at a given tunneling energy. Similarly, Tautermann
et al.66 obtained the optimal tunneling path to predict ground-
state tunneling splittings in symmetric polyatomic systems.
So far though the LAT method has not been applied to
evaluate thermal rate constants for polyatomic systems.
However, it has been extensively applied to atom-diatom
reactions41 and compared with SCT and LCT approxima-
tions. Although all of the LCT calculations were performed
using the LCG3 approximation, it was concluded that, for
some cases the µOMT method was as accurate as the LAT
method, but on average the latter was superior to the former.

The current µOMT method evaluates the large-curvature
probabilities with the LCG4 approximation and it performs
well for polyatomic reactions. However, it is interesting to
know the effect of full optimization of the tunneling paths
in a multidimensional framework in polyatomic reactions
even when full optimization may be more expensive com-
putationally than the current methods. In this work, we
present a new version, which adds the following features to
the previous LAT method: (i) it is now developed for
polyatomic reactions, and (ii) it uses the same criteria for

Va
G(s̃0) ) Va

G(s̃1) ) E (8)

PµOMT(E) ) max
E {PSCT(E)

PLCT(E)
(9)
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the specification of the adiabatic and nonadiabatic regions
as the LCG4 method. Therefore, we label this version of
the least-action tunneling method as LAG4.

3. Methods

LAG4, like LCG3 and LCG4, is always applied to a reaction
in the exoergic or thermoneutral direction with the reactant
in its ground vibrational state. The tunneling process may
end in the product ground state or in an excited diabatic
vibrational state of the product. In general one sums over
the probabilities of producing each final state but, in many
cases, one needs to consider only ground-state-to-ground-
state tunneling, and this section will start with the ground-
state-to-ground-state process.

The LAG4 approximation involves the minimization of
the imaginary action integrals along a given set of paths,
which are between the MEP and the straight path (which is
the reference path for all the LCT methods, including the
LCG4 approximation). At a given tunneling energy the end
points of any particular tunneling path are given by s̃0 and
s̃1 with the resonance condition given by eq 8. The mass-
scaled Cartesian geometries of these two classical turning
points that are located on the MEP are x(s̃0) and x(s̃1),
respectively. The paths to initiate the search for the least-
action are built as a function of a single parameter R, such
that R ) 0 yields the MEP and R ) 1 yields the straight
path. Therefore, R ) 0 and R ) 1 correspond to the ZCT
and LCT transmission coefficients, respectively. We intro-
duce a progress variable along the path, called �(R), which
is in the interval 0 e �(R) e �P(R), where �P(R) is the total
length of path at a given tunneling energy.

The lengths of the MEP and of the straight path are �P(0)
and �P(1) respectively, so all the intermediate paths obey
the condition �P(1)e �P(R)e �P(0). The variable γ is defined
by

The γ parameter is in the interval [0, 1], being 0 at the
reactants classical turning point and 1 at the products classical
turning point. This parameter is useful to unify all of the paths
with different R values to see how much relative progress there
is along each of them. We prefer to use �(R) instead because
in this case the length of the paths is explicitly used.

The mass-scaled Cartesian geometries for a given value
of R, at a point �(R) along the path and at a given tunneling
energy, are x[R, �(R), s̃0]. Thus, the mass-scaled Cartesian
geometries along the MEP are given by x[0, �(0), s̃0],
whereas the ones along the straight path are

where x(s̃0) ) x[0, 0, s̃0]. The parameter �(1) indicates the
progress along the straight path; η̂[1, �(1), s̃0] is the unit
vector along the straight path, that is,

where the length of the straight path is �P(1) ) |x(s̃1) - x(s̃0)|.

The MEP and the straight path are the extreme cases of a
family of R-dependent paths, which are chosen as

where x[0, �(0), s̃0] and x[1, �(1), s̃0] are the geometries along
the MEP and along the straight path respectively with the
same progress, that is, �(0)/�P(0) ) �(1)/�P(1) ) γ.

The imaginary action integral for each of these paths is a
generalization of the imaginary action integral along the LCT
straight path. At every tunneling energy, the paths of eq 13
are built as a function of the R parameter as shown in Figure
1. For small values of R the geometries along the path will
be very close to those along the MEP and therefore motion
along the entire path is treated as vibrationally adiabatic. For
intermediate to large values of R, the path is divided into
three regions. Regions I and III, located on the reactants and
products sides respectively are treated as vibrationally
adiabatic, and region II is vibrationally nonadiabatic.

The vibrationally adiabatic potential is obtained in such a
way that the geometry x[R, �(R), s̃0] is perpendicular to the
gradient at that s value, that is,

The above equation may have multiple solutions but we
are interested in the solution that makes s a continuous
function of �(R). There is no guarantee that eq 14 will be
met for any geometry along the tunneling path. To find the
solution to eq 14 for a geometry x[R, �(R), s̃0] starting from
region I, a root search procedure is set up starting from the
reactants side turning point s̃0, that is, at �(R) ) 0. The value
of s that satisfies eq 14 is sI[R, �(R), s̃0]. In the same way
can be found a value sIII[R, �(R), s̃0] starting from products
at the classical turning point s̃1. If it is not possible to find
a geometry along the MEP that satisfies eq 14, it means that
there is no projection for that geometry of the tunneling path
onto the modes perpendicular to the reaction path in the
interval [s̃0, s̃1]. When this happens going from reactants to
products, the nonadiabatic region in the reactants side starts
at �(R) ) �I(R), being �I(R) the last value for which
sI[R, �(R), s̃0] exists. In the same way, the nonadiabatic region
in products side starts at �(R) ) �III(R), being �III(R) the last
value for which sIII[R, �(R), s̃0] exists.

It may occur that �III(R) < �I(R), so there is an overlap
between the adiabatic regions and the nonadiabatic region
does not exist. In this case, the vibrationally adiabatic
potential in the interval [�III(R), �I(R)] is evaluated as:

Each of the two si(0, �(0)), i ) I, III values needed for
the evaluation of the vibrationally adiabatic potentials
Va

G[si(0, �(0)); s̃0)] is obtained from eq 14.
In the case that �III(R) > �I(R), the potential is nona-

diabatic in the region II, which has boundaries �I(R) and
�III(R) with regions I and III, respectively. Therefore,
region I corresponds to 0 e �(R) < �I(R), region II to

γ ) �(R)
�P(R)

(10)

x[1, �(1), s̃0] ) x(s̃0) + �(1)η̂[1, �(1), s̃0] (11)

η̂[1, �(1), s̃0] )
x(s̃1) - x(s̃0)

�P(1)
(12)

x[R, �(R), s̃0] ) (1 - R)x[0, �(0), s̃0] + Rx[1, �(1), s̃0]
(13)

{x[R, �(R), s̃0] - x[0, �(0), s̃0]}
dx[0, �(0), s̃0]

ds
) 0

(14)

min(Va
G[sI(0, �(0));s̃0], Va

G[sIII(0, �(0));s̃0]) (15)
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�I(R) e �(R) e �III(R), and region III to �III(R) < �(R) e
�P(R). As shown in Figure 1, the path along regions I and
III is given by eq 13, whereas the path along region II is
a straight path between the boundaries, where the geom-
etries are given by

The nonadiabatic region is defined in the same way as for
the LCG4 method, that is, the path is in the adiabatic region

when (i) the condition given by eq 14 is obeyed, (ii) all the
generalized normal mode coordinates are within their
vibrational turning points, (iii) the geometry x[R, �(R), s̃0]
lies within the single-valued region of the reaction path
coordinates, and (iv) the adiabatic potential should be greater
than or equal to the effective potential at the boundary of
the nonadiabatic region; in the other case the nonadiabatic
region is extended until this condition is met. On the other
hand, if the adiabatic potential is smaller than the effective
potential the difference is due to anharmonicity, so the
effective potential is modified with a nonquadratic correction.

The imaginary action integral at every tunneling energy
and for each R value along the paths of eq 13 is:

The two cosines of eq 17, cos �i{s̃i, η̂[R, �(R), s̃i]} for i
) 0, 1 are obtained as the dot products between the unit
vectors η̂[R, �(R), s̃i] and the unit vectors tangent to the MEP
at si, that is,

The effective potential of eq 17 of the LAG4 method is
the same as that of the LCG4 method, with the difference
that now the geometries at which the potential is evaluated
are functions of R and of the progress variable �, which also
depends on R. Therefore, the effective potential is given by

The potentials Vcorr
i (R, �i(R), s̃0), i ) I, III correct for the

zero-point energy in the modes that are still within their
turning points. The potentials Vanh

i (R, s̃0) incorporate anhar-
monic nonquadratic corrections to the effective potential in
the same way as in the LCG4 method.

The optimum tunneling path (i.e., the LAG4 path) of the
family of paths given by eq 13 is the one that minimizes the
imaginary action integral of eq 17. The searching procedure
is similar to the one described in ref 12, that is, the smallest
value of θ(R, s̃0) is found by a quadratic search in R starting
with a initial set of 11 equally spaced points. The optimum
value of R at every tunneling energy is labeled as R̃.

The tunneling amplitude of the LAG4 path initiated at s̃0

is approximated using a primitive semiclassical expression

Figure 1. Plot of the JG PES (energy in kcal/mol) as a
function of two distances; rC-H is the distance between the
carbon atom and the abstracted CH4 hydrogen atom and rH-H

is the distance between the hydrogen atom and the abstracted
CH4 hydrogen atom. The graph also shows some possible
reaction paths at a given tunneling energy with classical
turning points given by s̃0 and s̃1 in the reactant and product
sides, respectively. The reaction swath is partitioned into the
adiabatic region of reactants (labeled as I), adiabatic region
of products (labeled as III), and the nonadiabatic region
(labeled as II and with boundaries given by a black dashed
line). The symbol ‡ indicates the position of the saddle point,
which is the conventional transition state. Four different paths
are plotted as solid curves over the PES using eq 13. The
four different values of R are 0 (black solid line), 0.10 (red
line), 0.50 (green line), and 1 (blue line). The path with R ) 0
corresponds to the MEP and is labeled as �(0). The path with
R ) 0.10 (labeled as �(R′)) corresponds to a curved path
passing through a region, which is completely vibrationally
adiabatic. The path with R ) 0.50 (labeled as �(R)) corre-
sponds to a curved path, which crosses the nonadiabatic
region with boundaries given by �I(R) in the reactants side
and by �III(R) in the products side. In the nonadiabatic region,
this path does not follow the curved path (green dotted line)
but the straight path (green solid line). Finally, the path with
R ) 1 (labeled as �(1)) corresponds to the straight path
connecting the geometries of the MEP at the classical turning
points. The nonadibatic region starts at �I(1) in the reactants
side and ends at �III(1) in the products side. The black dashed
line joining the straight path and the MEP indicates the
progress along each of the four tunneling paths for a given
value of γ (eq 10).

x[R,�(R), s̃0] ) x[R,�I(R), s̃0] +
�(R) - �I(R)

�III(R) - �I(R)
(x[R,�III(R), s̃0] - x[R,�I(R), s̃0]) (16)

θ(R, s̃0) )
(2µ)1/2

p [∫0

�I(R)
d�(R){Va

G[sI(0, �(0); s̃0)] -

Va
G(s̃0)}

1/2 cos �0{s̃0, η̂[R, �(R), s̃0]} +

∫�I(R)

�III(R)
d�(R){Veff

II (R, �(R), s̃0) - Va
G(s̃0)}

1/2 +

∫�III(R)

�P(R)
d�(R){Va

G[sIII(0, �(0); s̃0)] -

Va
G(s̃0)}

1/2 cos �1{s̃1, η̂[R, �(R), s̃1]}]
(17)

cos �i{s̃i, η̂[R, �(R), s̃i]} ) η̂[R, �(R), s̃i]
dx(s̃i)

ds
, i ) 0, 1

(18)

Veff
II (R, �(R), s̃0) ) V{x[R,�(R), s̃0]} + Vcorr

I (R, �I(R), s̃0) +

Vanh
I (R, s̃0) +

�(R) - �I(R)

�III(R) - �I(R)[Vcorr
III (R, �III(R), s̃0) -

Vcorr
I (R, �I(R), s̃0) + Vanh

III (R, s̃0) - Vanh
I (R, s̃0)] (19)
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The LAG4 primitive probability, Pprim
LAG4(E), is obtained from

the tunneling amplitude of the previous eq 20 plus the
contribution due to the vibrational motion perpendicular to the
reaction coordinate along the incoming T0(E) and outgoing T1(E)
trajectories at tunneling energy E

The tunneling amplitude of the incoming trajectory
along the reaction coordinate is exp[-θ(R̃, s̃0)]×
cos �0{s̃0, η̂[R̃, �(R̃), s̃0]} and that of the outgoing trajectory
is exp[-θ(R̃, s̃0)] cos �1{s̃1, η̂[R̃, �(R̃), s̃1]}. The expression
used in eq 21 is the average of the two tunneling amplitudes.
Similarly the tunneling amplitude due to the all the vibra-
tional degrees of freedom perpendicular to the reaction
coordinate is averaged using T0(E) and T1(E), instead of using
2T0(E), to inforce macroscopic reversibility. The expression
for T0(E) is similar to the one given in ref 13 but evaluated
along the LAG4 tunneling path (R ) R̃) instead of along
the LCG4 tunneling path (R ) 1).

The primitive probability of eq 21 can be greater than one
because of the integration of the amplitudes over the
incoming and outgoing trajectories, so it is enforced to go
to 1/2 at the maximum of the vibrational adiabatic potential
Va

AG by the expression

It is possible to include tunneling into excited vibrational
states of products in the exoergic direction. It can be done
easily by using the LAG4 approximation for the ground state
and the LCG4 approximation for excited vibrational states.
The procedure is described in detail in ref 13 and will not
be discussed here. The LAT method in its LAG4 version
has been implemented in POLYRATE 2008.67

4. Results and Discussion

In this section, we apply VTST/MT, including the LAG4
approximation for the evaluation of the transmission coef-
ficients for two hydrogen abstraction reactions:

Both reactions R1 and R2 were studied using the Jordan
and Gilbert (JG) potential energy surface (their surface no.
2).16 In the case of reaction R2, we just have changed the

mass of the hydrogen, which is abstracting the proton, to
that of a methyl group to observe the effect of the reaction-
path curvature on the transmission coefficients. Both reac-
tions are of the type A + BC f AB + C, where A, B, and
C are atoms or groups of atoms. The reaction path curvature
is a function of the skew angle, which in isoinertial
coordinates is given by

The skew angle is close to 90° when B has a much larger
mass than A and C and it is close to zero when the mass of
A and C is much larger than the mass of B. For the latter,
tunneling effects are more important because a light particle
is being transferred between two heavy atoms (heavy-light-
heavy system). For reaction R1, the skew angle is � ) 47°,
whereas for reaction R2 the skew angle is only � ) 20°.
From these values of the skew angle, we expect small values
of R̃ at all tunneling energies for reaction R1, because the
reaction path curvature is small, whereas large values of R̃
are expected for reaction R2. Indeed, this is the case at low
tunneling energies, as shown in Figure 2, which plots the
variation of θ with R for every tunneling energy for reactions
R1 and R2. For any reaction-path curvature, the least-action
path is always the path with the best compromise between
length and energy, that is, between short paths with high
barriers and long paths with low barriers. The two extreme
cases are, on one hand, the straight path, which is the shortest
path between two classical turning points but the most
unfavorable from the energetic point of view and, on the
other hand, the MEP, which is the longest path but the most
favorable energetically. The transmission coefficients ob-
tained using these two prescriptions are the LCT, for the
straight path, and the ZCT, for the MEP.

For both reactions, at low tunneling energies and for the
paths characterized by the optimum R̃, there is an important
area of the reaction swath that is vibrationally nonadiabatic
and that involves a significant increase of the potential
energy. That increase has to be compensated by shortening
the length of the path. That compensation occurs for reaction
R2, for which the curvature of the reaction path makes the
straight path very short, but not for reaction R1, for which
decreasing the length of the path does not compensate the
increase in potential energy. This is why the incursion of
the least-action path into the vibrationally nonadiabatic region
is weaker for reaction R1 than for reaction R2. The sudden
increase of the action integral observed in Figure 2 for
reaction R2 at R values about 0.9 is due to the extension of
the nonadiabatic region because for those paths there are
geometries for which eq 14 is not satisfied. At high tunneling
energies, the whole reaction swath is vibrationally adiabatic
and, therefore, there is no rise in energy even for very short
paths, so the least-action path coincides with the straight path.

The transmission coefficients and rate constants for reac-
tion R1 are listed in Table 1 and Table 2 respectively,
whereas the transmission coefficients for reaction R2 are
listed in Table 3. The LAT results for reactions R1 and R2
show that SCT and LAT approximations underestimate the

Ttun
LAG4(R̃, s̃0) ) Ttun

LAG4(R̃, s̃1) ) exp [-θ(R̃, s̃0)]
(20)

Pprim
LAG4(E) ) |T0(E) + T1(E)|2 +

(cos �0{s̃0, η̂[R̃, �(R̃)s̃0]+}cos �1{s̃1, η̂[R̃, �(R̃), s̃1]}

2 )2

×

exp [-2θ(R̃, s̃0)]
(21)

PLAG4(E) )

{1 + 1
2

[Pprim
LAG4(Va

AG)-1] - 1

Pprim
LAG4(Va

AG)
Pprim

LAG4(E)} ×

1

1 + [Pprim
LAG4(E)]-1

(22)

H + CH4 f H2 + CH3 (R1)

15H + CH4 f
15H - H + CH3 (R2)

� ) cos-1 ( mAmC

(mA + mB)(mB + mC))1/2

(23)
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transmission coefficients for tunneling. As expected, SCT
is better for small to intermediate curvature and LCT is better
for large curvature. The µOMT transmission coefficient also
underestimates tunneling but is the best choice when the LAT
transmission coefficient is considered to be too expensive.

For reaction R1, we compare the thermal rate constants
with accurate multidimensional quantum dynamical calcula-
tions68 in the interval 200-500 K. There are also previous
CVT/µOMT calculations69 for the same interval of temper-
atures, which showed very good agreement with the previous
quantum calculations. The CVT/LAT rate constants obtained
in this work show even better agreement with the quantum

results. The µOMT transmission coefficients are identical
to the SCT ones, indicating that the least-action path is quite
far from the straight path. Therefore, in this case the LCT
transmission coefficients underestimate quantum effects.
Sansón et al.70 reached a similar conclusion for the H2 + Cl
reaction, which has similar skew angle to reaction R1.
Because the skew angle for R1 is not large (small-to-
intermediate curvature case), it is expected that the SCT
transmission coefficient accounts well for tunneling. How-
ever, the comparison between SCT and LAT at T ) 200 K
shows that SCT underestimates tunneling at this temperature,
although the difference is already small at room temperature.
From the comparison of CVT/SCT and CVT/LAT with the
accurate rate constants, it is difficult to know which of the
two transmission coefficients is more accurate because both
approximations lead to very good results; LAT could be more
accurate than SCT because it finds the optimum tunneling
paths in a set of paths at every tunneling energy and it
includes nonadiabaticity; but SCT could also be more
accurate because it incorporates a more accurate treatment
of systems in the small-curvature limit.

When the curvature of the reaction path is large, as for
reaction R2, SCT seriously underestimates tunneling at all
temperatures in the range 200-500 K (Table 3) and,
therefore, this approximation accounts poorly for quantum
effects in this case. The LAT transmission coefficients are
also larger than the LCT ones. The straight path used in the
LCT method is a particular path in the family of paths
generated by eq 13, and the LCT calculation corresponds,
at every energy for which R̃ does not equal 1 to an
incompletely optimized LAG calculation (whereas SCT does
not). Thus, whenever LCT differs from LAT, it gives less
transmission probability. However, the LAT transmission
factor is underestimated by LCT by only 14% at T ) 200
K, and this percentage is reduced by half at room temperature.

To further analyze the tunneling, we examined, at every
temperature, the integrand of eq 5, PW(E), which is the
Boltzmann-weighted transmission probability. The value of
PW, with the zero of energy taken here as the maximum of

Figure 2. Graphs showing the variation of the imaginary-
action integral with the R parameter at each of the tunneling
energies (in kcal/mol) for reactions R1 and R2. The solid line
indicates the locations of R̃ at every tunneling energy. The
dashed line indicates the lowest R value for which there is a
nonadiabatic region when the paths given by eq 13 are
followed in the direction from reactants to products.

Table 1. Transmission Coefficients for Reaction R1 on the
JG Surface

T (K) ZCT SCT LCT µOMT LAT

200 4.36 18.7 13.7 18.8 27.3
250 2.49 6.27 5.11 6.28 7.30
300 1.87 3.54 3.04 3.54 3.73
400 1.41 2.02 1.84 2.03 2.01
500 1.25 1.57 1.47 1.57 1.54

Table 2. VTST/MT Thermal Rate Constants (in cm3

Molecule-1 s-1) Compared to Accurate Quantal Ones for
Reaction R1 on the JG Surface

T (K) CVT/SCTa CVT/LCTa CVT/µOMTa CVT/LATb accuratec

200 7.1(-21)d 5.2(-21) 7.1(-21) 1.0(-20) 9.0(-21)
250 4.3(-19) 3.5(-19) 4.3(-19) 5.0(-19) 5.5(-19)
300 7.8(-18) 6.7(-18) 7.8(-18) 8.2(-18) 9.8(-18)
400 3.6(-16) 3.3(-16) 3.6(-16) 3.6(-16) 4.0(-16)
500 4.1(-15) 3.8(-15) 4.1(-15) 4.0(-15) 3.8(-15)

a From ref 69. b This work. c From ref 68. d Powers of 10 in
parentheses.

Table 3. Transmission Coefficients for Reaction R2 on the
JG Surface

T (K) ZCT SCT LCT µOMT LAT

200 2.98 4.62 31.3 31.3 36.5
250 2.08 2.83 11.3 11.3 12.5
300 1.69 2.12 6.14 6.14 6.59
400 1.35 1.56 3.10 3.10 3.23
500 1.22 1.34 2.16 2.16 2.22
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the vibrationally adiabatic ground-state potential curve, is
shown at several temperatures for reactions R1 and R2 in
Figures 3 and 4, respectively. The area under the curves gives
the tunneling contribution to the transmission coefficients,
which is clearly more important for reaction R2. Figures 3
and 4 also show how PW varies with the tunneling energy
for different transmission coefficients. Taking the LAT
approximation as a reference approximation, we observe that
for reaction R2 the µOMT curve follows closely the LAT
curve, and as a consequence the µOMT transmission
coefficients are quite similar to the LAT ones. For reaction
R1, the µOMT transmission probabilities coincide with the
SCT ones but that curve is quite far from the LAT curve at
T ) 200 K due to the difference in magnitude of the
transmission coefficients. At T ) 300 K and above the

magnitude of SCT and LAT transmission coefficients is
similar, and the curves are similar, but they differ in detail,
with the µOMT (or SCT) probabilities being smaller at low
tunneling energies, and bigger at high tunneling energies,
when compared with the LAT probabilities. This behavior
is observed even at T ) 200 K and indicates that the SCT
probabilities are too high at tunneling energies close to the
top of the barrier. Another argument supporting this conclu-
sion is offered during the discussion of the graphs depicted
in Figure 5 and Figure 6.

The Boltzmann-weighted probability also allows one to
identify the tunneling energy that contributes the most to
each transmission coefficient. This characteristic energy is
called representative tunneling energy (RTE), and it can be
easily identified as the energy for which PW has a maximum.
The RTEs for reactions R1 and R2 obtained by each of the
approximations for tunneling are listed in Tables 4 and 5,
respectively. If the temperature is high, the maximum

Figure 3. Representation of the LAT (solid line) and µOMT
(dashed line) Boltzmann-weighted probabilities versus tun-
neling energy at different temperatures for reaction R1. The
tunneling energies labeling the abscissa are calculated using
the maximum of the vibrationally adiabatic ground-state
potential curve, Va

AG, as the temporary zero of energy.

Figure 4. Same as Figure 3 but for reaction R2.
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coincides with the top of the barrier, indicating that tunneling
is unimportant. Whereas the LAT imaginary action integral
and therefore the tunneling probability is the best compromise
between length and energetics for the family of paths of eq
13, the RTE is the best compromise between the tunneling
probability and the Boltzmann factor. It is obvious that at
low temperatures the RTE is located at relatively low
energies. In the limiting case, at T ) 0 K the only
contribution to the transmission coefficient comes from the
tunneling probability at the lowest tunneling energy (i.e., the
zero-point energy). As temperature increases, more energy
levels are populated, and tunneling is possible at several

energies, and in this case we have to look for the least-action
path at every tunneling energy. A quite different approach,
known as the instanton theory71,72 seeks, at every temperature
(not at every energy) for a unique least-action periodic
trajectory, called instanton, that represents all trajectories.

Figure 5. Effective potentials (in kcal/mol) at the representa-
tive tunneling energy for reaction R1 at different temperatures.
The X axis is the length of the path, � (in a0), and the Y axis
is the R parameter (eq 13), which controls the curvature of
the tunneling path. The green lines in each of the graphs are
the least-action paths for that particular RTE. See text for
details.

Figure 6. Same as Figure 5 but for reaction R2.

Table 4. Representative Tunneling Energies for Reaction
R1 (in kcal mol-1)a

T (K) ZCT SCT LCT µOMT LAT

200 37.03 35.68 36.07 35.68 34.75
250 37.29 36.42 36.14 36.42 36.11
300 37.42 36.81 36.18 36.81 36.16
400 37.61 37.21 37.46 37.21 37.45
500 37.70 37.39 37.59 37.39 37.58

a The maximum of the vibrationally adiabatic ground-state
potential curve has an energy of 37.70 kcal mol-1.
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Unfortunately, above a given critical temperature (usually
for temperatures above 250 K) there is no instanton trajec-
tory, although it is still possible to solve the problem
approximately using analytical expressions.73 There is a
certain resemblance between RTE and instanton in the sense
that, at every temperature, both indicate the most relevant
region of the PES for tunneling.

Figures 5 and 6 depict effective potentials, which are given
by eq 19 in the nonadiabatic region and by the vibrationally
adiabatic ground-state potential in the adiabatic region, versus
the length of the path for several values of R, taking as
turning points the representative tunneling energies at T )
200, 300, and 500 K for reactions R1 and R2, respectively.
Each of the graphs was generated by mapping the PES using
eq 13. The green lines depicted in each of the graphs
represent the least-action path. At T ) 200 K the least action
paths for both reactions, R1 and R2, have nonadiabatic
regions, and the value of R̃ is 0.62 and 0.83, respectively.
For reaction R1 the ratio �P(R̃)/�P(0) is 0.78 and the
difference Vmax(R̃) - Va

AG is 0.64 kcal mol-1, whereas for
reaction R2 the ratio between lengths is 0.53 and the
difference in energy is only 0.05 kcal mol-1. Those numbers
show that at T ) 200 K the shortcut through the nonadiabatic
region compensates the rise in energy for both reactions. This
behavior is more noticeable for reaction R2, which exhibits
a larger reaction-path curvature.

From the previous discussion it seems odd that, at T )
300 K, R̃ is 1.00 and 0.93 for reactions R1 and R2
respectively but it is easily understood by taking into account
that for the former reaction all members of the family of
curves at that temperature from R ) 0 to R ) 1 lie
completely in the adiabatic region, so the maximum of the
effective potential is always the maximum of the vibrationally
adiabatic ground-state potential, as shown in Figure 5. The
consequence is that there is no energy penalty for shorter
paths and, therefore, the least-action path coincides with the
straight path. This circumstance does not occur for reaction
R2, which has a nonadiabatic region for some values of R.
Therefore, when the relevant part of the reaction swath is
completely adiabatic the least-action path should be always
the straight path and the probabilities obtained with the SCT
approximation should not be larger than the LCT ones in
that region of the PES. However this occurs for reaction R1,
as shown previously in Figure 3. On the light of the values
of the transmission coefficients obtained by the SCT and
LAT approximations for R1 this issue seems unimportant,
but in future work it would be interesting to analyze this
behavior in more depth for a large number of reactive
systems presenting varying amounts of reaction-path curvature.

In this work, we have used an analytical PES to show
how the LAT approximation works for polyatomic systems.
However, the method is very expensive in computer time,
which is an obstacle for on-the-fly generation of the PES.
The easiest solution to the problem is a brute-force approach
consisting in the evaluation of several tunneling energies at
the same time by parallelization of the method. A more
reasonable approach would be to make use of different
interpolation procedures to save computer time. The two
graphs of Figure 2 give us a hint about a possible solution
to the problem. In principle, it would be feasible to use a
spline under tension similar to the one used in the ILCT2D62

approximation, with the difference that, instead of interpolat-
ing tunneling paths and tunneling energies, we interpolate
imaginary-action integrals and tunneling energies. It is
possible to make the procedure even less expensive in
computer time by interpolating the potential needed for the
evaluation of the imaginary-action integral at every R value.
A more detailed discussion about how to extend the LAT
method to make it practical for its use within the direct
dynamics approach will be presented elsewhere.

5. Concluding Remarks

We have extended the least-action tunneling (LAT) ap-
proximation to polyatomic reactions. The implementation is
called least-action ground-state version 4 because it is based
on the reactant ground state when the reaction is written in
the exoergic or thermoneutral direction and because in the
limit of large reaction-path curvature it reduces to the large-
curvature tunneling (LCT) approximation carried out by the
large-curvature ground-state version 4 (LCG4) method. The
new method is more complete than the simpler microca-
nonically optimized multidimensional tunneling (µOMT)
approximation, and in the tests presented here it is slightly
more accurate. The method has been incorporated in the
POLYRATE computer program.
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Abstract: The properties of a new method of performing molecular dynamic simulations of
complex chemical processes are presented. The method is formulated to give a time-dependent,
multilevel representation of the total potential that is derived from spatially resolved quantum
mechanical regions. An illustrative simulation is performed on a 110 atom system to demonstrate
the continuity and energy conserving properties of the method. The effect of a discontinuous
total potential upon the kinetic energy of the system is examined. The discontinuities in the
magnitude of atomic force vectors due to changing the electronic structure during the simulation
are examined as well as the effect that these discontinuities have upon the atomic kinetic
energies. The method, while not conserving total energy, does yield canonical (NVT) simulations.
The time reversibility property of the simulation with an extremely discontinuous total potential
is discussed. The computational scaling associated with the formation of the spatially resolved,
time-dependent groups is also investigated.

1. Introduction

Multiscale modeling of chemical processes has gained much
popularity as theoreticians begin to move from what can be
calculated on the atomic scale and attempt to join these
results to give insight into the meso- and macroscopic scale.
Often these simulations involve a mixture of a single high-
level quantum mechanical (QM) region surrounded by a
lower level molecular mechanical (MM) region. These so-
called QM/MM simulations have proven enormously suc-
cessful in studying many different chemical phenomena, and
several review articles have recently appeared.1-15 In
particular, biochemical phenomena have proven to be a
fruitful venue of application for chemical modeling via QM/
MM methods.1,4-6,8-10,12,16-20 In these QM/MM simula-
tions, the chemical system is broken into differing regions
because the QM calculations needed to understand the
phenomena in the QM region, if applied to the whole system,

would be computationally prohibitive and would be an
inefficient use of computer resources, since what happens
inside the MM region only affects the QM region in a
derivative manner.

Most often QM/MM methodology is formulated in a static
manner, where the defined QM region (that may involve as
little as a few atoms to multiples of tens of atoms or
molecules) is connected to a defined MM region (typically
involving orders of magnitude more atoms/molecules as that
found in the QM region), and these regions remain fixed
during the course of the simulation. Recently, however, time-
dependent (or adaptive) partitioning between the QM and
MM regions has provided a means of atomic exchange
between regions, where the QM and MM regions are free
to change as a function of the simulation time.21-32 This
feature is particularly important when studying chemical
systems where the phenomena change significantly in time,
such as complex reactive systems, solution dynamics, dif-
fusion, and reactions on surfaces. Perhaps the primary
difficulty in these dynamically defined QM/MM methods is
the significant discontinuties in the total potential (and,
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perhaps, the atomic force field) and the result that the total
energy is not a conserved quantity.21,24-33 The recent
adaptive partitioning method of Heyden and Truhlar22,23 has
been uniquely formulated in a manner that is able to make
the connection between dynamically resolved QM and MM
regions in a way that does not induce discontinuities in the
potential energy and forces, which ensures microcanonical
(NVE) ensemble simulations that conserve energy, angular,
and linear momentum. The method connects the QM and
MM zones through a buffer zone that ensures a smooth
transition in the potential and atomic forces for atomic
passage by means of 2N or N additional multilevel calcula-
tions of the buffer zone, where N is the number of groups in
the buffer zone.

However, the significant discontinuities resulting in the
total potential from time-dependent QM/MM methods has
been shown not to induce deviations in the simulations
themselves.21,24,29 The reason for this is that the motions of
the atoms in the simulation depend on the gradient of the
potential (which yields the force field) and not on the
potential itself. Thus, in order to have accurate and smooth
simulations, the gradients must be continuous between time
steps, not the potential. However, a discontinuous potential
will not yield the conservation of the total energy (thus, not
a microcanonical ensemble). In spite of this, simulations
within the canonical ensemble (NVT) may be obtained from
time-dependent QM/MM simulations, if the gradients are
approximately continuous. Continuous gradients of the
potential yield continuity in the kinetic energy and the smooth
atomic motions between time steps where there may be a
very large discontinuity in the potential.

When considering chemical systems that lend themselves
to necessarily being studied by a time-dependent QM/MM
methodology, perhaps the most compelling case is that of
the simulation of gas-phase complex reactive processes.
These complex processes may be spread over 1 000s of
individual reactions with 100s of unique chemical species
formed during the entire process.34-39 In addition, the
reactive channels have rates that are both temperature and
pressure sensitive. Presently, the chemistry associated with
these complex reactive processes is obtained through so-
phisticated methods of mechanistic postulation.40-42 Mech-
anisms are postulated and reduced to the smallest number
of reactions possible. Rate coefficients for the individual steps
are obtained by fitting to experimental data through the
design of experiments for the isolation of the individual
reactions to obtain the rate coefficients and through the use
of transition-state theory and/or molecular dynamics.43 In
this methodology of postulation and solving for the rate
coefficients, the simulated dynamics of the chemical system
are determined from the kinetics, rather than the reverse.

And that the kinetics determines the dynamics is for
sufficient reason, since direct molecular dynamic simulations
of these processes are extremely difficult and have only
recently been performed through the use of empirical reactive
force fields.44-47 Consider, these systems are composed of
individual reactions that may scale between picoseconds to
as long as nanoseconds and between whole processes that
are on the order of nano to microseconds. Furthermore,

because the chemistry involves so many reactive channels,
100s to 1 000s of atoms are needed in order to perform a
meaningful simulation. Thus, simulation of these complex
reactive gas-phase systems involves multiscale modeling in
both time and system size, necessitating a time-dependent
QM/MM methodology, if high-level QM calculations are to
be used in order to understand these complex reactive
processes.

In addition to requiring a time-dependent QM/MM meth-
odology for the simulation of these complex gas-phase
reactive processes, these systems further require a multilevel
QM description of the potential. This is the case because a
single level of QM theory will not be able to cover all the
reactive and nonreactive collisional processes sufficiently
well. Consider the treatment of a radical reaction at the same
level of theory as a bath gas collisional process. A level of
theory sufficient for the radical reaction is too high a level
for bath gas collisions, and a level appropriate for the bath
gas collisional process is insufficient for the radical reaction.
Thus, these complex reactive gas-phase processes require a
multilevel QM description due to the difficulties in obtaining
accurate potentials for the diverse and numerous collisional
processes.

One way of mitigating some of the computational dif-
ficulties associated with performing direct molecular dynamic
simulations of these complex reactive processes has been
suggested through the formulation of the total potential into
time-dependent, spatially-resolved groups over which mul-
tiple levels of electronic structure may be applied.29 This
method allows one to avoid the use of a single level of
electronic structure for all interactions within the simulation.
Spatially resolved groups are formed during the course of
the simulation, and an appropriate level of QM theory is
applied to the groups depending on their chemical nature.
This time-dependent, multilevel QM methodology allows the
use of high levels of electronic structure for demanding
reactive collisions, while also allowing use of lower levels
of electronic structure for nonreactive collisional processes.

The subject of this work is an examination into the
properties of such a time-dependent, multilevel QM molec-
ular dynamics method. The method may be represented as
nQM (QM1/QM2/QM3/..., where each QM level is for
individual groups). The intergroup (group-group) MM
interactions were set to zero for this study. A 110 atom
nonreactive simulation is performed in order to examine the
continuity properties of this adaptive nQM method. The
simulation and levels of theory chosen for the various groups
are described in Section II. Section III examines energy
continuity and conservation properties that result from a time-
dependent, multilevel QM description of the potential. The
continuity of the atomic forces is examined in Section IV
over two changes in groups where the QM levels describing
the groups differ widely. The atomic kinetic energies of the
atoms involved in the two groups are also examined. Section
V examines the time reversibility of the simulations. The
computational scaling associated with the formation of the
groups is investigated in Section VI. The conclusions are
given in Section VII along with a brief description of the
future development of the computational tools in order to
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perform direct molecular dynamic simulation of complex
reactive processes in the gas-phase.

II. Illustrative Simulation

In order to examine the properties of a time-dependent,
multilevel QM molecular dynamics methodology, a 110 atom
simulation with 10 ethylene (C2H4), 10 carbon dioxide (CO2),
and 10 carbon monoxide (CO) molecules were placed into
a cubic simulation cell of size 65 bohr per side and a total
volume of 40.70 nm3. The molecules were randomly placed
in the simulation cell and equilibrated at a temperature of
300 K using ReaxFF,48 giving an ideal pressure of 30.1 atm.
After equilibration with ReaxFF, the atomic coordinates and
velocities of the system were used as initial conditions for a
nonthermostated simulation. For this 110 atom system,
individual C2H4, CO2, and CO molecules were treated at
MP2/McLean and Chandler (MC), SVWN/6-31G, and RHF/
STO-3G levels of theory, respectively. For groups mixed
with combinations of molecular systems, the following rules
were employed: combinations of molecules containing all
three CO, CO2, and C2H4 species, the RHF/STO-3G level
of theory was employed; for CO and C2H4 only, the SVWN/
6-31G level of theory was employed; for any combination
of CO2 and C2H4 with fewer than 20 atoms, the MP2/MC
level of theory was used; for any combination of CO2 and
C2H4 with more than 20 atoms, the RHF/STO-3G level of
theory was employed. Although not exhaustive, these rules
were sufficient for the simulations reported herein. The 20
atom break was used to ensure that the simulation would
not require more memory than available. The GAMESS
electronic structure suite of programs was used to calculate
the energy and gradients during the course of the simula-
tion.49 A 3.86 Å (7.30 bohr) diatom spatial cutoff was used
to define the groups. Thus, any atom pair within this cutoff
will be part of the same group (Section VI has more
information on group formation). A larger spatial cutoff will
have even better continuity properties than illustrated below.

In addition, the levels of electronic structure and basis sets
were specifically chosen to ensure very significant changes
in the level of theory used for describing the groups. In fact,
it is recognized (and was such designed) that these selections
represent poorer choices than would likely be used, resulting
in much larger changes in the description of electronic
structure when the groups change. Thus, the continuity
properties outlined in this work were designed to be closer
to the worst-case scenario, rather than the best that can be
achieved.

III. Continuity and Conservation Properties

a. Potential and Total Energy. The 110 atom simulation
began with a connectivity list given in Table 1 and a total
potential energy of -3.7522050175 × 103 Hartrees. A time
step of 10 au of time (∼0.242 fs) was employed for the
simulation and Hamilton’s 6N first-order equations of motion
were solved using a velocity Verlet numerical integrator.
Shown in Figure 1 are plots of the total potential energy
(y-axis) and the energy conservation (E(t) - E(0), secondary
y-axis) as a function of simulation time, where the total

potential energy is shown as small green circles connected
by red-dashed lines and the energy conservation is shown
as small blue circles connected by red-dashed lines. This
figure shows that the total potential energy begins smoothly
with small oscillations in the total potential due to the
intragroup interactions (vibrations and internal attractions and
repulsions within the initial groups given in Table 1). At a
simulation time of 52.5 fs, there is a discontinuous drop in
the potential of 3.903 Hartrees, where a CO/CO2/C2H4 11-
mer group treated at the RHF/STO-3G level of theory
dissociated to a CO/C2H4 8-mer plus a CO2 3-mer, with each
product group treated at the SVWN/6-31G level of theory.
Continued changes in groups are seen at subsequent times
of 63.4, 76.2, 76.9, 105.2, 140.5, 142.0, 142.2, 240.0, 249.4,
264.1, 273.6, 279.9, 354.1, 357.5, 369.4 fs with potential
energy changes of -2.037, -5.947, -1.135, +0.848,
-4.021, +0.850, +3.917, -0.851, -1.862, +0.733, +5.948,
-2.042, -2.036, -0.844, -0.849 hartree, respectively.

In examining the conservation of energy, Figure 1 shows
that energy is completely conserved (maximum value of
-1.052 × 10-4 Hartrees) until the first change of groups at
52.5 fs where the total potential is discontinuous, resulting
in the same discontinuity in the total energy. Also shown in
Figure 1 is the result that, because groups are formed on the
basis of internuclear spatial cutoffs, sometimes the groups
(and, thus, levels of QM theory) change rapidly. This is best
illustrated at time steps of 76.2, 140.5, and 142.0 where the
groups remained unchanged for only 3, 6, and 1 time step,
respectively, resulting in a rapidly changing total potential.

Figure 1. Continuity in the total potential energy (y-axis, green
circles and red-dashed lines) and the conservation of total
energy (secondary y-axis, blue circles and red-dashed lines)
for an 110 atom simulation.

Table 1. The Groups at the Beginning of the 110 Atom
Simulation

group size
number of
members

molecules
in group level of theory

2 5 CO RHF/STO-3G
3 3 CO2 SVWN/6-31G
5 1 CO, CO2 RHF/STO-3G
6 4 C2H4 MP2/MC
9 2 CO2, C2H4 MP2/MC
11 1 CO, CO2, C2H4 RHF/STO-3G
14 1 CO, 2 CO2, C2H4 RHF/STO-3G
19 1 2 CO, CO2, 2 C2H4 RHF/STO-3G
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a. Kinetic Energy. Shown in Figure 2 is a plot of the
kinetic energy for the 110 atom simulation of Figure 1 over
the same time period. The kinetic energy at each time is
shown as small black-filled circles connected by red-dashed
lines. This figure shows that, while the total potential
undergoes the radical discontinuities seen in Figure 1, the
total kinetic energy remains continuous throughout. This is
better illustrated in Figure 3, which shows the energy
conservation (black circles connected by blue-dashed lines)
and the kinetic energy (black circles connected by red-dashed
lines) at times between 235 and 285 fs, where there were
five changes in the groups and the resulting discontinuity in
the total potential. As seen in this figure, the total energy
undergoes large discontinuities (of over +5.9 Hartees at t )
273.6 fs), while the kinetic energy is continuous through all
these changes, which yields very smooth atomic motions
between these extremely large discontinuities in the potential.

To further examine the smoothness of the kinetic energy,
the time derivative of the kinetic energy was calculated at
each time step within the 235-285 fs simulation window
displayed in Figure 3, and these results are shown in Figure
4. The time steps where there was a change in groups and
the QM levels of theory used to describe those groups are
shown as blue boxes. Figure 4 shows that the gradient of

the kinetic energy is continuous (C0 continuity), which alone
is sufficient for a smooth and continuous kinetic energy.
Furthermore, at all times where there was a change in groups
and a resulting discontinuity in the total potential, the
derivative of the kinetic energy immediately after the change
is very smooth, with the possible exception of the point at
273.6 fs where there is a small kink. A similar kink is seen
at t ) 248.9 fs, where there was not a change in groups.
Examining the second time derivative of the kinetic energy
(time derivative of Figure 4, not shown) demonstrates that
it is discontinuous in this short time window at a few of the
times where there is a change in groups (t ) 249.4, 264.1,
and 273.6 fs). However, the second derivative of the kinetic
energy is also discontinuous at times where there are no
changes in the groups. The result of this analysis is that
continuity of the time derivative of the kinetic energy is
sufficient to guarantee a smooth and continuous kinetic
energy. Figure 4 shows that this 110 atom simulation has a
continuous derivative of the kinetic energy (and, thus, a
smooth kinetic energy) when the potential undergoes frequent
and significant discontinuities. In addition, the results of
Figures 3 and 4 are for a spatial cutoff of 3.86 Å (7.30 bohr).
Enlarging the spatial cutoff will improve the smoothness and
continuity of the kinetic energy and the gradient of the kinetic
energy, respectively.

IV. Atomic Force Continuity

The energy continuity and conservation properties of the 110
atom simulation shown in Figures 1-4 demonstrates that
formulating the total potential as time-dependent, multilevel
QM groups will result in a radically discontinuous potential
with the resulting total energy not being a conserved quantity.
However, examining the energy conservation plot of Figures
1 and 3 shows that as long as the groups remain unchanged,
the total energy is a conserved quantity. Thus, what is
changing with a change in groups is simply the reference
total energy, E(0). This is the case because the groups change
at spatial cutoffs that are at, or near, the asymptotic region
where the gradients of the potential will have approximately
the same value, namely zero. Furthermore, the kinetic energy
remained continuous despite very significant changes in the

Figure 2. Continuity of the total kinetic energy for 110 atom
simulation.

Figure 3. Total energy conservation (black circles connected
with blue-dashed line) and continuity of the total kinetic energy
(black circles connected by red line) in time window between
235 and 285 fs, where there are five changes in groups.

Figure 4. Time derivative of kinetic energy (T) in atomic units
in 235-285 fs window. The blue boxes are where there is a
change in groups.
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level of theory and of basis sets used to describe the
intragroup interactions (potentials and forces). During some
changes, CO, CO2, and C2H4 molecules went from a low-
level RHF/STO-3G to higher levels of theory and larger basis
sets of SVWN/6-31G and MP2/MC and vice versa. The
levels of theory and basis sets were both chosen to illustrate
that even with these large changes in the description of the
electronic structure, where local bond distance minima and
potential energy profiles will change with the change in levels
of electronic structure theory, the kinetic energy remains
continuous throughout.

In order to examine the changes in the intragroup atomic
forces resulting from changes in QM levels of theory, the
magnitude of the atomic force vectors were calculated over
the range from 265 to 284 fs, where there were two different
changes in groups that involved the same atoms. At 273.6
fs, a (CO2)2 6-mer joined a C2H4/CO 8-mer to form a 14-
mer supermolecule. The 6-, 8-, and 14-mer groups were
treated at the MP2/MC, SVWN/6-31G, and RHF/STO-3G
levels of theory, respectively. In addition, at 279.9 fs this
same (CO2)2/C2H4/CO 14-mer group (RHF/STO-3G) dis-
sociated into a CO2 3-mer (MP2/MC) and a CO2/C2H4/CO
11-mer (RHF/STO-3G). Shown in Figures 5 and 6 are the
magnitude of the atomic force vectors between 265 and 284
fs for all 14 atoms involved in these 2 changes of groups.
Lines connect the data for the C atoms in Figure 5 since
they are more difficult to follow during this short time
window. Figure 5 gives the atomic force vector for the C2H4/
CO molecules, while Figure 6 gives the atomic force vector
for the two CO2 molecules. The large difference in electronic
structure (and in potential energy) at 273.6 fs yielded
discontinuities in the magnitude of the atomic force vectors
for all atoms except the C atoms (filled green diamonds in
Figure 5 and blue squares and purple asterisks in Figure 6).
In all these cases, the atoms are going from being treated at
a higher level of theory and a larger basis set to a lower
level of theory and a very small STO-3G basis set. The
subsequent change in groups at 279.9 fs, shown in both
Figures 5 and 6, demonstrates that there are no discontinuities
in the atomic force vector, except for the CO2 molecule that
leaves the 14-mer group. The atomic force vectors for this

CO2 molecule are the blue squares, green up-facing triangles,
and red diamonds in Figure 6. The largest discontinuity in
Figures 5 and 6 was at 273.6 fs for the C and O atoms (of
the CO molecule), in Figure 5 represented as the black-filled
circles and red-filled boxes with a value of -0.0506 hartree/
bohr. Thus, Figures 5 and 6 show that significant disconti-
nuities may exist in the gradients of the intragroup potential
due to the changes in electronic structure when there is a
change in QM levels of theory at the spatial cutoff.

The atomic kinetic energies of the 14 atoms involved in
the 2 group changes between 264 and 284 fs are shown in
Figure 7. The atoms are given in the same order as shown
in Figure 5 and then Figure 6. Although somewhat obscured
due to the number of atoms represented in Figure 7, close
inspection of the figure shows that, even though there are
discontinuities in the magnitude of the atomic force vector
at 273.6 and 279.9 fs, all the atomic kinetic energies evolve
smoothly through these discontinuities. The kinetic energies
of the C and O atoms (black filled circles and red filled boxes,
respectively), where there was the largest -0.0506 hartree/
bohr discontinuity in the atomic force vectors, also move
smoothly through these discontinuities.

Figure 5. Continuity in the magnitude of the atomic force
vectors for 8 of the 14 atoms involved in the change of groups
at 273.6 and 279.9 fs.

Figure 6. Continuity in the magnitude of the atomic force
vectors for the remaining 6 of the 14 atoms involved in the
change of groups at 273.6 and 279.9 fs.

Figure 7. Continuity in the atomic kinetic energies of the 14
atoms involved in the change of groups at 273.6 and 279.9
fs.
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In order to examine the effect of a variable spatial cutoff
on the discontinuity in the atomic gradients and atomic
kinetic energies, single collisions between CO and C2H4

molecules were examined. Individual CO and C2H4 mol-
ecules were treated at the RHF/STO-3G and the MP2/MC
levels of theory, while the CO/C2H4 supermolecule was
treated at the SVWN/6-31G level of theory. Before perform-
ing the simulations, the geometries of the individual CO and
C2H4 molecules were optimized using their respective levels
of theory. Seven separate simulations were performed with
spatial cutoffs of 4.3-7.3 bohr in increments of 0.5 bohr.
The initial geometry of the collisions between the CO and
C2H4 molecules was at their optimized geometries and at
just outside the variable spatial cutoff from one another. The
molecules were given center-of-mass velocities to push
the molecules together but no internal kinetic energy. The
molecules were given no internal kinetic energy in order to
examine the effect of the discontinuity in the gradients upon
the atomic kinetic energies, and it was not desired to have
internal kinetic energy obscure the result. The discontinuity
of the magnitude in the atomic force vectors due to the
change in the levels of electronic structure was as large as
1.153 × 10-3 Hartrees/bohr, yet resulted in no discontinuities
in the atomic kinetic energies across the spatial cutoff. These
are precisely the results given above and displayed in Figures
7 and 8, with a spatial cutoff of 7.3 bohr. The difference
between spatial cutoffs of 4.3-7.3 bohr is that there is only
a very slight acceleration in the atomic velocities after the
supermolecule is formed at 7.3 bohr because this spatial
cutoff is near the asymptote, where the intermolecular
gradients are very close to zero, regardless of the level of
theory employed. With a spatial cutoff of 4.3 bohr, these
intermolecular interactions are larger, resulting in larger
accelerations and decelerations of the center-of-mass velocity
vector after the change in levels of theory. Thus, the result
of examining a variable spatial cutoff is that kinetic energy
is still a continuous quantity, but a spatial cutoff that is too
small will lead to sudden accelerations between the mol-
ecules, whereas a larger spatial cutoff will give rise to these
accelerations in a slower, more physical manner.

V. Time Reversibility

One of the properties of classical molecular dynamic
simulations is that they are time reversible. Given a set of
initial conditions (atomic coordinates and velocities), one
may propagate forward in time, and when the simulation is
reversed arrive at the starting point in the exact same number
of steps. Time reversibility was examined over the time
window of Figure 3, where there are five discontinuities in
the potential. The cumulative root-mean-square error (rms)
in all the atomic Cartesian coordinates (in Å) at each time
between 295 and 235 fs was calculated. The simulation was
initialized with the atomic coordinates and the opposite
velocities of the 295th fs time step when going forward in
time and run for 60 fs using the same time step as before
(10 au). This will cause the simulation to go back over the
five discontinuities in the opposite direction. The rms error
in the atomic coordinates rises slowly and in a very linear
manner to reach a maximum value of 3.635 × 10-4 Å after
60 fs, and there is not additional error where there are
changes in groups and discontinuities in the total potential.
The rms error in the atomic coordinates has a cumulative
effect because any deviation in a previous step will be carried
through to the next time step. Fitting a slope to the rise in
rms error over the 60 fs gives a value of 5.8694 × 10-6

Å/fs for a cumulative rms error of all 110 atomic Cartesian
coordinates.

VI. Methodology

The method of performing molecular dynamic simulations
by a time-dependent, multilevel QM description of the total
potential has been programmed into a suite of programs
called Accelerated Molecular Dynamics with Chemistry
(AMolDC). This multicomponent program divides the total
potential into spatially resolved, time-dependent groups
where differing levels of electronic structure may be
employed over the individual groups in order to place
appropriate levels of electronic structure for the various
groups formed. Currently, the group-group (intergroup)
interactions (MM) have not been implemented but may be
computed by low-level QM calculations.

a. MakeGroups. As noted in the 110 atom simulation
above, the QM regions are free to change definitions anytime
during the simulation, as governed by spatial cutoffs, and it
was observed that there may, indeed, be changes in the
groups at every time step. Thus, the making of the groups
of the simulation will necessarily take place on every time
step and will, thus, need to be extremely efficient. In order
to accomplish this task efficiently, the simulation cell is
broken into link-listed subcells, i.e., each subcell has an
explicit link to neighboring subcells. The making of all the
groups within the simulation cell proceeds by looping over
all the link-listed subcells. Once in a subcell, the groups are
formed by looping over all the atoms within the given subcell
and by connecting all atoms that are within the spatial cutoff
of the atom being looped over. This connectivity list is then
looped over to calculate the distance between these and other
atoms in the given subcell and in any neighboring subcell,
if the atom is within the spatial cutoff of the edge of the

Figure 8. Computational scaling of simulations of N2 at 300K
and ∼90 atm pressure with 500 time steps.
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subcell. This process continues until the connectivity list
remains unchanged, at which time the process is repeated,
being initialized for the next atom in the subcell. After all
atoms within the subcell are searched, the next subcell is
begun.

The MakeGroups module within AMolDC has been
programmed in order to accomplish the task of making the
spatially resolved groups at each time step in a simulation.
In order to investigate the computational scaling of the
MakeGroups module, simulations of N2 at 300K were
performed in which the nitrogens were randomly placed
within a simulation cell and propagated for 500 time steps
using a simple Morse potential for all internuclear distances.
As the number of N2 molecules was increased, the simulation
cell size was adjusted to yield an ideal gas pressure of ∼90
atm at 300K. Shown in Figure 8 are the total simulation times
without using the MakeGroups module (open circles) and
with using the MakeGroups module with 1 subcell (red-filled
circles), 27 subcells (open boxes), 64 subcells (open tri-
angles), 125 subcells (×), and 1000 subcells (*). One can
see from this figure, the O(N2) scaling when not using
MakeGroups (calculating all interatomic distances) and when
using MakeGroups with only 1 subcell (the whole simulation
cell). The computational overhead for the MakeGroups
module is 1.45 times that of calculating all internuclear
distances, as measured by the coefficient of the leading O(N2)
term over the same simulation. However, when the simula-
tion cell is divided into a distribution of 3 × 3 × 3 link-
listed subcells, the computational time is greatly reduced,
and the computational expense goes from O(N2) scaling to
O(N) scaling. There is little computational difference (relative
to the same simulation without MakeGroups) between a 3
× 3 × 3, a 4 × 4 × 4, and a 5 × 5 × 5 division of link-
listed subcells. Figure 6 shows that as one continues to
increase the number of simulation cells, the computational
time becomes more linear. Deviations from linearity come
about from the O(N2) operations of calculating the inter-
nuclear distances of the molecules within the individual
subcells. Saturation of the simulation cell with subcells, as
given most closely by the 10 × 10 × 10 division of link-
listed subcells (asterisks), shows almost exactly linear scaling
in the number of atoms. Even though the computational cost
of MakeGroups is insignificant relative to high-level QM
calculations, what is demonstrated in Figure 8 is that, because
the total potential is assembled from time-dependent groups,
one has the ability to reduce the total number of QM
calculations in order to yield overall linear scaling with
system size.

VII. Conclusions

The continuity and energy conservation properties of a time-
dependent, multilevel QM methodology for the simulation
of gas-phase reactive processes have been demonstrated by
thoroughly examining a short 110 atom simulation. Although
the 110 atom simulation was for nonreactive collisions, a
simulation involving reactions will not change the properties
illustrated, since all such reactions will be within the
asymptotic spatial cutoff. The simulation of reactive pro-
cesses will call for much higher levels of electronic structure

methods to be employed. Simulations of a reactive system
are currently being performed.

The principle illustrated in Figures 1-4 is that smooth
simulations, within the canonical (NVT) ensemble, result
from the framework of a time-dependent, multilevel QM
description of the potential that undergoes radical disconti-
nuities over the course of the simulation. However, whenever
there is a change in the QM levels of theory, the kinetic
energy smoothly traverses these times because the gradients
of the potential are all approximately zero at the spatial
cutoffs. In addition, Figures 5-7 show that the discontinuities
that may result from changes in electronic structure for the
intragroup interactions are also shown to not induce discon-
tinuities in the kinetic energy. Thus, smooth atomic motions
and continuity in the atomic and cumulative kinetic energy
across the boundaries, where there may be significant changes
in electronic structure, are also demonstrated.

With a multilevel QM description of the potential that is
based on spatially resolved groups, one may place higher
levels of theory for those intragroup interactions that demand
such treatments (reactive processes) and lower levels of
theory for simpler interactions (collisional processes). The
AMolDC suite of programs (an nQM method) has been
written in order to accomplish these goals. Computational
studies show that reducing the total number of potential
energy function calls allows the performance of nQM
simulations that scale linearly with system size. Future
applications will show the utility of a potential energy
database (PESDatabase) module in which to store the high-
level QM data of the various groups formed during a
simulation. These high-level QM data will be used at
subsequent simulation times to formulate fast numerical
interpolations over the various groups. Thus, an extension
in the system size and the simulation time for the direct
simulation of complex reactive processes in the gas-phase
is performed by the dividing of the total potential into
spatially resolved, time-dependent groups over which mul-
tiple levels of electronic structures may be employed and
the storing of these QM data for subsequent numerical
interpolation, once the database is sufficiently populated.
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Abstract: We describe a procedure to develop a fitting basis for molecular potential energy
surfaces (PESs) that is invariant with respect to permutation of like atoms. The method is based
on a straightforward symmetrization of a primitive monomial basis and illustrated for several
classes of molecules. A numerically efficient method to evaluate the resulting expression for
the PES is also described. The fitting basis is used to obtain a new PES for H3O+ based on
roughly 62 000 ab initio energies.

1. Introduction

The representation of potential energy surfaces (PESs) that
are fits to electronic energies is a long-standing goal of
computational chemistry.1-3 Progress to extend this goal
beyond three and four-atom systems has been made
recently by using a fitting basis that is invariant with
respect to all permutations of like atoms.4 (Also consult
this paper for a review of other recent approaches to fitting
PESs.) The approach makes use of powerful algorithms
from computational invariant polynomial theory. The key
feature of this method is to compute the primary and
secondary invariants for a particular molecule permutation
group. Once the primary and secondary invariants are
computed, every invariant polynomial basis function can
be uniquely factorized as the product of secondary
invariants with a polynomial of the primary invariants
(typically this polynomial is just a product of some
primary invariants when constructing the invariant basis
functions). The computational efficiency of this represen-
tation comes from this factorization. Since every invariant
polynomial can be written as the product of two invariant
polynomials, hence in the real evaluation of the potential
energy function, only N multiplications are needed to
evaluate all the N basis functions, once the necessary

multiplication and additions are done to evaluate the
primary and secondary invariants.

This method has been applied to a variety of molecules
and molecular systems such as CH5

+,5-7 H5
+,8,9 C2H3,

10 H +
CH4,

11-13 F + CH4,
14,15 malonaldehyde (CHOCH2CHO),16

OH + NO2,
17 H3O+,18 HO2 + NO,19 and H5O2

+ 20 and water
dimer (H2O)2

21,22 and trimer.23 The large set of primary and
secondary polynomial for as many as 10 atom molecules
was obtained with the commercial code magma.24 This large
library of fitting bases is available at the iOpenShell Web
site.25

A much more straightforward approach to develop a
permutationally invariant basis termed monomial sym-
metrization was briefly and only schematically described by
Huang et al.20 The method was described in more detail by
Xie in his Ph.D. thesis26 and was recently reviewed and
illustrated for several molecules.4

The monomial symmetrization approach (MSA) appears
prima facie to be much less efficient than the invariant
polynomial approach, and so its presentation was mainly
done as a pedagogical tool. In this paper, we describe a
method to make this straightforward fitting procedure quite
efficient and, thus, potentially competitive with the compu-
tational invariant polynomial approach. Another key point
of the paper is to show that the implementation of the
approach is straightforward and does not require access to
the magma code.
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‡ Emory University.
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The paper is organized as follows: A brief review of the
monomial symmetrization approach is presented in Section
2, followed by the algorithm to speed up the function
evaluation process. The method is exemplified by an ap-
plication for the PES of H3O+ in Section 3. A brief discussion
including some possible new directions using this approach
is given in Section 4. A summary and conclusions are given
in Section 5.

2. Theoretical Background and
Computational Details

2.1. Coordinate Representation of the Potential
Energy Surface. The molecular PES, which we denote as
V, should respect the key invariant properties of the physics.
The well-known properties are overall translational and
rotational invariances. A third property, one that is obvious
but less well-known, is invariance with respect to all
permutations of like atoms. This invariance has been noted
in the classic book by Murrell and co-workers1 and is at the
heart of the approach recently reviewed by Braams and
Bowman.4 As noted in that review and the primary sources
cited there, the ideal choice of coordinates for V should
enable these invariance properties to be “built in”. The full
set of internuclear distances (of which there are n(n - 1)/2
for a system of n atoms) almost satisfies this property. That
is, these distances are invariant with respect to overall
translation and rotation of the molecular system. They are
not invariant with respect to permutation of like atoms;
however, they are closed under these permutations, and this
property has been exploited to make basis functions for the
representation of V obey that invariance.

Before we show how this can be done using the MSA,4,20,26

we make two important remarks. First, the full set of
internuclear distances for molecules with more than four
atoms is known as a redundant set of coordinates, since it is
well-known that only 3n - 6 internal degrees of freedom
are needed to specify an n atom molecular configuration.
Thus, for n greater than four, there are more internuclear
distances than internal degrees of freedom, and in that sense,
the choice of all internuclear distances enlarges the space of
variables for n > 4. Second, and independent of the value of
n, internuclear distances are not a good choice of variables
for a monomial or polynomial basis to represent V. This is
because these distances become arbitrarily large when
fragments form, and thus, V would diverge erroneously in
these regions. Therefore, we and others use simple trans-
formed variables that go to a constant in these regions. We
have used several choices for these variables, some of which
will be given below. A specific choice is made when we
consider an application to the H3O+ PES. However, to
investigate how these variables permute under permutations
of like atoms, we need only consider the set of internuclear
distances, and so we do so here.

We begin by labeling the n atoms in a molecule as 1, ...,
n, and the n(n - 1)/2 internuclear distances are given in
lexical order as

(r1,2, ..., r1,n, r2,3, ..., r2,n, ..., rn-1,n)

At this point, it is worth noting that one choice of
associated Morse variables that we have used extensively is
yi, j ) exp(-ri, j/λ). Also, we introduce a shorthand notation
for these distances (or Morse variables), xl, l ) 1, n(n -
1)/2, where the xl are ordered according to the lexical
ordering of ri, j(yi, j).

To proceed it is useful to consider a specific example of
a tetraatomic molecule, A4, and the six internuclear distances
are

(r1,2, r1,3, r1,4, r2,3, r2,4, r3,4)

and associated variables

(x1, x2, x3, x4, x5, x6)

The usual expression for V in terms of these variables is

V(x1, x2, x3, x4, x5, x6) ) ∑
a+b+c+d+e+f)0

k

Ca,b,c,d,e,f x1
ax2

bx3
cx4

dx5
ex6

f

(2.1)

where a, b, c, d, e, and f are all non-negative integers, and k
is a positive integer that sets the maximum as the sum of all
the exponents. (The coefficients Ca, b, c, d, e, f would typically
be determined by a standard linear least-squares fit to a data
set of ab initio electronic energies.) Clearly this expression
is not invariant with respect to permutations of like atoms.
However, one can easily modify the expression so that it is.
This procedure involves symmetrizing the monomials, as
discussed in detail elsewhere,4,26 which yields a sum of
monomials with a single coefficient, which we denote as
Da, b, c, d, e, f.

4

Continuing with the tetraatomic example, consider an
example permutation of the four atoms where the original
atom order (1, 2, 3, 4) is permuted to (4, 2, 1, 3). The
internuclear distances change from

(r1,2, r1,3, r1,4, r2,3, r2,4, r3,4)

to

(r4,2, r4,1, r4,3, r2,1, r2,3, r1,3) ≡ (r2,4, r1,4, r3,4, r1,2, r2,3, r1,3)

or in the “x” notation:

(x1, x2, x3, x4, x5, x6)

maps to

(x5, x3, x6, x1, x4, x2)

Thus the monomial x1
ax2

bx3
cx4

dx5
ex6

f maps to x5
ax3

bx6
cx1

dx4
ex2

f (≡
x1

dx2
f x3

bx4
ex5

ax6
c).

In order to complete the symmetrization, all permutations
must be considered. We indicate the final result by

V ) ∑
a+b+c+d+e+f)0

k

Da,b,c,d,e,f S [x1
ax2

bx3
cx4

dx5
ex6

f ] (2.2)

where S is the operator that symmetrizes monomials.
Examples of sums of symmetrized monomials were given
for A2B2 and A3B molecules elsewhere.4 This was done by
explicitly enumerating all the permutations and by showing
how the internuclear distances permute. For a general
molecule, the total number of permutations is just the direct
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product of permutations of sets of like atoms. For example,
for molecule AnBm, the order of the direct product symmetric
group is n!m!, and the full set of permutations of the sets of
like atoms and how those map onto permutations of
internuclear distances must be determined. We note that if
the resulting monomials are reordered in lexical form 1, 2,
3, etc., then the effect of the mappings is equivalent to
permuting the powers of the original “seed” monomial. We
use this convention henceforth.

The generation of the permutation of internuclear distances
(or equivalently the powers) has been automated with
software we have written for any molecule,27 and Algorithm
1 summarizes the process.

2.2. Algorithm for Efficient Basis Evaluation. Although
the potential energy function as shown in eq 2.2 has the
permutationally invariant property and we have Algorithm
1 to generate the basis function set, the terms (the sym-
metrized sum of monomials) are costly to evaluate, and so
this representation is not nearly as efficient as the one based
on primary and secondary invariants.4 Clearly there exist
strategies that can be used to speed up the evaluation of the
symmetrized sum of monomials, which, henceforth, we
denote as invariant polynomials. If the invariant polynomials
could be factored into lower order invariant polynomials,
considerable speedup would result. To our knowledge,
however, this factorization cannot be done easily (primary
and secondary invariants essentially do this, but the com-
putation of primary and secondary invariants is difficult and
complicated, as is the factorization).

Here we describe and demonstrate a less ambitious
factorization scheme, which is a binary factorization plus
remainder method, where the remainder is one or more
invariant polynomials that may have already been computed.
To describe this approach, we introduce some new notation
and nomenclature. As noted already, an invariant polynomial
(of some total degree) is the sum of all the monomials
generated by acting all the possible permutations on a seed
monomial. We denote this set of monomials as the orbit of
the seed monomial m, and denote it as orb(m), which could
be represented as orb(m) ) {mpi|pi ∈ P}. Hence eq 2.2 can
be simplified as

V(x1, x2, x3, x4, x5, x6) )

∑
a+b+c+d+e+f)0

k

D[abcdef]( ∑
P

orb([abcdef])) (2.3)

where [abcdef] is a shorthand notation for a general
monomial x1

ax2
bx3

cx4
dx5

ex6
f .

Clearly, if ∑P orb([abcdef]) could be evaluated effectively,
then the whole potential energy function could be computed

effectively. One way to speed this process is to evaluate or
build these orbits recursively, that is, to express the “later”
orbits as some simple expression from the “earlier” ones,
where the terms “later” and “earlier” are yet to be defined
as the ordering of monomials.

For monomials with different total degrees, it is easy to
order them according their total degree. For monomials with
the same total degree, we order them according to the number
of nonzero powers. For convenience, we order a monomial
with more nonzero powers before another one with fewer
nonzero elements but with same total degree, for instance,
[010101] < [030000]. If two monomials have the same total
degree and the same number of nonzero elements, then we
order these monomials according to their lexicographical
order, for example, [010101] < [101010]. This ordering
scheme is made for later computational convenience. Similar
to this ordering of monomials, we can also order the
polynomials or orbits, and here the polynomials are ordered
according to the “largest” monomials (ordered in the last
position according to the monomial ordering) in it. Note that
for molecules with greater than four atoms, the maximum
total degree is typically much less than the number of
internuclear distances there are no polynomials with, where
every xi has a nonzero power.

To illustrate the approach consider the polynomial x1
2 +

x2
2, which is invariant with respect to the permutation of x1

and x2, and note that it cannot be simply decomposed as a
product of two lower order polynomials. (It is, in fact, a
primary invariant polynomial.) However, it can be given as
a low-order product of invariant polynomials with a remain-
der:

x1
2 + x2

2 ) (x1 + x2) × (x1 + x2) - x1x2 - x1x2

As a result, if the polynomial x1 + x2 and x1x2 are both in
the invariant basis function sequence and both appear
“earlier” than x1

2 + x2
2, then x1

2 + x2
2 could be easily evaluated

with one multiplication and two subtractions. To evaluate
x1

2 + x2
2 directly, we need two multiplications and one

addition. Since multiplication is more expensive than addition
or “subtraction”, the decomposition should speed the evalu-
ation. If such a decomposition can be found for a general
invariant polynomial, the evaluation of the invariant basis
function will be greatly sped up. Now the question comes
to the existence and the uniqueness of this kind of decom-
position. Unfortunately, neither of these is guaranteed. For
a successful decomposition, which we will denote as a
“usable decomposition”, not only must the two polynomials
that form the product be of a lower degree (which, of course,
they are) but also the remainder polynomial must come
“before” the polynomial becomes decomposed. This is not
always the case. Another issue for the decomposition is the
uniqueness. There exists various ways to factorize a high-
degree monomial as a low-degree one; for example, a
monomial [012101] can be factorized as

[012101] ) [010001] × [002100]

or

[012101] ) [011101] × [001000]

Scheme 1. Algorithm 1
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or any other two monomials whose sum of exponents are
equal to the original exponents. Different factorizations of
the monomials result in different remainder polynomials, and
different factorizations may or may not lead to usable
decomposition of a high-degree polynomial.

One practical approach to this factorization of polynomials
is to list all the possible factorizations of the seed (it can be
any monomial of the polynomial) of a high-degree polyno-
mial. Denoting the high-degree polynomial as p1, and one
monomial in p1 as m1, we have p1 ) orb(m1). Note that we
do not distinguish the set of monomials as orb(m1) and the
polynomial, which is the sum of all the monomials in this
set. Suppose p2 is a polynomial arranged before p1 in the
invariant polynomial basis sequence. Then we can scan over
all the monomials in p2, to determine if there is one monomial
(m2) in p2 that is a factor of m1, then we can factorize m1 as
m1 ) m2m3 and find the orbit of m3 (orb(m3)) in the
polynomial basis. Further suppose p3 ) orb(m3). Then we
can form the product p2p3. The difference between p2p3 and
p1 should be a sum of orbits of some other monomials (sum
of some other invariant polynomials), and we try to minimize
the number of remainder polynomials already computed. If
it is not possible to find a usable decomposition, then we
have to evaluate the polynomial by evaluating all monomials.
All monomials within a polynomial that has no usable
decomposition are pushed into a queue. The speed up for
this process is determined partially by the size of the
monomial queue. If most of the polynomials can be
decomposed successfully, the size of the monomial queue

is small, and the efficiency of the approach is high. For
monomials in the queue, the evaluation process could and
is sped up by factorizing the later ones as the product of
earlier ones.

In summary, all the possible monomials with total degrees
less than some threshold are enumerated and grouped into
orbits by the action of permutations. The sum of such
monomials in an orbit is an invariant polynomial. They are
arranged according to the polynomial ordering scheme, as
defined above. Then the polynomials are decomposed into
the product of two polynomials, and possibly subtracting a
small number of same-order polynomials, if this is possible.
Otherwise, the polynomial is kept as the sum of monomials.
A factorization step is performed for every monomial from
the previous step and evaluated as the product of two
previous ones. In the following section, an example will be
given to show the process.

The algorithms just described above are summarized as
Algorithm 2, 3, and 4.

2.3. Example: Basis Functions for H3O+. H3O+ is an
important molecule in chemistry, and it has three identical
hydrogen atoms which make it a good example to illustrate
the MSA process. Of course the results shown apply to any
A3B molecule.

The three H atoms are labeled as 1, 2, and 3, and the O
atom is labeled as 4. Table 1 shows all the permutation
actions on the internuclear distances and also on a general
monomial [abcdef]. For demonstration purposes, a, ..., f are
all different integers, in reality, some of them may be equal.

Scheme 2. Algorithm 2
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Consequently, the orbit of a monomial [abcdef] may have
less than six monomials, as shown in Table 2.

Table 2 lists all the invariant polynomial basis for molecule
H3O+ up to degree 3. All those polynomials that have usable
decomposition under the polynomial ordering scheme are
indicated as a product of two other basis functions less
some other basis functions. As for those that do not have a
usable decomposition, the decomposition is written as the
sum of monomials.

The factorization of all the monomials is shown in Table
3.

As we can see from Table 2, many basis functions have
usable decompositions, i.e., can be expressed as the product
of two lower degree basis functions, less some other basis
functions that are at the same degree but come before the
current invariant basis. As a result, the evaluation of those
basis functions costs one multiplication with some addition.
For those monomials, almost all could be factorized as a
product of two previous ones, thus, significantly reducing
the evaluation timesespecially when the total degree of
monomial increases. The monomials that cannot be factorized
are those single variable terms, and they are trivial to
evaluate.

2.4. Applications to Other Molecules. Relevant informa-
tion about the monomial and the symmetrized monomial
basis for a variety of molecules and total degree is given in
Table 4. Columns three and four give the size of the
monomial and symmetrized monomial (polynomial) basis
for each example. The reduction in size for the polynomial
basis is large. However, it is not as large as the order of the
corresponding symmetric group; this reduction factor is
approached only as the total degree approaches infinity. For
example, for A4, the maximum possible reduction is 24, and
as seen for degree 8, the actual reduction is 15.4. Next,
consider the number of polynomials and the percentage of
the of all polynomials that have a usable decomposition
shown in column five and six. The percent ranges from
almost 100% to a low of 51.95%. The number of remainder
monomials to be evaluated and the number that can be
factored are given next. Finally, an “efficiency” column is
included, which contains two values. The ratio of total
monomials to total polynomials is given in parentheses, and
the first number is the ratio of monomials to the sum of
usable decomposition plus the monomials left.

Perusal of this table leads to the conclusion that the current
factorization method works better for molecules with two
or three identical atoms than for molecules with more
identical atoms. On the other hand, the size of polynomial
basis decreases by a larger factor for such molecules (since
the order of the symmetric group increases).

The lack of usable decomposition of an arbitrary (invari-
ant) polynomial in the present algorithm comes from the
polynomial ordering scheme. It is not difficult to show that
any high-degree invariant polynomial constructed by using
monomial symmetrization approach can be represented as
the product of two low-degree polynomials and as a
remainder invariant polynomial of the same degree. If the
polynomial ordering scheme can ensure that polynomials
need to be subtracted are always come before the target
polynomial, then the inefficiency factor could be removed,
and we can claim that the monomial symmetrization ap-
proach is almost as fast as the computation invariant theory
based approach. However, this ordering scheme is difficult
to construct. A simple example may show the difficulty.
Suppose that x1 + x2, x1

2 + x2
2 and x1x2 are invariant

polynomials, with respect to the permutation of x1 and x2.
Both x1

2 + x2
2 and x1x2 are of degree 2, and x1 + x2 is of

degree 1, which always comes before the other two poly-
nomials. x1

2 + x2
2 could be decomposed as

x1
2 + x2

2 ) (x1 + x2) × (x1 + x2) - x1x2 - x1x2

(2.4)

and x1x2 could be decomposed at

x1x2 ) (x1 + x2) × (x1 + x2) - (x1
2 + x2

2) - x1x2

(2.5)

It is easy to rearrange eq 2.5 as

2x1x2 ) (x1 + x2) × (x1 + x2) - (x1
2 + x2

2) (2.6)

As can be seen, no matter what the polynomial ordering
scheme is (whether x1x2 comes before x1

2 + x2
2 or after it),

Scheme 3. Algorithm 3

Scheme 4. Algorithm 4

Table 1. Permutation of the H3O+ Molecule and Its Action
on a General Monomial [abcdef]

permutation
atom
labels

internuclear
distance vector

permuted
monomial

p1 1 2 3 4 (x1, x2, x3, x4, x5, x6) [abcdef]
p2 1 3 2 4 (x2, x1, x3, x4, x6, x5) [bacdfe]
p3 2 1 3 4 (x1, x4, x5, x2, x3, x6) [adebcf]
p4 2 3 1 4 (x4, x1, x5, x2, x6, x3) [bdface]
p5 3 1 2 4 (x2, x4, x6, x1, x3, x5) [daebfc]
p6 3 2 1 4 (x4, x2, x6, x1, x5, x3) [dbfaec]
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there is always one nonusable decomposition. Unfortunately,
either x1x2 or x1

2 + x2
2 must be evaluated explicitly. (One or

the other is in fact a primary invariant.)
In another case, suppose that we have invariants:

A ) x1
4 + x2

4

B ) x1
2x2

2

C ) x1x2
3 + x1

3x2

(2.7)

and they could be decomposed as

A ) (x1
2 + x2

2) × (x1
2 + x2

2) - (x1
2x2

2 + x1
2x2

2)

B ) (x1x2
2 + x1

2x2) × (x1 + x2) - (x1x2
3 + x1

3x2) - x1
2x2

2

C ) (x1 + x2) × (x1
3 + x2

3) - (x1
4 + x2

4)

(2.8)

x1 + x2, x1
2 + x2

2, x1
3 + x2

3 and x1x2
2 + x1

2x2 are at a lower
degree compared to A, B, and C, and so their values can be
assumed to be known. However, the remainders do contain

A, B, and C and we wish to “disentable” these expressions.
To do so first rewrite these equations as

A ) R - 2B
B ) � - C - B
C ) γ - A

(2.9)

where

R ) (x1
2 + x2

2) × (x1
2 + x2

2)

� ) (x1x2
2 + x1

2x2) × (x1 + x2)

γ ) (x1 + x2) × (x1
3 + x2

3)

(2.10)

and then rewrite them in matrix form as

[1 2 0
0 2 1
1 0 1 ] × [A

B
C ] ) [R�γ ] (2.11)

This can be solved easily as

A ) 1
2
R - 1

2
� + 1

2
γ

B ) 1
4
R + 1

4
� - 1

4
γ

C ) -1
2
R + 1

2
� + 1

2
γ

(2.12)

This indicates that it is possible to further decouple
intertwined polynomials and to obtain their usable de-
composition simultaneously by solving a linear system.
Solving the linear system is an extra cost for the
decomposition, but it is an one-time cost and it will not
be inherited in the future polynomial evaluation process.
As a result, we can further speed up the polynomial
evaluation process. We plan to investigate an implementa-
tion of this algorithm in the future.

3. Application to a Potential Surface for
H3O+

The methods described in the previous section to automate
the symmetrization of the monomial basis and to evalu-

Table 2. Invariant Polynomial Basis for Molecule H3O+ up to Degree 3

ID degree invariant polynomial basis decomposition

B0 0 [000000] M0

B1 1 [000001] + [000010] + [001000] M1 + M2 + M3

B2 1 [000100] + [010000] + [100000] M4 + M5 + M6

B3 2 [000011] + [001001] + [001010] M7 + M8 + M9

B4 2 [001100] + [010010] + [100001] M10 + M11 + M12

B5 2 [000101] + [000110] + [010001] + [011000] + [100010] + [101000] B1 × B2 - B4

B6 2 [010100] + [100100] + [110000] M13 + M14 + M15

B7 2 [000002] + [000020] + [002000] B1 × B1 - B3 - B3

B8 2 [000200] + [020000] + [200000] B2 × B2 - B6 - B6

B9 3 [001011] M16

B10 3 [001101] + [001110] + [010011] + [011010] + [100011] + [101001] M17 + M18 + M19 + M20 + M21 + M22

B11 3 [000111] + [011001] + [101010] B2 × B3 - B10

B12 3 [010110] + [011100] + [100101] + [101100] + [110001] + [110010] M23 + M24 + M25 + M26 + M27 + M28

B13 3 [110100] M29

B14 3 [010101] + [100110] + [111000] B1 × B6 - B12

B15 3 [000012] + [000021] + [001002] + [001020] + [002001] + [002010] B1 × B3 - B9 - B9 - B9

B16 3 [002100] + [010020] + [100002] B1 × B4 - B10

B17 3 [000102] + [000120] + [010002] + [012000] + [100020] + [102000] B2 × B7 - B16

B18 3 [001200] + [020010] + [200001] B2 × B4 - B12

B19 3 [000201] + [000210] + [020001] + [021000] + [200010] + [201000] B1 × B8 - B18

B20 3 [010200] + [020100] + [100200] + [120000] + [200100] + [210000] B2 × B6 - B13 - B13 - B13

B21 3 [000003] + [000030] + [003000] B1 × B7 - B15

B22 3 [000300] + [030000] + [300000] B2 × B8 - B20

Table 3. Factorization of the Monomials from Those Basis
Functions that do not have Usable Decomposition for H3O+

Molecule

ID Monomial factorization ID Monomial factorization

M0 [000000] 1 M15 [110000] M5 × M6

M1 [000001] x6 M16 [001011] M1 × M9

M2 [000010] x5 M17 [001101] M1 × M10

M3 [001000] x3 M18 [001110] M2 × M10

M4 [000100] x4 M19 [010011] M1 × M11

M5 [010000] x2 M20 [011010] M3 × M11

M6 [100000] x1 M21 [100011] M2 × M12

M7 [000011] M1 × M2 M22 [101001] M3 × M12

M8 [001001] M1 × M3 M23 [010110] M2 × M13

M9 [001010] M2 × M3 M24 [011100] M3 × M13

M10 [001100] M3 × M4 M25 [100101] M1 × M14

M11 [010010] M2 × M5 M26 [101100] M3 × M14

M12 [100001] M1 × M6 M27 [110001] M1 × M15

M13 [010100] M4 × M5 M28 [110010] M2 × M15

M14 [100100] M4 × M6 M29 [110100] M4 × M15
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ate the subsequent terms by means of the decomposition
procedure are applied to the PES of H3O+. There exists PESs
for H3O+,18,28,29 and an unpublished PES for this cation was
obtained using the invariant polynomial approach previ-
ously26 and was used as the “benchmark” PES both in terms
of precision and speed of evaluations. The precision and
speed of evaluation of the monomial symmetrization ap-
proach will be tested against this benchmark. In these fits,
the internuclear distances (x) are replaced by the variables
(1.0 - exp(- 0.2x))2. This is a slightly different version of
Morse variables4 with the same goal to achieve a physically
correct description, i.e., let the potential energy function
approach to a constant in the limit of asymptotically large
values of x.

Low-level direct dynamics calculations were run at
several total energies to generate 61 604 H3O+ configura-
tions. At these configurations, electronic energies were
then obtained using the CCSD(T) method with aug-cc-
pVTZ basis, as implemented in the code MOLPRO.30 The
energy range for these configurations is 29 674 cm-1

(84.84 kcal/mol). The maximum total degree for the
polynomial basis is set to be 6. This is the same total
degree used for the invariant polynomial fit. Since both
approaches have the same number of basis functions, the
number of coefficients is also the same. Note that the
coefficient values are different because the basis functions
from the two approaches differ. The coefficients for both
fits were obtained with standard least-squares codes. The
final root-mean-square error for both fitting approaches
is 29 cm-1, with the maximum absolute residual value
deviation at 0.16 cm-1. As expected, almost no difference
is observed regarding the accuracy of these two approaches.

After obtaining the coefficients, we evaluated the energies
for the molecule configurations in the original data set used
for fitting three times. We obtained 184 812 potential function
calls in total. The computational invariant theory approach
took 8.77 s, and the modified monomial symmetrization
approach took 9.50 s. It is about 8% less efficient for the
monomial symmetrization approach, which is almost neg-
ligible. Comparing the details of these two approaches, one
can see that slightly more time is consumed in evaluating
and summing the monomials from those polynomial basis
functions that cannot be effectively decomposed. For the
H3O+ molecule, the number of monomials does not change
when the maximum total degree of polynomial basis func-
tions get higher and higher. As a result, the timing difference
would be virtually the same.

4. Discussion

Perhaps the most striking practical effect of symmetrizing
the monomial expression for the potential, eq 2.1, is the very
large reduction in the number of terms and, hence, unknown
linear coefficients to be determined. This was illustrated in
Table 4 where the number of monomials in the unsymme-
trized expression for V is compared to the number of
symmetrized polynomials. The ratio of these two numbers
approaches the order of the symmetric group in the limit of
infinitely many terms in both expressions; however, as seen
even for modest total orders, the reduction can be very big.
Practically, this has allowed us to consider molecules with
up to nine atoms and to deal with a relatively small linear
algebra least-squares minimization. This very practical
advantage is realized by using the full permutation group of
a molecule.

Table 4. Information on Invariant Polynomial Basis Function Decomposition

molecule max deg tot mono. tot poly. usable decomp. usable decomp. % mono left mono fact efficiency

A3 6 84 23 19 82.61% 8 4 3.11 (3.65)
A3 8 165 41 37 90.24% 8 4 3.67 (4.02)
A2B 6 84 50 46 92.00% 5 1 1.65 (1.68)
A2B 8 165 95 91 95.79% 5 1 1.72 (1.74)
A4 6 924 72 60 83.33% 88 81 6.24 (12.83)
A4 8 3003 195 182 93.33% 112 105 10.21 (15.40)
A3B 6 924 196 185 94.39% 33 26 4.24 (4.71)
A3B 8 3003 590 579 98.14% 33 26 4.91 (5.09)
A2B2 6 924 291 282 96.91% 18 11 3.08 (3.18)
A2B2 8 3003 882 873 98.98% 18 11 3.37 (3.40)
A2BC 6 924 502 494 98.41% 11 4 1.83 (1.84)
A2BC 8 3003 1589 1581 99.50% 11 4 1.89 (1.89)
A5 6 8008 140 94 67.14% 2368 2357 3.25 (57.20)
A5 8 43758 580 443 76.38% 10158 10147 4.13 (75.44)
A4B 6 8008 495 437 88.28% 807 796 6.44 (16.18)
A4B 8 43758 2327 2216 95.23% 1953 1942 10.50 (18.80)
A3B2 6 8008 889 838 94.26% 390 367 6.52 (9.01)
A3B2 8 43758 4343 4249 97.84% 876 853 8.54 (10.08)
A3BC 6 8008 1603 1565 97.63% 161 150 4.64 (5.00)
A3BC 8 43758 8163 8121 99.49% 185 174 5.27 (5.36)
A2B2C 6 8008 2304 2278 98.87% 72 61 3.41 (3.48)
A2B2C 8 43758 11910 11884 99.78% 72 61 3.66 (3.67)
A2BCD 6 8008 4264 4249 99.65% 22 11 1.87 (1.88)
A2BCD 8 43758 22734 22719 99.93% 22 11 1.92 (1.92)
A5B2 4 12650 218 148 67.89% 4997 4975 2.46 (58.03)
A5B2 6 296010 2651 2080 78.46% 78066 77924 3.69 (111.66)
A6B3 3 9139 77 40 51.95% 5485 5448 1.65 (118.69)
A6B3 4 91390 327 208 63.61% 47533 47496 1.91 (279.48)
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This practical advantage in exploiting the full permu-
tational symmetry also holds for molecular complexes.
For example, consider the water dimer and trimer, where
the order of the symmetric group is 4!2! ) 48 and 6!3! )
4 320, respectively. PESs for both the water dimer and
trimer, using the full permutational symmetry, have been
reported.21,22,31 However, physically one knows that, for
temperatures or total energies of interest, most of these
permutations are infeasible, i.e., they must surmount high
potential barriers to be realized. Thus, it would seem that
using the full symmetric group, while greatly reducing
the number of terms in V, is also physically irrelevant.
Ideally one would like a representation that both greatly
reduces the number of terms in V and only describes the
feasible permutations. (In the case of water clusters, this
would be the permutations of the H atoms associated with
each monomer unit.)

If one is going to continue to use all the internuclear
distances (probably with a standard many-body representation
of the potential), then it seems clear that one will have to
restrict the range of powers of some of the internuclear
distances. These presumably would be the monomer inter-
nuclear distances, which undergo small amplitude motion.
In fact, a rather primitive version of this type of restriction
was used in a monomial representation of the global potential
of H2CO for the CO internuclear distance.32 Further work
along these lines is planned.

Also, as the observant reader has noted, the use of the
Morse-type variables introduces a nonlinear range parameter.
Generally we have used a single-range parameter, typically
2-3 Bohr, for all variables. In principle, this parameter could
be optimized and also made specific for a given set of
internuclear distances, for example, all OH, HH, and OO
distances. Doing so would turn the straightforward linear-
least-squares optimization into a combination of linear and
nonlinear optimizations. This may be worth considering;
however, it involves a substantial increase in numerical
complexity.

Finally we note that the library of primary and secondary
invariant polynomials referred to in the paper does not
include analytical expressions for partial derivatives. This
may be added in the future; however, it will involve
considerable symbolic computation. Clearly, using the
monomial symmetrization described here makes this task
much easier for the user. We plan to do this in the near future.

5. Conclusions

We have presented a straightforward monomial symmetriza-
tion scheme for the representing a multidimensional potential
energy surface. We have proposed one scheme for efficient
evaluation of the results terms in the representation and
illustrated the approach by fitting roughly 62 000 electronic
energies for H3O+. We also discussed several areas for future
research. The codes described herein can be obtained by
contacting either author.
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Exploring Multidimensional Free Energy Landscapes
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Abstract: A new implementation of the adaptive biasing force (ABF) method is described. This
implementation supports a wide range of collective variables and can be applied to the
computation of multidimensional energy profiles. It is provided to the community as part of a
code that implements several analogous methods, including metadynamics. ABF and metady-
namics have not previously been tested side by side on identical systems. Here, numerical
tests are carried out on processes including conformational changes in model peptides and
translocation of a halide ion across a lipid membrane through a peptide nanotube. On the basis
of these examples, we discuss similarities and differences between the ABF and metadynamics
schemes. Both approaches provide enhanced sampling and free energy profiles in quantitative
agreement with each other in different applications. The method of choice depends on the
dimension of the reaction coordinate space, the height of the barriers, and the relaxation times
of degrees of freedom in the orthogonal space, which are not explicitly described by the chosen
collective variables.

Introduction

A variety of approaches for accelerated sampling and
mapping of free energy landscapes from molecular simula-
tions have been proposed over the years (see refs 1–3 for
reviews). Typically, these approaches have only been used
by a limited number of groups that specialize in theory and
method development. Only rarely have such methods been
made readily available to the broad computational chemistry
and biophysics community, as this requires well-documented
implementations compatible with the standard tools of this

community: parallel simulation programs capable of high-
throughput, large-scale calculations. An implementation of
the metadynamics approach of Laio and Parrinello4 for
mainstream simulation packages has been made available
only very recently.5

The previous publicly available implementation6 of the
adaptive biasing force method7,8 (ABF), in version 2.6 of
NAMD,9 has been applied successfully to a number of
challenging cases. The domains of application of ABF
include the recognition and association of peptides or
proteins,10–12 peptide- or protein-lipid interactions,13–15

small molecules interacting in a confined environment,16

cyclodextrin association with cholesterol,17 steroid drugs,18

and molecular ions,19 as well as cyclodextrin self-assembly.20

Translocation of molecules or ions through natural, trans-
membrane channel proteins21–24 and transporters,25 through
synthetic pores,26 and across simple liquid interfaces27 have
also been studied. Another class of applications involves
conformational changes in peptides,28,29 proteins,30–32 and
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nucleic acids.33 Despite the number and variety of such
applications, that implementation carried significant technical
limitations, particularly its restriction to one-dimensional free
energy profiles.

When a low-dimension reduced representation comprised
of a few degrees of freedom is used to describe a complex
process, hidden barriers orthogonal to the chosen parameters
are likely to exist. The orthogonal space random walk
strategy34,35 has been proposed by Zheng et al. as a means
of overcoming such hidden barriers. While a promising idea,
likely to be further explored and built upon in the future, it
treats the orthogonal space using a single degree of freedom,
which may or may not suffice to overcome hidden barriers
effectively in complex examples; in many instances, a well-
chosen degree of freedom may well yield better results. Still,
the orthogonal space random walk approach has the advan-
tage of generality, as it extends a predefined reaction
coordinate space without requiring any additional physical
insight into the particular process being examined.

Using collective variables well-adapted to the chemical
or biophysical process under scrutiny is critical, and specific
problems frequently require tailored variables. We recently
developed a new code, the Collective Variables Module, for
version 2.7 of the high-performance simulation program
NAMD. This code supports a large set of commonly
employed variables, offers the possibility to use polynomial
combinations of such variables, and can be readily adapted
to deal with atypical problems; the full list of features and
technical details will be discussed elsewhere. In this contri-
bution, we illustrate its most important application, that is,
sampling multidimensional collective variable space and
reconstructing free energy landscapes. Example simulations
are presented, which make use of the first publicly released
ABF implementation capable of multidimensional calcula-
tions, and are discussed alongside the results of identical
simulations performed with the metadynamics method.4

In the following section, the theoretical framework un-
derlying this ABF implementation is described, and its range
of applicability as well as its technical limitations are
discussed. Next, physical processes in four molecular systems
are explored using ABF, conformational equilibria of N-acetyl-
N′-methylalaninamide (NANMA), Met-enkephalin, and deca-
alanine, as well as ion diffusion through a membrane-
spanning peptide nanotube. The metadynamics approach is
also applied to the NANMA and nanotube examples. The
deca-alanine case is used to document the application of ABF
to a three-dimensional reaction coordinate. The choice of
reaction coordinate space, numerical behavior, and conver-
gence of the simulations, as well as compared properties of
the two methods, are discussed.

Methods

Defining Reaction Coordinates. The strategy described
here consists of using ABF or metadynamics to map a
complex, slow molecular process, based on simulated
trajectories that are orders of magnitude shorter than its
natural time scale. This can be achieved by navigating a
carefully chosen reduced representation, the “reaction co-

ordinate space”, in an accelerated fashion. The minimum
requirement for this approach to be useful is that the reduced
representation resolves the end points of the transformation
and, more generally, all states that one wishes to describe
based on empirical knowledge of the system. For numerical
efficiency of the sampling scheme, however, the chosen
degrees of freedom should capture all kinetically significant
regions of configuration space: the metastable intermediates
and most probable transition pathways.

In chemical terminology, a reaction coordinate is a one-
dimensional geometric parameter that can be used to measure
the progression of a reaction.36 Moving from the realm of
chemical reactions to that of physical transformations in soft
matter and biological systems, however, fluctuations along
many degrees of freedom may become as important to the
reaction kinetics as the progression along any particular
pathway. One-dimensional descriptors then become less
useful, while constructing single variables that may play this
role becomes more cumbersome and less intuitive.

For the purpose of numerical simulations, the optimal
situation is to achieve time scale separation, whereby all key
slow degrees of freedom are described explicitly, so that other
degrees of freedom coupled to the transformation relax on a
short time scale, as compared to the length of the simulated
trajectories. This time scale influences both the diffusion rate
of the system in reaction coordinate space and the rate of
convergence of quantities that are measured as a function
of the reaction coordinates, such as the free energy gradient
in ABF calculations.

Thermodynamic Integration in Configuration Space.
This section gives a brief historical overview of the
theoretical results that led to the ABF method.7 The
general principles of thermodynamic integration (TI) can
be found in early work by Kirkwood37 and Zwanzig.38 In
TI, the free energy derivative is computed as the ensemble
average of an instantaneous force, F, acting on the reaction
parameter �:

dA
d�

) -〈F〉� (1)

In most applications of TI to configurational variables,
sampling along the reaction pathway is obtained by con-
straining the reaction coordinate, the so-called “blue moon
ensemble”. In one of the earliest cases, F was simply
obtained as the force exerted by the solvent on two atomic
ions, projected onto the interionic distance.39 Shortly after-
ward, a general expression for the average force was
proposed by Carter et al.40 The expression features a Jacobian
correction term, purely geometric in origin, and is based on
an explicit set of generalized coordinates (�, q) including
the reaction coordinate �:

F(�, q) ) -∂U(�, q)
∂�

+ kBT
∂ ln|J(�, q)|

∂�
(2)

The explicit coordinate transform from (xi) to (�, q) is
needed to define and compute both the Jacobian determinant
|J(�, q)| and the partial derivative ∂U(�, q)/∂� of the potential
energy U. The latter quantity depends implicitly on the vector
field (∂xi/∂�), hereafter referred to as “inverse gradient”. This
vector field can be thought of as the direction along which
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an infinitesimal change in � is propagated in Cartesian
coordinates, the complementary coordinates q being kept
constant. By definition, at any point of configuration space,
the dot product of the inverse gradient with the Cartesian
gradient of � is unity.

A significant step toward lifting the requirement of a full
coordinate transform was accomplished by Ruiz-Montero et
al.,41 who proposed to use an implicit set of complementary
coordinates q ≡ (qi) that would obey:

∇qi · ∇qj ) δij (3)

∇� · ∇qi ) 0 (4)

Under these assumptions, a simpler expression holds:

F(�, q) ) -∇U · ∇�
|∇�|2

+ kBT
(∇|∇�|) · ∇�

|∇�|3
(5)

In this formulation, the inverse gradient is replaced with a
vector proportional to the gradient ∇�, and no generalized
coordinate other than � itself is involved. Den Otter and
Briels noted,42 however, that a set of complementary
coordinates obeying eqs 3 and 4 is not guaranteed to exist
and showed that, in fact, it does not exist in a case as simple
as polar coordinates in two dimensions.

In a later publication,43 den Otter put forward the visionary
idea that the change in � can be propagated along an arbitrary
vector field, provided that it satisfies orthonormality condi-
tions similar to eqs 3 and 4. This obviates the need for a full
coordinate transform, and the propagating field generalizes
the role played by the inverse gradient (which is always a
possible choice if a coordinate transform is available).
Ciccotti, Kapral, and Vanden-Eijnden44 extended den Otter’s
formalism to a multidimensional reaction coordinate � ) (�i),
in the presence of a set of constraints of the form σk(x) ) 0.
For each coordinate �i, let vi be a vector field (R3N f R3N,
where N is the number of atoms) satisfying, for all j and k:

vi · ∇�j ) δij (6)

vi · ∇σk ) 0 (7)

The ith partial derivative of the free energy surface can then
be calculated as the ensemble average of the following
thermodynamic force:

Fi(�, q) ) -∇U · vi + kBT∇ · vi (8)

Ciccotti et al. note that a set of vector fields vi can always
be constructed by orthonormalization. There is, however, no
simple algorithm to evaluate the divergence of vi numerically.
This term involves the second spatial derivatives of (�i),
making numerical schemes potentially costly and subject to
high variance. In practice, analytical derivation is often
possible, although cumbersome; the present implementation
relies on such analytical derivatives.

Adaptive Biasing Force Method for Multidimensional
Coordinates. The ABF method was put forth in 2001 by
Darve and Pohorille.7 Its principle is to perform thermody-
namic integration in configuration space based on an
unconstrained simulation, in which a history-dependent bias
is applied; this bias is designed to cancel the running estimate
of the local free energy gradient. In the same contribution,

an estimator making use of a constraint algorithm was
proposed. More recently, the same authors have described a
new estimator for the free energy gradient, based on time
derivatives of the reaction coordinates, and its use for
multidimensional ABF calculations.8

The NAMD 2.6 implementation of the ABF method using
eqs 2 and 8 (in the original one-dimensional version of den
Otter) has been described previously.6 In comparison, the
present implementation offers a greatly extended range of
applications by allowing multidimensional free energy
surfaces to be computed, and by handling linear combinations
of predefined variables. Multidimensional ABF may be
implemented on the basis of various formulations of ther-
modynamic integration: this implementation relies on com-
putation of free energy gradients based on eq 8, in arbitrary
dimension, as published by Ciccotti et al.44 The algorithm
is otherwise identical to that described previously.6–8 Much
of the new code base is shared with the rest of the Collective
Variables Module, which will be described in detail else-
where. Increased flexibility does imply some restrictions on
the way variables can be combined: as in the previous
implementation, eq 7 has to be satisfied, should any degree
of freedom be constrained. In addition, collective variables
must obey eq 6. For modularity, program objects handling
different collective variables function independently. As a
result, the option of run-time orthogonalization suggested
by Ciccotti et al.44 is not available, and the orthogonality
relationship 6 has to be enforced by construction of the
variables. A trivial way of achieving this is to combine
variables that depend on nonoverlapping sets of Cartesian
coordinates, as illustrated by most of the ABF calculations
discussed in the following sections. In the case of chloride
permeation through the nanotube, the longitudinal and radial
coordinates are orthogonal by construction.

The direct benefit of an ABF simulation, besides enhanced
sampling in the molecular dynamics (MD) trajectory, is an
estimate of the free energy gradient, discretized on a regular
lattice. In dimensions higher than one, several numerical
routes can be followed to integrate this gradient and obtain
the free energy surface itself. Other groups have proposed8,45

to expand the free energy on a basis of spline or Gaussian
functions and minimize the square deviation of the gradient
at a predefined set of control points. Here, a different
approach is adopted: the free energy landscape is recon-
structed on the basis of discrete Monte Carlo sampling of
the lattice. Convergence is accelerated by introducing a
history-dependent biasing potential, which is incremented
locally at each step, much in the spirit of conformational
flooding46 or metadynamics.4 This method has fewer tunable
parameters than the aforementioned techniques, and it is
natural to use the same lattice that was used to discretize
the ABF calculation. Unlike the method based on smooth radial
functions,45 its convergence speed worsens rapidly as the
dimension increases. ABF calculations, however, are unlikely
to be performed in high dimension due to the computational
obstacles that the current form of the algorithm entails. Indeed,
only one ABF result in dimension higher than one has been
reported so far,8 that is, the two-dimensional Ramachandran
map of NANMA. It is, nevertheless, conceivable that ABF
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could be recast into a more scalable form, paving the way for
higher-dimension applications.

Computational Details

Molecular Dynamics Simulations. All simulations re-
ported here were carried out using version 2.7b1 of the
molecular dynamics program NAMD.9,47 Condensed-phase
simulations were performed in the isobaric-isothermal
ensemble. The pressure and the temperature were fixed at 1
bar and 300 K, respectively, employing the Langevin piston
algorithm48 and softly damped Langevin dynamics. Periodic
boundary conditions were applied in the three directions of
Cartesian space. Short-range Lennard-Jones and Coulomb
interactions were truncated smoothly by means of a 12 Å
spherical cutoff with a switching function applied beyond
10 Å. The particle-mesh Ewald method49 was employed to
compute long-range electrostatic interactions. The Verlet I
r-RESPA multiple time-step integrator50 was used with a
time step of 2 and 4 fs for for updating short- and long-
range forces, respectively. Covalent bonds involving a
hydrogen atom were constrained to their equilibrium length.
Gas-phase simulations were performed using a 0.5 fs time
step, which is appropriate to ensure energy conservation, and
bond lengths were not constrained. Other parameters were
similar to those of condensed-phase simulations. The dif-
ferent chemical systems described in the present contribution
were described by the all-atom CHARMM force field,51

supplemented by the TIP3P water model.52

Free Energy Calculations. The present results were
obtained using a software framework known as Collective
Variables Module and implemented in NAMD, versions
2.7b1 and following. Detailed user-oriented documentation
is available;47 technical details will be published elsewhere.

Conformational Equilibrium of N-acetyl-N′-methylalanin-
amide. The first application consists of a proof-of-concept
simulation of the prototypical, terminally blocked amino acid
N-acetyl-N′-methylalaninamide (NANMA), often referred to
as “alanine dipeptide”.53 Conformational sampling was
performed in vacuum. The φ and ψ torsional angles of the
backbone were handled as coupled variables covering each
the full, [-180°; +180°] range of the Ramachandran free
energy map.54 To increase the efficiency of the calculation,
the latter map was split into four individual quadrants,
corresponding to fully independent simulations. Each quad-
rant was discretized into bins 2.5° × 2.5° wide, in which
the force acting along the collective variables was accrued.
In each quadrant, 25 ns of sampling was collected. A
threshold of 100 force samples was set prior to application
of the adaptive biasing force. Reconstruction of the complete
free energy landscape was achieved by numerical integration
of the two-dimensional gradients. The Ramachandran map
was also sampled by means of the metadynamics algorithm.
Sampling was collected from a 30 ns trajectory, and Gaussian
biasing potentials of width 10° and height 0.1 kcal/mol were
accumulated every 500 fs. The free energy difference
between the C7eq and C7ax states was computed by integration
over the corresponding regions V and V′ of (φ, ψ)-space
according to:

e-�∆A )
∫V

e-�∆A(φ,ψ) dφ dψ

∫V'
e-�∆A(φ,ψ) dφ dψ

(9)

Transition between the two lowest free energy states of
the Ramachandran map, that is, C7eq and C7ax, which are
stabilized by an intramolecular hydrogen bond formed
between the carbonyl moiety of one terminus and the amino
moiety of the other, was investigated with one-dimensional
ABF, using as a collective variable the difference between
two distance root mean-square deviations, � ) rmsd(C7eq)
- rmsd(C7ax). To ensure orthogonality of the variables
according to eq 6, the two RMSDs were defined as two
distinct subsets formed of six atoms of the peptide chain.
Three independent, 20, 20, and 40 ns long, simulations were
run, using a threshold of 5000 force samples prior to applying
the adaptive biasing force along the chosen degrees of
freedom.

Chloride Ion Permeation across a Peptide Nanotube. In
this second application, translocation of an halide ion through
a chemically engineered tubular structure is examined.
Peptide nanotubes, which can be viewed as tailored synthetic
ion channels, result from the self-assembly of cyclic peptides
formed by alternated D-L-R-amino acids,55,56 by means of a
network of intermolecular hydrogen bonds.57

The peptide nanotube considered here consisted of eight
stacked cyclo[LW]4 units, where underlined letters denote
D-amino acids, immersed in a thermalized palmitoyl-oleoyl-
phosphatidylcholine (POPC) bilayer formed by 48 lipid units,
in equilibrium with 1572 water molecules. The complete
molecular assembly was placed in a simulation cell of initial
dimensions equal to 36 × 41 × 79 Å3. The two-dimensional
free energy landscape delineating the translocation of a
chloride ion across the tubular structure was determined along
the longitudinal, �, and the radial, F, directions of the latter.
Specifically, the model reaction coordinate was chosen as a
subset of cylindrical polar coordinates: the distance separating
the ion from the center of mass of the peptide nanotube,
projected onto its long axis, in conjunction with the distance
separating the ion from the axis. The reaction path spanned
40 and 3 Å in the �- and in the F-directions, respectively. In
the ABF calculation, force samples were accrued in bins 0.1
Å wide. To increase the efficiency of the calculation, it was
stratified into four nonoverlapping windows extending over
10 Å each in the �-direction and in which individual 30 ns
trajectories were generated, corresponding to a total simula-
tion time of 120 ns. A metadynamics simulation was
performed using the same pair of variables, similarly split
into four windows along z. Gaussian hills of width 0.3 Å
and height 0.1 kcal/mol were added every 200 fs; the
calculation was run for 44 ns.

Structure of Met-enkephalin in an Aqueous Solution. In
this third application, a set of collective variables is utilized
to explore the possible conformations of the short peptide
Met-enkephalin in an explicit solvent. Met-enkephalin is an
endogenous opioid, five-residue neurotransmitter peptide,
YGGFM, found in mammals and known to inhibit the release
of neurotransmitters upon activation of the relevant opioid
receptors. On account of its small size and biological
relevance, it has served as a paradigmatic system for
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conformational search based on a variety of computational
approaches.58–72

The molecular system consisted of Met-enkephalin im-
mersed in a bath of 778 water molecules, which corresponds
to a simulation cell of initial dimensions equal to 29 × 29
× 29 Å3. Conformational search was conducted in a two-
dimensional space, combining the radius of gyration (Rg) of
the short peptide to its distance rmsd with respect to a
reference, helical structure. The reaction path spanned,
respectively, 3.5 and 4.0 Å, in the Rg and rmsd directions.
To ensure that the force measured along one variable does
not act on the other (eq 6), two distinct subsets of atoms
were defined to compute the distance rmsd and the radius
of gyration, the five R-carbon atoms and all other heavy
atoms of the peptide chain, respectively. The instantaneous
force was accrued in bins 0.05 Å wide. No adaptive biasing
force was applied below a threshold of 200 samples. The
limited range covered by the two variables obviated the need
for a stratification strategy. The two-dimensional free energy
landscape reported in the present contribution was obtained
from a total simulation time of 80 ns.

Conformational Landscape of Deca-alanine. To explore
metastable conformations of deca-alanine in vacuum, starting
points were chosen manually from preliminary ABF trajec-
tories, and used as the seed for unbiased, 30 ns simulations,
where relaxation and possible transitions to other local
minima were monitored. Conformations typical of the long-
lived, metastable conformers were extracted from these
unbiased trajectories. The conformational free energy land-
scape of the peptide was then explored by means of ABF-
biased simulations in one, two, and three dimensions. The
one-dimensional calculation was based on the end-to-end
distance d, that is, the distance between the carbonyl carbon
atoms of residues 1 and 10. The duration of the simulated
trajectory was 500 ns. The two-dimensional, 200 ns ABF
calculation was based on both d and the minimal rmsd
between the current structure and a typical �-hairpin
conformation (structure E in Figure 6). The rmsd was
calculated using R-carbon atoms only. Finally, a 400 ns three-
dimensional ABF simulation was carried out: the set of
collective variables was composed of three RMSDs, with
respect to the typical R-helical, turn/310-helix, and ω-shaped
turn, respectively. The structures of these conformers are
described in the Results section. The three RMSDs were
defined on the basis of R-carbon, carbonyl carbon, and
peptide nitrogen atoms, respectively; these nonoverlapping
sets of atoms ensured that eq 6 was obeyed.

Results and Discussion

Conformational Equilibrium of N-Acetyl-N′-methyl-
alaninamide. In the past 30 years, the conformational
equilibrium of NANMA has been investigated in ample
detail, employing a variety of numerical approaches and
potential energy functions.4,8,53,73–93 Accurate reproduction
of the gas-phase, two-dimensional Ramachandran free energy
map, therefore, hardly constitutes a methodological prowess.
Popular, well-established approaches like umbrella sam-
pling94 used in conjunction with the weighted histogram

analysis method95 have proven to be perfectly adapted to
rank with the desired accuracy the conformational states
accessible to this paradigmatic peptide.82 Furthermore, in
several instances, NANMA has served as a discriminating
test case for assessing the performance of novel numerical
schemes.8,83,96

In the present work, determination of the two-dimensional
free energy landscape of NANMA only represents the
necessary preamble to an independent series of computations
based on variables of higher collectivity than the mere φ

and ψ torsional angles of the backbone. However predictable,
the results of these preliminary free energy calculations
depicted in Figure 1 agree quantitatively with previous
investigations; see, for instance, ref 96. In particular, (φ, ψ)-
integration over the basins corresponding to the C7eq and C7ax

conformations, characterized by a long-lived intramolecular
hydrogen bond, yields a free energy difference of 2.5 kcal/
mol, in favor of the equatorial motif.78,96

The metadynamics calculation yields a free energy land-
scape identical to that determined by means of ABF (data
not shown). Fast-relaxing, low-friction systems such as
NANMA do not place high demands on the algorithms used
to sample them, as demonstrated by early successes obtained

Figure 1. (A) Two-dimensional (φ, ψ) free energy landscape
of N-acetyl-N′-methylalanylamide in the gas phase derived
from a reference ABF calculation. (B) Free energy change
along collective variable � ) rmsd(C7eq) - rmsd(C7ax), the
difference between the distance rmsd with respect to the C7eq

and C7ax conformational states. The free energy profiles are
obtained from independent 20 (light curve), 20 (dark curve),
and 40 ns (black curve) ABF simulations.
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with limited sampling and unsophisticated algorithms. Meta-
dynamics can be run with settings that result in high energy
input (frequent accumulation of high hill potentials), without
adverse consequences on the accuracy on the PMF. As a
result, complete sampling can be obtained from a relatively
short, 30 ns trajectory. As the ABF approach imposes that
the system remains close to equilibrium, it requires a longer
sampling time (100 ns). It is important to note, however,
that this situation may not always occur in more delicate
cases.

Transition between the lowest free energy states, C7eq and
C7ax, of NANMA has been the object of a number of
computational investigations published in the past
decade.83–85,89 In a nutshell, three possible, low free energy
pathways can be considered to describe the (φ, ψ)-isomer-
ization of the peptide. The first path connects the two
conformations through the lowest point of the quasi-
continuous free energy barrier arising around φ ) 0°. The
second path uses the C5, extended state as an intermediate
between the C7eq and C7ax conformers, overcoming the free
energy barrier located ca. φ ) 120°. Last, the third path
partially overlaps with the previous one, yet, in lieu of
diffusing in the wide basin that encompasses the C5, C7eq,
and � conformations, visits the higher free energy states of
the right-handed R-helix region.

As can be observed in Figure 1, the three independent free
energy calculations that rely upon the use of variable � )
rmsd(C7eq) - rmsd(C7ax) yield a consistent picture for the
transition between C7eq and C7ax. Although a longer, 40 ns
simulation has been performed for reference purposes, 20
ns appears to be ample to achieve convergence of the free
energy. Each free energy profile possesses two distinct
minima positioned almost equidistantly with respect to � )
0 Å and approximately 2.5 kcal/mol apart, in line with the
measure based on the two-dimensional (φ, ψ) map. Interest-
ingly enough, the three different curves exhibit a shallow
free energy minimum emerging around -0.4 Å, which
corresponds to an ensemble of C5-like, extended states. This
pseudominimum prefaces an abrupt, 5.6 kcal/mol barrier
toward the C7ax conformation, thereby suggesting that
isomerization of NANMA proceeds through the second low
free energy path outlined previously.

Chloride Ion Permeation across a Peptide Nanotube.
Synthetic nanotubes resulting from the self-assembly of
cyclic peptides are capable of conducting ions.97 Synthe-
sized with the proper amino-acid sequence, these nano-
tubes exhibit a pronounced tendency to insert as inde-
pendent entities into the lipid bilayer, where they act as
transmembrane channels.98,99 Atomic-level mechanism and
energetics of ion transport have been explored by means of
complementary theoretical approaches.100–102 In the light of
calculations relying upon Poisson-Nernst-Planck theory,
it has been suggested that conduction through open-ended
tubular structures can be strongly modulated by the nature
of the surroundings.101,103,104 Such environmental effects on
ion transport were subsequently quantified, employing free
energy calculations, wherein a sodium ion was shuttled across
the cavity of a peptide nanotube spanning the width of a
fully hydrated POPC lipid bilayer.26

In Figure 2, the two-dimensional (F, �) free energy maps
delineating the translocation of a chloride ion in the same
tubular structure are displayed, based on separate ABF and
metadynamics calculations. From a methodological stand-
point, the striking resemblance between the measured free
energy landscapes ought to be underlined. Periodicity-
enforced integration of the gradients obtained from the ABF
calculation yields a free energy map that is by and large fully
superimposable on that generated with metadynamics. A
glance at the ABF maps reconstructed with and without
periodicity suggests that introduction of the latter when
integrating the gradients somewhat reshapes the free energy
landscape, altering its expected symmetry with respect to �
) 0 Å.

In sharp contrast with sodium,26 transport of chloride in
the present peptide nanotube is markedly unfavorable.
Translocation of the halide ion is burdened by a steep free
energy barrier, on the order of 17 kcal/mol, at the mouth of
the synthetic channel. This result is not completely surprising,
given the radius of the pore formed by the stacked cy-
clo[LW]4 peptide units, and the optimal aqueous coordination
of chloride, found to be equal to ca. 6-8 at the experimental
level,105 and to about 7.5 on the basis of MD simulations in
bulk water.100 The significant free energy penalty arising at
� ) (15 Å is, therefore, linked to a severe dehydration of
the halide ion, entering the synthetic channel partially
“naked”.

Diffusion of the ion is further hampered by subsequent
free energy barriers, ca. 7-8 kcal/mol high, emerging at the

Figure 2. Comparison of the two-dimensional free energy
landscapes characterizing the transport of a chloride ion in a
peptide nanotube spanning a fully hydrated POPC lipid
bilayer, using ABF, without (A) and with (B) periodicity-
enforced integration of the gradients, and metadynamics (C).
The free energy is measured concomitantly along the radial,
F, and the longitudinal, �, directions of the membrane-
spanning tubular structure.
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midpoint between two adjacent cyclic peptides, the separation
of which amounts to about 4.7 Å. Congruent with the
simulations of the sodium ion,26 in-plane coordination
appears to be also the energetically preferred state for
chloride. It is remarkable that the halide ion does not hop
between cyclic peptides following a rectilinear path, collinear
to the long axis of the synthetic channel at � ) 0 Å, but
instead grazes the wall of the latter to form intermittent
interactions with peptide amino moieties. This diffusion mode
is reflected in a curvilinear low-free energy path apparent in
Figure 2.

Structure of Met-enkephalin in an Aqueous Solution. On
account of its unusual flexibility, Met-enkephalin can bind
interchangeably either the δ, the κ, or the µ-opioid receptor,
where it is anticipated to adopt distinct conformations. This,
in large measure, rationalizes why experimental approaches
have hitherto failed to propose a converging view of the
native structure of this short peptide.26,106,107 Although it is
reasonable to believe that the marked flexibility of the
backbone would be reflected in a generally flat free energy
landscape, equilibrium MD simulations at a single temper-
ature have proven to prevent exhaustive exploration of
conformational space, the peptide chain being recurrently
trapped kinetically in a random, unrepresentative conforma-
tion.60 Despite its reduced length, Met-enkephalin, therefore,
constitutes a pathological case for standard MD, but a well-
suited candidate for more recent, multicanonical approaches,
like replica-exchange MD,108 aimed at enhancing ergodic
sampling.

The two-dimensional free energy map of Figure 3 sheds
light on the conformational space accessible to the short
peptide along the directions of the position rmsd with respect
to an arbitrary chosen helical motif and of the radius of
gyration of the backbone. As has been commented on
previously,67 the free energy landscape of Met-enkephalin
in aqueous solution consists of a rather wide, shallow basin,
featuring a number of pronounced minima. At low distance
rmsd and Rg, a compact, 310-helix motif (I) is observed,
resulting primarily from the formation of an intramolecular
hydrogen bond between the carbonyl group of residue i and

the amino group of residue i + 3, albeit transitory intercon-
version to an R-helical i to i + 4 hydrogen bond can be
detected. Still at low Rg, but at a larger distance rmsd, around
2.8 Å, a free energy minimum (II) corresponding to an
embryonic helix turn emerges about 2.1 kcal/mol higher than
that of conformation I. A third minimum (III) can be found
at a distance rmsd of 2.0 Å and an Rg of 5.2 Å, with a free
energy equal to that of the helical motif I within statistical
accuracy. Its U-shaped structure is essentially nonhelical,
featuring an intermittent hydrogen bond formed between the
terminal, blocking amino moiety and the carbonyl group of
the first glycine residue. Last, a fourth conformational
minimum (IV) can be found at a distance rmsd of 1.4 Å
and an Rg of 4.8 Å, and corresponds to a free energy only
0.6 kcal/mol above that of structures I and III. In this free
energy minimum, the peptide chain adopts a γ-turn confor-
mation, often encountered in �-hairpin motifs.

It is apparent from the present results that, using a reduced
set of collective variables and a single temperature, ABF is
able to recover the complete free energy landscape of Met-
enkephalin, virtually identical to that reported by Sanbon-
matsu and Garcia on the basis of parallel-tempering MD
simulations.67 The (rmsd, Rg) two-dimensional map confirms,
indeed, that this free energy landscape is relatively shallow
and consists of essentially four distinct ensembles of
conformations characterized by overall comparable free
energies, barring structure II, and separated by appreciably
low barriers.

The local minima are primarily distinguished by their rmsd
value. Therefore, in this case, the second collective variable,
Rg, is not essential to resolve the low free energy states, but
it accelerates the sampling of transition pathways between
them, and therefore the overall convergence of the calcula-
tion. The rmsd could be considered a one-dimensional
reaction coordinate, while Rg is a degree of freedom in the
orthogonal space that is included in the ABF calculation for
numerical efficiency.

Conformational Free Energy Landscape of Deca-ala-
nine. Deca-alanine in vacuum has been used several times
as a computationally inexpensive and seemingly simple toy

Figure 3. Two-dimensional (rmsd, Rg) free energy landscape of Met-enkephalin in aqueous solution. The position rmsd with
respect to a helical conformation is measured over R-carbon atoms only. The radius of gyration, Rg, is evaluated over all heavy,
but R-carbon atoms. Contours of the main two-dimensional map are separated by 0.5 kcal/mol. The I-IV key conformations of
Met-enkephalin are charted on the inset free energy landscape and depicted to the right as cartoon and ball-and-stick
representations. In the cartoon representation, color indicates secondary structure. Molecular graphics were rendered with VMD.109
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model for conformational free energy calculations on
peptides.6,28,110–113 Stretching the peptide from its native,
R-helical state to extended conformations, and back, is indeed
a fairly straightforward transformation, for which relatively
few pathways are possible. All simulations cited above, using
the end-to-end distance of the peptide chain as a coordinate
and various biasing schemes, achieve convergence and find
potentials of mean force in good agreement with one another.
Such simulations, however, only explore a small fraction of
the conformational space available to deca-alanine. Indeed,
when an attempt was made to sample the more compact
conformations corresponding to end-to-end distances shorter
than the R-helix length (i.e., less than 12 Å), it was found
that several local minima, and the complex pathways linking
them, were not resolved by that simple distance parameter.
As a result, the complete free energy landscape of the peptide
could not be mapped.28

As can be seen from Figure 4B, using ABF to sample the
end-to-end coordinate d provides very uniform histograms
for elongated structures, and uneven, sporadic sampling of
the compact region. Thus, the potential of mean force shown
in Figure 4A, while very accurate for d greater than 12 Å, is

not converged for smaller values. Furthermore, it does not
exhibit clear features that could be related to the metastable
conformations that can be identified in that region. The
reason behind such nonuniform sampling of the low-d range
is that d is a highly degenerate descriptor of most of the
conformational space of deca-alanine. Even with an ideally
converged adaptive bias canceling the free energy profile,
some of the transitions would remain rare events, essentially
because the enthalpic or entropic barriers are orthogonal to
the direction of the bias.

Unbiased simulations starting from structures chosen from
the ABF simulations indicate several metastable conformers
whose lifetime is at least 30 ns. In order of increasing relative
potential energy, these structures are the R-helix (0 kcal/
mol), a loop containing a short 310-helical segment (3.5 kcal/
mol), an ω-shaped loop composed of � and other turns (6.2
kcal/mol), a �-bridged loop (9.3 kcal/mol), a �-hairpin (9.8
kcal/mol), and a slightly expanded π-helix featuring transient
i to i + 5 hydrogen bonds (11 kcal/mol). These conforma-
tions are represented in Figure 6.

To resolve the compact states that are merged in the one-
dimensional landscape, the distance parameter was supple-
mented with a second degree of freedom, the position rmsd
from a typical �-hairpin conformation. The results are
represented in Figure 5. Although a large fraction of the
reduced space is visited, sampling tends to accumulate in a
few localized regions (Figure 5B), suggesting a failure of
the collective variables to describe all of the free energy
barriers in these regions. The global free energy minimum
corresponding to the R-helix is clearly visible in the measured
free energy landscape (Figure 5A). In contrast, the basins
corresponding to metastable structures are almost coalesced
and separated by low barriers, inconsistent with the long
lifetimes of these conformers. Despite its limits, the two-
dimensional profile is consistent with the one-dimensional
free energy of 4 in the region containing the R-helix and the
extended states.

Finally, a set of three RMSDs was chosen to try and
resolve the numerous conformers of similar compactness of
deca-alanine. The three-dimensional PMF is shown in Figure
6. In general, the differences in free energy between the
metastable conformers and the R-helix are smaller than the
potential energy differences, indicating significant entropy-
enthalpy compensation. Indeed, the R-helix is more rigid than
the other conformers. Because of the width of basins
corresponding to individual conformers, and the short
distance separating them in the reduced space, some con-
formers are still not perfectly resolved, in particular in the
low free energy region containing the �-hairpin and �-bridge
structures. Indeed, the local free energy minimum in that
region contains conformations similar to both structures,
whose similarity renders difficult to distinguish in a low-
dimension representation. The free energy landscape is,
however, sufficiently resolved for the complete conforma-
tional space to be explored at a much increased rate due to
the adaptive bias. Here, because the full conformation space
of flexible peptide is explored, the rmsd coordinate is not
robust over its entire range. Specifically, at very high rmsd
values, the structure becomes too dissimilar from the

Figure 4. (A) One-dimensional free energy profile of deca-
alanine in vacuum, as a function of the end-to-end distance.
Intermediate results are plotted for every 20 ns period as gray
lines; the final result of the 500 ns ABF simulation is shown
as a dark line. (B) Sampling histograms (on a logarithmic
scale) corresponding to the one-dimensional ABF simulation
of deca-alanine. Each line is the full histogram at the end of
a 20 ns period of the simulation.
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reference coordinates for the optimal rotation to be uniquely
defined. In such regions of conformation space, the gradient
of the rmsd is irregular and exhibits jumps, and hence forces
measured or applied along that direction have little physical
significance. It should nevertheless be noted that in more
realistic applications, the relevant range of the rmsd will
typically be limited to the region where the optimal rotation
is unique, hence avoiding the issue altogether.

Deca-alanine exhibits a very structured, corrugated free
energy landscape, featuring a rich set of metastable conform-
ers. Although the peptide is of little intrinsic biochemical
relevance, particularly in vacuum, it proves to be a chal-
lenging test case for conformational sampling algorithms.

Comparison of ABF and Metadynamics. The ABF and
metadynamics schemes rely on several comparable param-
eters. The choice of collective variables is crucial in both
cases. Metadynamics offers more flexibility in the choice
and implementation of collective variables, because only the
value and gradient of the variables are needed, not their

second derivatives. In the present implementation, any set
of variables can be used together: there is no orthogonality
requirement. Both methods require a width parameter, the
Gaussian hill width in metadynamics and the bin width in
ABF. This parameter defines the spatial resolution of both
the time-dependent bias and the final PMF. Finally, a
metadynamics simulation can be characterized by a filling
rate, equal to the height of the Gaussian potential increments
divided by the period of addition of such increments. This
parameter controls how much work is performed on the
system by the bias, and this quantity is typically constant
for the complete duration of the simulation. The correspond-
ing parameter of ABF, the threshold amount of sampling
before the adaptive bias is enabled, is not equivalent to the
filling rate. It has the dimension of a time rather than that of
a power, and it only affects the initial behavior of the
simulation. Once the amount of sampling is above that
threshold, and neglecting the finite resolution of the lattice,
the behavior of ABF is entirely specified by the algorithm,
regardless of the values of tunable parameters.

In biased simulations that rely on reduced representations
comprising few degrees of freedom, the most common
shortcoming is the slow relaxation of other, “hidden” degrees
of freedom, not included in the chosen set of collective
variables. Under these premises, the underlying energy
landscape of a given point in reduced space may change
during the simulation, with the result that data collected
previously become “stale”, at least on the time scale of
assisted diffusion in reduced space.24 In principle, in the limit
of ergodic sampling, even the slowest degrees of freedom
are fully thermalized and convergence occurs. In practice,
however, achieving this situation is highly dependent on the
relevance of the reduced space as a reaction coordinate.

In any such nonideal situation, the exact form of history
dependence of the biasing algorithm comes into play.
Metadynamics is almost always performed with a constant
height of the Gaussian hills, chosen to meet the desired
accuracy through a theoretical estimate of the error.114,115

This gives the method a finite memory time, which can be
identified as the time required to explore the whole landscape.
In this case, if relaxation of hidden degrees of freedom
modifies the potential seen by the collective variables,
metadynamics will fill up the minima of the “new” free
energy landscape, until all memory of the previous landscape
has been erased. It seems possible that such a situation might
give rise to a cyclic behavior, where the locally measured
free energy (on the time scale of metadynamics) oscillates
between values corresponding to different basins, as dictated
by transitions of hidden, slow degrees of freedom. This
behavior might, however, be viewed as useful, in that it
allows the method to recover from situations where inac-
curate data have been collected, either as a result of
deficiencies in the reduced representation or due to irrevers-
ible work performed by the metadynamics bias.

ABF, in contrast, has an effectively infinite memory time.
Once a data point has been accumulated in the average, its
weight decreases as the inverse of the total number of
samples, that is, as 1/t. For this reason, the oscillating
behavior described above is unlikely. Instead, a commonly

Figure 5. Two-dimensional ABF description of the conforma-
tions of deca-alanine in vacuum. The variables used for ABF
are the end-to-end distance and the position rmsd with respect
to a �-hairpin conformation. (A) Free energy landscape. (B)
Sampling histogram at the end of the 200 ns simulation.
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observed effect of slowly relaxing hidden degrees of freedom
is a change of the sampling behavior as the simulation
progresses. Over time, the relative weight of newly accrued
data in the average decreases, as does the responsiveness of
the time-dependent bias to changes in the locally measured
thermodynamic force. This is the desired behavior in the ideal
context of a perfect reaction coordinate space, where all
orthogonal degrees of freedom are either fast, or kinetically
trapped and not relevant to the transformation under study.
In real cases, the symptom is an initially efficient exploration
of reduced space, followed by an increasing tendency to get
trapped in local minima as they are “discovered” through
relaxation in the orthogonal space and crossing of hidden
barriers. This is observed, to a minor extent, in the 2D and
3D deca-alanine simulations described in the previous
sections. Arguably, such behavior is indicative of failure of
the reduced space to capture the reactive intermediates and
pathways to a degree that allows for sampling over the
intended (or technically feasible) time scale.

Metadynamics is designed as a nonequilibrium method,
whereas ABF relies on equilibrium sampling from the
canonical ensemble. In practice, ABF simulations go through
an initial stage during which the estimate of the local free
energy gradient evolves rapidly; then the running average is
updated on a much slower scale, and eventually stabilizes
altogether. Applying a biasing force based on the early, fast-
fluctuating estimate of the free energy gradient may push

the dynamics into a nonequilibrium regime. This initial
departure from equilibrium conditions can be greatly reduced
in practice by delaying the introduction of the biasing force
until after the large fluctuations of the running average have
ended: this is accomplished by waiting for a preset number
of samples to be accrued in a local bin.6,8,28 Should any
nonequilibrium effects occur, however, force samples mea-
sured in that phase are still taken into account in the average,
and, as mentioned above, this contribution never vanishes.
Any bias (typically, an overestimated free energy gradient)
due to irreversible work performed in the beginning of the
simulation will taint the final data, with a weight that only
decays as 1/t. In contrast, exponential convergence of ABF
has only been proved under somewhat restrictive assump-
tions, including the use of a large number of replicas.116

When a metadynamics run is carried out with constant hill
height, irreversible work is performed throughout the simula-
tion. This contribution may only be deemed to have been
eliminated from the measured PMF once multiple sweeps
have been observed (or, in higher dimension, multiple
transitions between neighboring basins).

Both issues (slow hidden variables and irreversible work)
can be alleviated by restricting the data set used to reconstruct
the free energy, eliminating selected, problematic data. In
metadynamics, this is achieved by stopping the simulation
once the system leaves the relevant region of configuration
space. In ABF, data collected in the initial, out-of-equilibrium

Figure 6. Three-dimensional conformational free energy landscape of deca-alanine, as a function of the rmsd with respect to
ideal R-helical, ω-shaped γ-turn, and turn/310-helix conformations, respectively. The free energy was computed by numerically
integrating the gradient obtained from a 400 ns ABF simulation. Free energy isosurfaces are shown for respective values of 3
(black), 6 (blue), 9 (green), 12 (yellow), and 24 kcal/mol (white). Average positions corresponding to metastable conformations
are indicated by red spheres. Conformers are shown as ball-and-stick and cartoon representations, with color indicating secondary
structure (purple, R-helix; blue, 310-helix; red, π-helix; gray, turn; yellow, �-strand; tan, �-bridge; white, unstructured). Hydrogen
bonds are indicated as blue lines. The conformers are labeled using red capital letters: (A) R-helix, (B) turn/310-helix, (C) ω-shaped
turn, (D) �-bridge, (E) �-hairpin, (F) π-helix, and (G) extended form (unstable).
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stage can be removed from the final average. Metadynamics
performs well in low-friction systems such as the peptide
nanotube example, because the filling rate (hill height divided
by the hill accumulation period) can be increased while
maintaining a level of irreversible work that does not hinder
convergence.

Conclusion

An implementation of the ABF approach supporting multi-
dimensional reaction coordinates based on sophisticated
variables is proposed. This implementation is available in
the scalable molecular-dynamics program NAMD, but can
be readily incorporated into any MD platform. The method
and its implementation have been tested on a variety of
biomolecular systems. Multidimensional reaction descriptors
improve the level of detail in which molecular processes can
be mapped, as in the case of chloride permeation through a
self-assembled peptide nanotube. In systems featuring par-
ticularly complex free energy landscapes, such as the multiple
metastable conformations of deca-alanine, efficient sampling
is only possible when applying the adaptive bias in a two-
or three-dimensional reduced space. The work of constructing
an appropriate reduced representation is made easier by the
availability of variables such as the position rmsd, and the
flexibility afforded by linear combinations of predefined
variables.

Two of the test cases were used to compare directly ABF
and the metadynamics method, applied on the same variables,
under otherwise identical simulation conditions. Both ap-
proaches yield the expected results in terms of phase space
exploration and sampling, and reconstruction of the free
energy landscape. Neither can be said to be more efficient
or accurate than the other on general grounds. Still, meta-
dynamics does offer an inexpensive way to rapidly explore
simple, fast-relaxing systems that are robust enough to
withstand a high energy input, as is apparent from the toy
model of NANMA, while ABF may constitute a safer option
for more fragile systems. Differences are likely to become
most apparent in difficult scenarios, where the two ap-
proaches react differently to incomplete sampling and
nonequilibrium effects. Whereas metadynamics is much more
likely to perform significant irreversible work in late stages
of such simulations, ABF may become inefficient and sample
reduced regions for disproportionate times.

The most crucial issue remains the choice of a reaction
coordinate space. As illustrated in the deca-alanine example,
describing a small system with seemingly limited phase space
may require multiple parameters, fine-tuned to resolve nearby
points of conformation space that, nevertheless, belong to
different low free energy basins or pathways. More sophis-
ticated collective variables will be developed to describe
complex, frustrated free energy landscapes. The existing
algorithms will evolve toward better scalability, or be
replaced altogether by new sampling methods. In any event,
it is essential for the progress of large-scale applications that
new developments in sampling and free energy algorithms
be kept in phase with state-of-the-art, parallel simulation
software.
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Abstract: The problem of symmetry breaking in the evaluation of Fukui functions is addressed.
It is also demonstrated that a reliable solution of the problem can be achieved using analytic
methods. An automatic method that avoids occurrence of symmetry breaks has been
implemented in a computer code and is described here. Negative regions of the Fukui function
are shown to play a key role for the interpretation of reactivity. Example plots are presented for
diatomic molecules, inorganic molecules, conjugated systems, and molecular cages. The
potentiality of the Fukui functions as molecular scalar fields for prediction and analysis of
regioselectivity is enhanced. Its advantages with respect to the use of condensed Fukui functions
are discussed.

1. Introduction

Inspired by the pioneering works on molecular reactivity of
Fukui,1-3 Parr and Yang4-6 have proposed an intrinsic local
reactivity descriptor which they named the Fukui function4

and defined it as the derivative of the molecular density with
respect to the total number of electrons for a given external
potential. This descriptor can be used to predict regioselec-
tivity. Both nucleophilic and electrophilic molecular regions
can be predicted.7-10 It can also be used to do comparative
studies of acidity or basicity.11 Furthermore, the Fukui
function plays a central role in the development and
application of chemical reactivity theory.6,8,12-16

There are two principal ways in which the Fukui function
has been used to predict regioselectivity. One may use the
Fukui function itself or find molecular regions with nucleo-
philic and electrophilic character with the condensed Fukui
functions.17 The latter approach has the advantage of
predicting reactive atomic centers. However, this coarse-
grained approach also presents a number of disadvantages
starting from the arbitrariness of the condensation proce-
dures.18 In addition, it hides information related to off-atom
regions.

The purpose of this contribution is to address a problem
in the evaluation and interpretation of Fukui functions of
symmetric molecules: the breaking of symmetry. Once this
problem is solved, plotting the Fukui functions emerges as
the method of choice for analysis of regioselectivity instead
of calculation of condensed Fukui function values. In fact,
the extensive use of the condensed values19-21 is one of the
main reasons for the prevalence of the symmetry-breaking
problem. Condensation hides this problem for many common
systems.

This problem is very severe because it implies a violation
of space symmetry. In the literature there are reports with
erroneous Fukui function plots.22,23 Probably because this
problem is only relevant to systems with degenerate frontier
orbitals (vide infra), many researchers have not paid attention
to its occurrence. However, the problem occurs in the very
important family of aromatic hydrocarbons which, by
satisfying Hückel’s 4n + 2 rule, have degeneracies in the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO). Combination of
efficient analytic methods with the results of the analysis
presented here yield reliable molecular graphs of Fukui
functions.

The paper is organized as follows. In section 2 the most
widely used methods for the evaluation of Fukui functions
are outlined and compared to the analytic formula. In
section 3, the symmetry conservation problem is described
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J. Chem. Theory Comput. 2010, 6, 48–5448

10.1021/ct9002527  2010 American Chemical Society
Published on Web 12/23/2009



and its solution is discussed. Application to a number of
molecules is presented in section 4. Final remarks are
given in section 5.

2. Methods for Evaluation of Fukui
Functions

The following discussion is restricted to the Kohn-Sham
approximation24 of density functional theory (DFT),6,25 but
many of the observations and conclusions are applicable to
other methods. A nondegenerate state is assumed. For
degenerate ground states, extra corrections are required.26

The Fukui function, f ((r), is defined as the derivative of
the density, F(r), with respect to the total number of electrons,
N, under a constant potential, V(r):

The superscript signs are used to label left, -, and right, +,
side derivatives. There are alternative (but equivalent for
nondegenerate states26) definitions of the Fukui function.27,28

Within the Kohn-Sham approximation of DFT, the density
is given by a fictitious noninteracting system

Here, ψi(r) denotes the ith molecular orbital and ni is its
occupation number. Assuming that the electronic density is
well-defined and its one-sided derivatives with respect to N
exist, the Fukui function can be evaluated by5,29-31

Equation 3 is the exact formula for the evaluation of the
Fukui function. The first term on the right-hand side accounts
for the location from which the electrons are removed. The
second sum collects contributions from the relaxation of
orbitals. Equation 3 can be evaluated using perturbation
theory.32,33 In general it is assumed that electrons would leave
from the HOMO and not from other orbitals. Justification
for this assumption can be obtained by considering an
ensemble of ionic states with different energies depending
on whence electrons are removed or added in the neutral
system. For the case where electrons are removed (left
derivative), the highest population of these states in general
corresponds to the state where electrons were removed from
the HOMO because it is the orbital with the lowest energy.
In an analogous way, occupation of the LUMO leads to an
ensemble of anionic states. Population of other states is very
low. For zero temperature, all other states with higher energy
are empty. Therefore

In the frontier approximation, the relaxation of orbitals is
neglected. This is equivalent to assuming that second sum

in eq 3 vanishes. Thus, the left frontier Fukui function, fF
-(r),

is given by34

Another, frequently used method for the evaluation of
Fukui functions evaluates densities of the system with N
electrons and the system with N - 1 electrons and ap-
proximates the Fukui function by their difference, fD

-(r):

Equation 7 includes relaxation contributions in the evaluation
of Fukui functions but also includes numerical errors and
technical difficulties.33 At 0 K, eq 7 is an exact formula22

for the evaluation of f -(r) if the exact density is used. Our
analytical results33 and numerical calculations with fractional
charge21,33,35 yield different values because the exchange-
correlation functional used in the calculations is not the exact
one and, therefore, the density is not exact. Furthermore,
incompletness of the basis sets used leads to a unbalanced
treatment of ionic species, especially anions. One feature of
analytic methods is that they yield results consistent with
the approximate nature of the functional employed. For the
exact functional, the analytic result is also the exact one.
Whereas for approximate functionals analytic results are
consistent, eq 7 presents errors that disappear only with the
exact functional. This motivates us to pursue the use of
analytic methods.

3. Symmetry Conservation

There have been publications related to the interpretation
and application of Fukui functions where the reported graphs
present an artificial symmetry breaking.22,23 Those and our
own previous results have motivated the following analysis.
In this section, the particular cases of methane (CH4),
acetylene (HCCH), benzene (C6H6), and cubane (C8H8) are
analyzed. This set includes linear, planar, and three-
dimensional systems.

In many systems, HOMO and LUMO degeneracy appears
as a consequence of symmetry. If only one of the frontier
orbitals is considered for the removal or addition of electrons,
then a symmetry break occurs in the corresponding Fukui
function. Therefore, before discussing the Fukui function of
the selected molecules, the HOMOs are presented in Figure
1. Note that lowercase letters are used to label different
HOMOs in each molecule for further reference.

All the results presented in this contribution were obtained
with a modified version of the deMon2k program.36 The local
density approximation with the VWN correlation functional
was used.37 The DZVP38 basis and the GEN-A239-42

auxiliary sets were employed. The molecular plots were
obtained with Sinapsis 0.3.43

3.1. Frontier Fukui Function. When only the HOMO a
is used to evaluate fF

-(r), a symmetry break occurs. Figure
2 shows the results. For the evaluation of Fukui functions,
all isosurfaces presented in this work were selected to satisfy
Nf(r) ) 0.1, where N is the total number of electrons in the
molecule. This choice is based on the fact that Fukui

f ((r) ≡ (∂F(r)
∂N )V

(
(1)

F(r) ) ∑
i

ni|ψi(r)|2 (2)

f ((r) ) ∑
i

(∂ni

∂N)
V

(

|ψi(r)|2 + ∑
i

ni(∂ |ψi(r)|2

∂N )
V

(

(3)

(∂ni

∂N)- ) {1 if i ) HOMO
0 otherwise

(4)

(∂ni

∂N)+ ) {1 if i ) LUMO
0 otherwise

(5)

f -(r) ≈ fF
-(r) ≡ |ψHOMO(r)|2 (6)

f -(r) ≈ fD
-(r) ≡ FN(r) - FN-1(r) (7)
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functions integrate to an absolute value of 1.0 and, therefore,
for larger molecules smaller absolute values of Fukui
functions are found. This also reflects the fact that larger
molecules are more able to accommodate extra charge.

The Fukui functions resulting from this method have a
shape that resembles very closely that of the last occupied
MO. They are also, by construction, positive semidefinite,
i.e., fF-(r)g 0. If one would attempt to predict regioselectivity
with these plots, one would arrive at the wrong conclusion
that some atoms are more reactive than others that are
equivalent to them by symmetry. In order to recover the
correct symmetry when the HOMO is degenerate, eq 6
should be modified to allow the possibility for the electrons
to leave evenly from all of the HOMOs. Meneses et al.44

have applied averaging of frontier orbitals. Cedillo has
employed a similar procedure.45 Unfortunately, no justifica-
tion has been given for the legitimacy of this action. This is
properly justified by the ensemble of ionic systems proposed
above. Equations 4 and 5 should be substituted for the
following more general forms:

Here, εi is the energy for the ith MO and DHOMO and DLUMO

are the order of degeneracy of the HOMO and LUMO,
respectively. The frontier Fukui function should be corrected
accordingly. For fF

-(r), the corrected formula is

with the sum running over all degenerate HOMOs. The
correction of symmetry as a result of the generalization
described by eq 10 is a consequence of group theory. If the
frontier orbital did not belong to a degenerate set, then its
value squared would yield a frontier density belonging to
the totally symmetric irreducible representation.46 For de-
generate frontier orbitals, no single one of them can produce
a totally symmetric density, but the direct product of all of
their irreducible representations is the totally symmetric one.
(This statement is better appreciated using complex character
tables that allow separate handling of degenerate orbitals.46)
This result is in accordance with the inclusion of all frontier
orbitals in eq 10. The averaging preserves the normalization
of the Fukui functions. In a recent paper47 published while
this work was in the reviewing process J. Martı́nez also points
out the problem of symmetry breaking treated here. He
reports some corrected plots with the frontier orbital ap-
proximation, including the one for HCCH presented here.47

Note that we are assuming a closed-shell system in the
discussion, but the results just obtained are also valid for
half-filled, open shells of degenerate frontier orbitals. Actu-
ally, this is the molecular counterpart of Unsöld’s theorem.48,49

Figure 3 shows the results of this correction. Clearly, the
resulting plots allow us to make reactivity predictions that
do not violate molecular symmetry.

Unfortunately, the frontier approximation neglects relax-
ation contributions. Therefore, no attempt to interpret the
resulting plots is made here. Nevertheless, this symmetric
fF
-(r) serves as a starting point for evaluation of symmetrized

analytic f -(r).
3.2. Finite Difference Method. In Figure 4, molecular

densities for neutral and cationic systems are shown. Their
difference is also evaluated to yield fD-(r) as an approximation
to the Fukui function. Positive values are in yellow and
negative regions correspond to blue. Negative regions arise
from relaxation contributions. Their existence has been
pointed out.20,22,50,51 We believe this can be properly
understood only by using Fukui function plots and not by
the condensed forms.

In ref 22, the plot fD
-(r) for acetylene was reported.

Likewise, in ref 23, a contour plot for benzene was reported.
In these reports, as in our plots of fD

-(r), artificial symmetry
breaks occur. These artifacts originate in the method and

Figure 1. Isosurfaces taken at 0.1 au for HOMOs of the selected set of molecules.

Figure 2. Symmetry break in frontier approximation to Fukui
function evaluated as a2.

(∂ni

∂N)- ) {1/DHOMO if εi ) εHOMO

0 otherwise
(8)

(∂ni

∂N)+ ) {1/DLUMO if εi ) εLUMO

0 otherwise
(9)

fF
-(r) ) 1

DHOMO
∑

i

DHOMO

|ψi(r)|2 (10)
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support our position that it is preferable to not involve
calculations on the (N - 1)-electron system in calculations
on N-electron systems.33

The analysis of Figure 4 reveals why symmetry breaking
has not been an issue in calculations of Fukui functions. The
density of the N-electron system adapts to the molecular
symmetry. In Figure 4 it can be observed that the density of
the (N - 1)-electron system seems to follow the molecular
symmetry. However, a careful analysis reveals that the
density has a different symmetry. The deviations from
symmetry are, for these molecules and others of similar size,
about 1 order of magnitude smaller than the actual values
of the density. Therefore, it is very hard to see the problem
before actually evaluating the difference. On the other hand,
people usually condense the difference instead of plotting
it. Thus, hiding of the problem is very likely to occur.

Recovering adequate symmetry with the finite difference
method is very difficult. More than one state of the (N -
1)-electron system should be calculated. For many currently
used methods, it would be very demanding to identify the
correct states and recover the corresponding density as
required, resulting in more computer and human work that
is error-prone. Thus, fD

-(r) is able to recover relaxation and

allows for the appearance of negative regions. Unfortunately,
symmetry breaking is hard to prevent.

3.3. Analytic Method. The analytic method is also able
to recover relaxation by means of linear response.33 In
addition, the symmetry break is readily corrected. The
symmetrized frontier Fukui function is used as the starting
point. The relaxation adapts automatically to the same
symmetry. The response to a symmetric change in the
density, arising in the frontier, is also symmetric. The forces
responsible for relaxation represent a symmetrized change
in the density and will cause a symmetrized relaxation. In
Figure 5, plots of analytic f -(r) are shown without and with
symmetry correction. Note how once symmetry has been
corrected, the analytic method presents both positive and
negative regions, with adequate symmetry.

Fukui function plots are very rich in information. Once
the symmetry has been corrected, the plots calculated are
reliable for the interpretation of reactivity. Their full
potentiality for description of chemical reactivity is revealed.
First, they show how changes in density are frequently
outside of atomic regions. Negative regions are clearly an
important feature.

4. Applications

In this section, the analytic Fukui functions, f -(r) and f +(r),
are evaluated for different sets of molecules of current interest
to chemistry and technology. Many of the Fukui functions
shown below have never been displayed previously with
adequate symmetry or their novel negative domains. Mol-
ecules with degenerate frontier orbitals are treated to show
the range of applications that benefit from the present
approach.

Henceforth, all plots correspond to symmetry-corrected
Fukui functions.

4.1. Diatomic Molecules. Diatomic molecules are very
simple reactive systems, but the symmetry problem in Fukui
functions affects them in such a way that equivalent spatial
directions for approaching the molecule would result in

Figure 5. Analytic Fukui functions before and after symmetrization.

Figure 3. Symmetrized frontier approximation to Fukui function. Calculated using (a2 + b2 + c2)/3 for methane and cubane and
(a2 + b2)/2 for acetylene and benzene, according to eq 10.

Figure 4. Density of systems with N and N - 1 electrons
and the resulting approximated Fukui function obtained from
their difference. Isosurfaces taken at 0.1 au for densities.
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different reactivities. This violates space isotropy and should
be corrected. In Figure 6, the symmetry-corrected analytic
Fukui functions for CO, F2, and HCl are shown. For the case
of CO only the LUMO is degenerate. For F2 and HCl, only
the HOMOs are degenerate.

For F2, the symmetry of the Fukui functions is D∞h,
whereas before the correction the symmetry was D2h. For
CO and HCl, the correction goes from C2V to C∞h. In addition
to the symmetry correction in Figure 6, one can see how
negative regions in Fukui functions are always present. This
is not the first time that such regions are detected or reported.
Nevertheless, one of the results of this work is that it reveals
how the appearance of negative regions is the rule rather
than the exception. This result contrasts with the long-
standing debate on the appearance, meaning, and legitimacy
of negative values in condensed Fukui functions.

In linear molecules, such as the diatomic molecules of
Figure 6, the condensation of unsymmetrical Fukui functions
leads to the same values as the condensation of the
symmetry-corrected form. These results provide good ex-
amples of how condensation hides the symmetry-breaking
problem. Fortunately, this conclusion also implies that
published condensed values such as those of refs 22 and 33
are correct. For nonlinear molecules, this fortuitous correction
does not occur at all. Probably this is the reason that
symmetric molecules are not frequently reported with Fukui
functions.

A rationalization of negative regions of Fukui functions
is possible with the analysis of the plots shown in this
work. When a molecule loses electrons, there is a charge
compensation that migrates toward the positive nuclear
frame. Valence electrons will be attracted more strongly
since the shielding has been lowered. This causes a net
increase of core density. In the opposite case, if the
molecule gains electrons, the charge compensation goes
in favor of the electrons. The shielding increases in this
case and core electrons can expand away from the nuclear
framework, generating a depletion in core density. This
is in agreement with the previous observations and analysis
of Ayers et al.22,50,51 This also explains why negative
regions were not found close to hydrogens in the systems
treated here.

4.2. Inorganic Systems. Generally, the Fukui function is
used in the analysis of reactivity of organic molecules. There
is no fundamental reason to restrict attention to those systems.
On the other hand, calculation of charged systems happens
to be more difficult in inorganic molecules, making applica-
tion of the numeric difference method more difficult. With

the analytic method, charged systems are not calculated; only
the neutral system is of interest. Therefore, we can proceed
without worry to the treatment of inorganic molecules.

Examples of inorganic molecules are SF6, P4O10, and PCl5.
P4O10 and PCl5 offer an opportunity for testing regioselec-
tivity in a case where atoms of the same type appear in
different conditions. Only the HOMO is degenerate for these
systems. In Figure 7, one can observe how axial Cl atoms
of PCl5 are affected more upon removal of electrons. For
the case of P4O10, oxygen atoms linked to a single P atom
are the first source of electrons.

4.3. Conjugated Systems. Conjugated systems are very
important in synthesis, in polymers and biological chemistry.
Many of them have degenerate frontier orbitals. In particular
the aromatic systems, by obeying Hückel’s 4n + 2 rule,
present doubly degenerate frontier orbitals. In this section,
benzene, ferrocene, and [18]anulene are treated as examples
of conjugated molecules. While benzene is the prototype of
all aromatic systems, ferrocene is the prototype of organo-
metallic sandwich systems. [18]Anulene offers the possibility
of testing atoms of the same type in different conditions. In
Figure 8 the plots can be observed. For these three molecules
both the HOMO and LUMO are doubly degenerate. It is
interesting to note that f -(r) of ferrocene predicts that
removal of electrons affects mostly the metal atom. This is
in agreement with the experimental observation where it was
found that Fe2+ oxidizes to Fe3+.52 In the cases of benzene
and [18]anulene, the missing electrons come from the
aromatic π-system. For addition of electron, f +(r) shows a
clear tendency to localize. For [18]anulene, one can also
conclude in electron transfer reactions that the external
hydrogens are more likely to react than the internal hydrogens
of the [18]anulene ring.

Figure 6. Fukui functions for diatomic molecules.

Figure 7. Fukui functions for inorganic molecules.

Figure 8. Fukui functions for conjugated molecules.
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4.4. Molecular Cages. Molecular cages are very impor-
tant in nanotechnology, in trapping of atoms and smaller
molecules, and for the study of confinement effects.53 They
are also suitable for analyzing off-atom regions of Fukui
functions.

Molecular cages C8H8, C20H20, and C60 are considered.
Because of the number of degenerate frontier orbitals, the
size of the systems, and the very small values of the
calculated Fukui functions in these molecules, the calculation
of symmetry-corrected functions by the finite difference
method appears very hard to realize. This is a challenge for
those who might be reluctant to employ analytic methods
for the calculation of Fukui functions.

Figure 9 shows the analytic Fukui functions evaluated for
these molecular cages. One can observe that removal of
electrons from cubane affects mostly C-C bonds and the
zones of hydrogen atoms. The addition of electrons to the
same molecule would increase density in off-atom regions.
In particular, there are zones out of the cubane box that
increase density. In the opposite case, C20H20 shows that extra
electrons would be better accepted inside the box.

In C60, there is only one type of C atom, but there are two
types of C-C bonds. If the symmetrized Fukui functions
calculated here were condensed, then all atoms would show
the same reactivity as expected. However, no information
about the reactivity of bonds would be recovered. The direct
analysis of these functions allows one to conclude that
removal of electrons affects C-C bonds that are not part of
the pentagons and addition of electrons would go to bonds
on the C5 motifs.

Note that the size of the systems that are being treated
here is not small. For the case of C60, about 900 basis
functions and 2040 auxiliary functions are employed. Con-
sider also that the calculations here shown do not exploit
symmetry for efficiency. In an Intel Xeon 2.40 GHz CPU,
the calculation of both Fukui functions took 7 h 41 min using
a RAM under 512 MB. About 1 h of this time was consumed
by the SCF calculation. This performance is to be expected
from deMon2k,36 which takes advantage of the variational
fitting of the Coulomb potential54,55 and other developments
of auxiliary density functional theory.56,57 It demonstrates
that evaluation of analytic Fukui functions with linear
response as described in ref 33 is very efficient and can be
realized routinely for many chemically interesting systems.
This method can help to extend the horizon of applications
of Fukui functions in chemical reactivity theory.

5. Conclusions

Treating degenerate frontier orbitals on an equal footing, as
dictated by 0 K statistical mechanics and molecular group
theory,46 corrects symmetry breaking in frontier Fukui
functions and analytic Fukui functions for nondegenerate
states. A number of symmetry-corrected Fukui function plots
were evaluated to demonstrate the range of areas that can
benefit from this development. The analysis of the plots
presented here encourages the use of direct analysis of Fukui
functions instead of the condensed forms.

The results of this work complement our recent effort to
develop an efficient analytic method for reliable and repro-
ducible calculation of Fukui functions.

Negative regions of Fukui functions appear in most graphs
and can be rationalized on the basis of charge compensation.
This is in agreement with previously published results.22,50,51
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Abstract: The magnetic anisotropy of the [Ni2(en)4Cl2]2+ (en ) ethylenediamine) complex has
been studied using wave function based computational schemes. The spin-orbit state interaction
methodology provides accurate ab initio energies and wave functions that are used to interpret
the anisotropy in bimetallic complexes. The extraction of the anisotropic spin Hamiltonian is
performed using the effective Hamiltonian theory. This procedure which has successfully been
applied to mononuclear complexes enables one to solve the weak exchange limit. It is shown
that the standard coupled spin Hamiltonian only describes a part of the anisotropy of the molecule.
Important higher order terms such as the biquadratic anisotropic exchange should be included
in the model for an appropriate description of the anisotropy.

1. Introduction

The discovery of the unusual magnetic relaxation properties
of the Mn12-acetate cluster1 triggered important research
activity to find other molecule-based materials with similar
magnetic properties. The interaction between different
research areas in physics and chemistry proved to be a fruitful
strategy in the design of new polynuclear species and the
understanding of its peculiar magnetic properties.2-7

The basic requirements for systems to behave as single-
molecule magnets (SMMs) are a high spin ground state of
spin moment S and a sizable axial anisotropy characterized
by an easy axis of magnetization and hence a negative zero-
field splitting (ZFS) parameter D. These two factors lead to
an energy barrier of |D| ·S2 between the two states of opposite

magnetization (+Ms and -Ms). The presence of in-plane
anisotropy leads to quantum tunneling effects which, on one
hand, will speed the magnetization relaxation but, on the
other hand, also introduce the possibility to study funda-
mental quantum phenomena such as coherence and interfer-
ence effects. A detailed control over the anisotropy param-
eters would certainly be helpful in the development of new
materials with higher energy barrier and higher blocking
temperatures. Molecules with high nuclearities and/or high
spin moments have been synthesized through an at least
partially rational design.8-11 Information about the anisotropy
parameters D and E can be obtained from different experi-
mental techniques, among which electron paramagnetic
resonance (EPR) is particularly relevant.12,13

Theory also plays an important role in the description of
the properties of SMMs. In the first place, theory provides
important feedback to experiment by the interpretation of
experimental data using model Hamiltonians.14-18 Basically,
there are two approaches to describe the magnetic phenomena
in polynuclear systems: (1) the coupled spin Hamiltonian19
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and (2) the giant spin Hamiltonian.12 In the first model, the
anisotropy of the molecule is obtained as resulting from the
local anisotropies of the metal ions and the anisotropies of
their interactions. In the giant spin approach, this information
is lost and only the total spin of the ground state of the
molecule is considered.

A second, more computational aspect of theory is the
ability to derive magnetostructural correlations. This has a
long-standing history in isotropically coupled magnetic
centers, but recently the field has been extended to anisotropic
spin moments.20,21 Many of the computational studies of
magnetic anisotropy are based on density functional
theory.20-26 The anisotropy is accounted for by a perturba-
tional estimate of the effect of spin-orbit coupling on the
lowest spin-free states.23,24 Alternatively, a computational
approach based on the N-electron wave function can be
applied to study anisotropic effects in molecular magnetic
systems, where the anisotropy can be addressed by perturba-
tion theory27 or variationally.28-33

Here, we present the ab initio description of the magnetic
anisotropy in a bimetallic complex as a first step toward the
theoretical study of anisotropy in larger, more interesting
systems. The full ab initio description of the Mn12-acetate
complex is out of reach, but important information may be
derived from bimetallic fragments that eventually can be
extrapolated to polynuclear systems. The objective of our
study is to validate and extract the multispin Hamiltonian to
describe magnetic anisotropy, in particular in the weak
exchange limit, i.e., for a weak isotropic exchange between
the magnetic ions. For this purpose, a newly proposed
procedure34 based on the effective Hamiltonian theory is used
to determine all the matrix elements of the effective
Hamiltonian derived from the ab initio energies and wave
functions and to consecutively extract all the spin operators
that must be incorporated in the model Hamiltonian to
reproduce at best the ab initio results. This methodology is
applied to the [Ni2(en)4Cl2]2+ complex, shown in Figure 1.

Recently, high-field EPR data were published on this
bimetallic Ni2+ complex.35 These data were interpreted in
terms of the coupled spin model, and values were given for
the isotropic and axial anisotropic exchange interactions, in
addition to the single-ion axial anisotropy parameter. The

relatively small number of atoms makes this complex the
ideal candidate for a detailed ab initio exploration of the
electronic structure including spin-orbit interactions.

The paper is divided in three major parts. The first part
describes the computational strategy that we apply to obtain
the ab initio energies and wave functions of the lowest
electronic states including spin-orbit coupling (see the
following section). In the second part of the paper, we extract
the parameters of the standard coupled spin Hamiltonian
including both axial and rhombic anisotropy (see section 3).
Finally, the validity and physical content of the coupled spin
Hamiltonian are analyzed (see section 4).

2. Ab Initio Treatment of [Ni2(en)4Cl2]2+

Spin-orbit effects are accounted for variationally by the
spin-orbit state interaction (SO-SI) method introduced by
Malmqvist and co-workers28,29 and implemented in Molcas
7.36 In this method, a spin-orbit interaction matrix is
constructed using the CASSCF N-electron wave functions
of the ground state and a collection of excited states as basis
functions. Thus, the SO-SI scheme requires not only an
accurate description of the ground state but also of the lowest
lying excited states. Actually, in order to introduce dynamic
correlation, the CASSCF energies on the diagonal elements
of the spin-orbit state interacting matrix are replaced by
energies obtained at a high level of correlation such as
CASPT2 or Difference Dedicated Configuration Interaction
(DDCI). This procedure presents several degrees of freedom
which were previously studied in monometallic complexes34

and provides accurate anisotropic parameters.
Difference Dedicated Configuration Interaction (DDCI) is

one of the most accurate methods to determine relative
energies of electronic states with important multiconfigura-
tional character. DDCI involves a two-step procedure
consisting of treating the nondynamical electron correlation
effects in a small reference space, and subsequently includes
dynamical correlation by CI calculations. The CI space is
spanned by all single and double electron replacements with
respect to the reference wave function except for the
excitations that promote two electrons from the inactive
orbitals into the virtual ones.37 Although DDCI has been
applied mainly to the calculation of energy differences
between states with a common electronic configuration (i.e.,
the energy differences involved in magnetic coupling
problems),38-47 the method has also been successful in
spectroscopic problems.48-50 The bottleneck of the method
is the size of the CI space, which is determined to a large
extent by the size of the reference space. For the full
computational characterization of the ground and first excited
states of the Ni-dimer, it is necessary to construct a reference
space that contains the 10 Ni-3d orbitals and the 16 electrons
occupying these orbitals. This reference space leads to
intractable CI spaces even when applying the DDCI selection
rules.

Alternatively, dynamical electron correlation effects can
be estimated perturbatively. The CASPT2 implementation
of multiconfigurational second-order perturbation theory51

may rival in precision with DDCI but is applicable to larger
systems. The method has, however, a major drawback.

Figure 1. Ball and stick representation of [Ni2(en)4Cl2]2+.
Hydrogen atoms are omitted for clarity. The magnetic axes
are shown. The angle between the magnetic z axis and the
normal of the Ni-(Cl2)-Ni plane is 12°.
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Recently, it has been shown that CASPT2 cannot be applied
to estimate magnetic coupling strengths for weakly coupled
transition metals in bimetallic complexes.52 Therefore, we
adopted a two-step strategy to determine the spectrum of
the Ni-dimer to take profit of the advantages of both methods.
The relative energies of the lowest singlet, triplet, and quintet
states, which arise from the magnetic coupling of the S ) 1
spin moments on the Ni2+ ions, are calculated with DDCI,
and the rest of the spectrum is calculated with CASPT2.
Indeed, while a high precision is needed for these lowest
states from which the spin Hamiltonian will be extracted,
the CASPT2 precision is sufficient on the other excited
states.34 However, in order to ensure that the numerical errors
have no consequences on the further qualitative conclusions,
the results obtained using the CASSCF energies will be given
for comparison.

2.1. Determination of the Isotropic J. The most common
definition of the Heisenberg Hamiltonian in the field of
magnetic anisotropy related to SMM is Ĥ ) +JŜi · Ŝj,
implying that J > 0 parametrizes antiferromagnetic coupling
and J < 0 describes the ferromagnetic situation. The
symmetry point group of [Ni2(en)4Cl2]2+ is Ci. This low
symmetry makes the application of DDCI cumbersome. A
straightforward procedure to reduce the computational cost
of the DDCI calculation is to freeze the molecular orbitals
(both occupied and virtual) that are less important for the
energy difference between singlet, triplet, and quintet. A
selection criterion based on orbital energies does not lead to
a rapid convergence of the calculated J-values with the size
of the MO space. A much better way to order the orbitals
by increasing importance is obtained after the unitary
transformation of the natural orbitals to so-called dedicated
orbitals.53 These orbitals are obtained by the diagonalization
of the difference density matrix Fdiff. For [Ni2(en)4Cl2]2+, the
magnetic coupling involves three states, and the difference
density matrix can be defined in several ways, which give
practically the same results. Here we have chosen Fdiff )
(FQ - FT) + (FQ - FS), where F is a density matrix and
indexes Q, T, S refer to the low-lying quintet, triplet, and
singlet spin-orbit free states, respectively. This reduction
makes possible the DDCI calculation of the complex in the

unsymmetrized, experimental geometry. Figure 2 shows how
J varies with the size of the CI space which depends on the
number of occupied and virtual MOs considered in the
generation of the CI space. For severe truncations, we
observe large oscillations, but the magnetic coupling J
converges rapidly to a value around -6 cm-1. One may
notice that the CASSCF value is -2.2 cm-1. Since the angle

(where L is a Cl- ion) is close to 90°, the delocal-
ization between the Ni ions is expected to be weak between
the dx2-y2 orbitals, and weak as well between the dz2 orbitals
due to their small overlap. As a consequence, either a weakly
antiferromagnetic or a ferromagnetic value of J was expected.
The enhancement of ferromagnetism with electron correlation
shows that the spin polarization favors the highest spin states
in this system.

A second strategy to reduce the length of the CI expansion
is to symmetrize the molecule and replace the ethylenedi-
amine external ligands by simpler model ligands. The
symmetrization to C2h symmetry does not imply large
displacements; especially, the angles and distances in the
central Ni2Cl2 unit remain practically unchanged. Further-
more, the effect of the external ligands on the magnetic
coupling parameter has been proven to be weak as long as
the nature of the atom coordinating the metal remains the
same.54 Results of the iterative DDCI procedure on this
[Ni2Cl2(NH3)8]2+ model complex are reflected in Table 1.
This process optimizes at each iteration a new set of MOs
by diagonalizing the average density matrix Favg ) FQ + FT

+ FS. We adopted this strategy to make the results indepen-
dent of the starting orbital set and to remove the largest part
of the basis set dependency.55 To check the importance of

Figure 2. Magnetic coupling J (in cm-1) as a function of the percentage of the space on which is performed the DDCI calculation.

Table 1. IDDCI Magnetic Coupling Parameter (in cm-1) for
[Ni2(NH3)8Cl2]2+

method iteration J(Q-T) J(T-S)

IDDCI 1 -2.00 -2.13
2 -3.30 -3.37
3 -4.44 -4.49
4 -5.22 -5.29
5 -5.70 -5.77
6 -5.99 -6.06
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the isotropic deviations from the expected Heisenberg
splitting of the lowest energy levels, we calculated J from
the energy difference of the singlet and triplet state (J ) ET

- ES) and from the triplet-quintet energy difference [(J )
(1)/(2)(EQ - ET)].

The results in Table 1 show that the DDCI energies follow
almost perfectly the expected energy spacings (Heisenberg
behavior), at difference with other Ni-dimers studied previ-
ously, which showed deviations up to 5% with respect to
the Landé spacing.56 The DDCI result converges in six
iterations with respect to the shape of the natural orbitals to
a J-value that is in perfect agreement with the result obtained
with dedicated orbitals in the real complex.

2.2. Calculation of the Excited States. The singlet,
triplet, and quintet states considered so far do not interact
directly through spin-orbit coupling. The degeneracy of the
MS sublevels of these states is only lifted through the
interaction with other excited states presenting a different
spatial configuration. Previous studies on mononuclear Ni(II)
complexes showed that the major effect on the spin-orbit
splitting comes from the interaction between the ground state
(3A2g in the notation of the octahedral symmetry group) and
the first excited triplet states (3T2g), which involves a single
excitation of an electron from the t2g to the eg orbitals.12,34

The next excited triplet state (3T1g) lies higher in energy and
has a smaller interaction with the ground state because of
the strong bielectronic excited character of this state.
Extrapolating these findings to the Ni(II) dimer, we calculated
the energies and wave functions of all 18 states that arise
from the local 3A2g f

3T2g excitations.
State-averaged CASSCF calculations were performed

for states with the same spin and spatial symmetry. The
active space contains the 10 Ni-3d orbitals and 16
electrons, and dynamical correlation effects are estimated
with CASPT2 for all electrons except those occupying
the deep-core orbitals (1s, 2s, 2p, and 3s for Ni; 1s, 2s,
and 2p for Cl; and 1s for C and N). The resulting spectrum
shows three groups of six states at 0.92, 1.05, and ∼1.18
eV. Each group contains the singlet, triplet, or quintet spin
coupled gerade and ungerade combination of the local 3A2g

f 3T2g excitation on the left or right Ni(II) ion. The states
arising from the next local triplet excitation start at 1.76
eV above the ground state and have not been considered
in the determination of the spin-orbit resolved low-energy
spectrum.

2.3. Effect of Spin-Orbit Coupling. Before analyzing
the SO-SI results, it is preferable to make a proper choice

of the coordinate frame. Although the energies are of course
independent of the axes, the expression of the wave function
of the spin-orbit states is strongly influenced by this choice
and the interpretation of the results may be severely hindered
if the principal magnetic axis does not coincide with the
z-axis of the coordinate frame. Following the procedure
described in the study of the monometallic Ni(II) com-
plexes,34 we extracted the magnetic axes of the molecule.
In both monometallic and polymetallic complexes the tensor
which is diagonalized (in order to extract the magnetic axes
frame) only describes the ground state. In the considered
case, the tensor has therefore been extracted using a giant
spin Hamiltonian (S.D.S) describing only the quintet ground
state. The proper magnetic axes frame is shown in Figure 1.

Spin-orbit coupling splits the lowest singlet, triplet,
and quintet states in nine states. The weights of the |S, MS〉
functions on which will be built the model anisotropic
spin Hamiltonian in the wave functions of these states
are given in Table 2. It can be noticed that the sum of
these weights is close to 1 in each state, showing that
this model space is appropriate; i.e., it contains the
essential physics of the problem. The spectrum width
(approximatively 30 cm-1) is significantly increased by
the spin-orbit coupling (spin-orbit free width ) 3|J| )
18 cm-1). At the CASSCF level |J| is much smaller. The
width of the spin-orbit spectrum is 19 cm-1 which is still
larger than the CASSCF spin-orbit free spectrum (3|J|
) 7 cm-1). This is a first indication of the importance of
spin-orbit interactions and so of the magnetic anisotropy
of this molecule. The axes frame almost coincides with
the magnetic anisotropy axes frame, since the calculated
wave functions show really small mixing of determinants
that can interact due to the mismatch of the coordinate
frame and the magnetic axes. Furthermore, we observe
that the singlet and quintet strongly mix leading to a strong
stabilization of the state dominated by the |2, 0〉 determi-
nant and that the energetic ordering of the states is not
strictly the one that is expected in the strong exchange
limit (J . D, E); the |1, 0〉 has a lower energy than the
|2, -1〉 + |2, 1〉 state. One should notice that the molecule
shows not only axial anisotropy but also important
rhombic anisotropy. The states that are dominated by the
|S, MS〉 and |S, -MS〉 determinants are not degenerate as
would be expected in the case of pure axial anisotropy.

Table 2. SO-SI Energies (cm-1) and Weight of the Different |S, MS〉 Functions in the Low-Lying Spin Free Quintet, Triplet,
and Singlet States Calculated in the CASSCF Spacea

state energy |2, -2〉 |2, -1〉 |2, 0〉 |2, 1〉 |2, 2〉 |1, -1〉 |1, 0〉 |1, 1〉 |0, 0〉

Ψ1 0.000 0.41 0.00 0.09 0.00 0.41 0.00 0.00 0.00 0.06
Ψ2 1.668 0.49 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00
Ψ3 8.752 0.00 0.49 0.00 0.49 0.00 0.00 0.00 0.00 0.00
Ψ4 10.090 0.07 0.00 0.64 0.00 0.07 0.00 0.00 0.00 0.18
Ψ5 12.014 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00
Ψ6 12.729 0.00 0.49 0.00 0.49 0.00 0.00 0.00 0.00 0.00
Ψ7 19.719 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.49 0.00
Ψ8 23.908 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.49 0.00
Ψ9 29.498 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.74

a Ψ1, Ψ6, and Ψ7 contain the |S, -MS〉 + |S, MS〉 combination. Ψ2, Ψ3, and Ψ8 contain the |S, -MS〉 - |S, MS〉 combination.
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3. Parameter Extraction of the Standard
Model Hamiltonian

The interpretation of the low-energy physics of bimetallic
complexes with magnetic anisotropy is usually based on the
following phenomenological model Hamiltonian:57,58

Ĥ ) JŜa · Ŝb + ŜaD
)

aŜa + ŜbD
)

bŜb + ŜaD
)

abŜb + djabŜa × Ŝb

(1)

The first term describes the isotropic Heisenberg magnetic
coupling of the local spin moments. The second and third
terms account for the local single-ion anisotropies. The fourth
term introduces a symmetric anisotropic exchange while the
last term corresponds to the antisymmetric exchange. Since
the studied complex is centrosymmetric, the antisymmetric
exchange is strictly zero59,60 (the local magnetic axes are
colinear) and the Da and Db tensors are equal. Let us call Da

and Ea, respectively, the axial and rhombic anisotropy
parameters of the local anisotropy tensors and Dab and Eab

respectively, the axial and rhombic parameters of the
symmetric anisotropic exchange tensors. As it will be shown
later, the tensors Da, Db, and Dab are diagonal in the same
coordinate frame.

Several extractions can be performed from a given
spectrum. The next paragraphs will compare different
extractions and discuss their ability to reproduce the calcu-
lated spectrum.

First, we parametrize the model Hamiltonian in the
strong exchange limit using the expressions shown in
Figure 3,58,61 as it is usually done. One should however
note that the ab initio results show a significant spin
mixing between the singlet and the quintet components
which is not accounted for by the strong exchange
extraction. To get reliable parameters, the extraction is
performed using only those states which are not affected
by the spin mixing. Indeed, an extraction performed by

optimizing the parameters in order to reproduce at best
all the states of the spectrum would lead to nonphysically
grounded parameters. Taking into account only axial
anisotropies, Da ) -9.43 cm-1 and Dab ) 0.36 cm-1.
These parameters lead to the spectrum shown in the first
column of Figure 4. To estimate the quality of the model
spectrum, a mean percentage of error δ is defined as
follows:

δ )
∑

i

N

|Ei
abinitio - Ei

model|

N × ∆Eabinitio
× 100 (2)

where N is the number of calulated roots, ∆Eabinitio ) 29.498
cm-1 is the ab initio spectrum width, and Ei

abinitio and Ei
model

are, respectively, the ab initio and model energies.
For the strong exchange limit with axial terms only, δ is

as large as 7.2%. Adding rhombic anisotropy improves the

Figure 4. Comparison of the ab initio spectrum and model spectra obtained using different parametrizations.

Figure 3. Energy levels of the quintet, triplet, and singlet
states under the influence of spin-orbit coupling in the strong
exchange limit: D1 ) -Da + Dab; 3D2 ) Da + Dab; E1 ) -Ea

+ Eab; 3E2 ) Ea + Eab.
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model spectrum (second column, δ ) 3.1%) and results in
Ea ) -2.04 cm-1 and Eab ) 0.03 cm-1. The three states
|0, 0〉, |2, 0〉, and |2, 2〉 + |2, - 2〉 which are strongly affected
by the spin mixing between the singlet and the quintet are
still poorly resolved by the model Hamiltonian in the strong
exchange limit. At the CASSCF level, the anisotropic
extracted parameters are of the same order of magnitude (Da

) -7.07 cm-1, Dab ) 0.30 cm-1, Ea ) 0.96 cm-1, and Eab

) -0.39 cm-1) while J ) -2.60 cm-1 is underestimated.

To further improve the representation of the ab initio
spectrum by the model Hamiltanian, we follow the strategy
outlined by Boča for the weak exchange limit, but never put
to practice to the best of our knowledge. First, we determine
analytically all model Hamiltonian matrix elements in the
basis of the uncoupled |MSa

, MSb
〉 determinants (see Table

3). This 9 × 9 matrix is then transformed to the coupled
|S, MS〉 basis with the appropriate Clebsch-Gordan coef-
ficients, and the five parameters of the model Hamiltonian
can be determined by fitting the expressions of the eigen-
values of this Hamiltonian to the ab initio energies listed in
Table 2. The Hamiltonian matrix in the coupled basis (given
in Table 4) can be transformed into 2 smaller matrices: a 3
× 3 matrix spanned by the |2, 2〉 + |2, -2〉, |2, 0〉, and |0, 0〉
functions and a 6 × 6 matrix within the S ) 1 subspace, the
|2, (1〉 determinants and the |2, 2〉 - |2, -2〉 combination.
Using the eigenenergies of Ψ2, 3, 5-8, the parameters of the
model Hamiltonian can be extracted from the 6 × 6
submatrix of the complete model Hamiltonian. Since the
eigenstates of the 6 × 6 submatrix are not affected by the
spin mixing, the parameters are practically identical to those
extracted from the strong exchange limit. Nevertheless, in
the weak exchange approach the three states affected by the
spin mixing (see Figure 4, columns 4 and 5) are well
reproduced and the overall error is 1.7% when rhombic
anisotropy is neglected and only 0.07% when axial and
rhombic terms are included. It is interesting to note that the
lift of degeneracy between the |2, 2〉 and |2, -2〉 components
is only correctly reproduced in the last extraction. This
quantity (which determines the tunnel splitting) is crucial to
understand the magnetization relaxation of SMMs at low
temperature.

We also constructed the spectrum from the parameters that
were extracted from the high-field EPR measurements
reported by Herchel and co-workers.35 Again, we only
included axial terms as no estimates for Ea and Eab were
given in the paper. Using the parameters extracted from
experiment (J ) -9.66 cm-1, Da ) -4.78 cm-1, and Dab )
-0.64 cm-1), we obtain a spectrum which exhibits a much
smaller spin-mixing than the ab initio spectrum.

In summary, the largest differences between the ab initio
spectrum and the spectrum extracted from experimental data
is the degeneracy of the |S, (MS〉 states in the latter one due
to the absence of extracted rhombic anisotropy and the largest
spin mixing in the ab initio spectrum.

4. Validity of the Model Hamiltonian

4.1. Transferability of the Single-Ion Anisotropy. Al-
though the model Hamiltonian of eq 1 perfectly fits the ab T
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initio spectrum, the single-ion anisotropy parameters Da and
Ea are not the same as those obtained in the monomer
fragment (see below). The local Da tensor is changed by the
anisotropy of neighboring metallic centers in another way
than that captured by the molecular anisotropy parameter
Dab.

To calculate the single ion anisotropy of the monomer,
we constructed several models. The most crude representa-
tion is removing one side of the bimetallic complex to obtain
the Ni(en)2Cl2 monomer. A refined model is obtained by
replacing one of the Ni ions with an ab initio model
potential62 or a closed-shell (and hence isotropic) Zn2+ion.
The atoms of the two remaining ethylenediamine groups are
replaced with LoProp atomic charges63 to reproduce the
electrostatic environment of the real complex. The anisotropy
parameters listed in Table 5 are obtained from CAS(8,5)SCF
calculations using CASPT2 energies and a SO-SI space that
contains the lowest four triplet states of the monomer. These
are the computational parameters used in the dimer translated
to the monomer case.

The two more refined models show identical results,
and we observe that the single-ion anisotropy calculated
in the monomer is between 30% and 50% smaller than
the Da parameter of the dimer. Two hypotheses may be
formulated: (1) Delocalization effects between the metal
ions are not strictly identical in the embedded monomer
(no delocalization), the dimer involving a Zn2+ ion (small
delocalization between the Ni 2+ and the closed shell
Zn2+), and the real dimer (more effective delocalization
between the two Ni2+ ions). As a consequence, the

resulting magnetic orbitals can be slightly different in the
several calculations as well as the spin-orbit coupling
involving these orbitals. (2) This could indicate a problem
with the transferability of the single-ion anisotropy from
monomers to polymeric systems, and the Da parameter
would not strictly parametrize the isolated single-ion
anisotropy. In other words, the energy separations of the
spin-orbit states would be partly caused by interactions
that are present in the all electron Hamiltonian (i.e., in
the ab initio results) but not included in the model
Hamiltonian (eq 1).

4.2. Comparison with the Effective Hamiltonian. A
rigorous check on the validity of the model Hamiltonian can
be obtained by comparing it with an effective Hamil-
tonian spanned in the same basis. The effective Hamil-
tonian theory64-68 is the bridge between the accurate ab initio
results, which are difficult to interpret, and the easily
understandable model Hamiltonians, which are in turn
difficult to verify. By projection techniques, the ab initio
information is reproduced in a small model space that
hopefully contains all the essential physics. In a recent work
on monometallic Ni(II) and 4-fold coordinated Co(II)
complexes, we showed the validity of the standard Hamil-
tonian for zero-field splitting (Ĥ ) Ŝ ·Dc · Ŝ) by comparing
the model Hamiltonian to the corresponding effective Hamil-
tonian based on ab initio results.34 Here, we follow the same
procedure to check whether the model Hamiltonian of eq 1
contains all the important interactions for the magnetic
anisotropy in bimetallic complexes.

In general, the effective Hamiltonian can be written
as

Ĥeff ) ∑
i

|Ψ̃i〉Ei〈Ψ̃i| (3)

where Ψ̃i are the orthogonalized projections on the model
space of the exact (in practice, the ab initio) wave functions
Ψi and Ei the energy eigenvalues. To ensure the Hermitic
character of the effective Hamiltonian, we have applied an
S-1/2 orthonormalization of the projected vectors as proposed

Table 4. Matrix Elements of the Model Hamiltonian for Bimetallic Ni(II) Complexes with Magnetic Anisotropy in the Coupled
|S, MS〉 Basis

|S, MS〉 |2, -2〉 |2, -1〉 |2, 0〉 |2, 1〉 |2, 2〉

〈2, -2| J + (2/3)(Da + Dab) 0 [�(2/3)](Ea + Eab) 0 0
〈2, -1| 0 J - (1/3)(Da + Dab) 0 Ea + Eab 0
〈2, 0| [�(2/3)](Ea + Eab) 0 J - (2/3)(Da + Dab) 0 [�(2/3)](Ea + Eab)
〈2, 1| 0 Ea + Eab 0 J - (1/3)(Da + Dab) 0
〈2, 2| 0 0 [�(2/3)](Ea + Eab) 0 J + (2/3)(Da + Dab)
〈1, -1| 0 0 0 0 0
|1, 0〉 0 0 0 0 0
|1, 1〉 0 0 0 0 0
|0, 0〉 [2/(�3)](Ea - Eab) 0 [(�2)/3](2Da - Dab) 0 [2/(�3)](Ea - Eab)

|1, -1〉 |1, 0〉 |1, 1〉 |0, 0〉
|2, -2〉 0 0 0 [2/(�3)](Ea - Eab)
|2, -1〉 0 0 0 0
|2, 0〉 0 0 0 [(�2)/3](2Da - Dab)
|2, 1〉 0 0 0 0
|2, 2〉 0 0 0 [2/(�3)](Ea - Eab)
|1, -1〉 -J - (1/3)(Da - Dab) 0 - Ea - Eab 0
|1, 0〉 0 -J + (2/3)(Da - Dab) 0 0
|1, 1〉 - Ea - Eab 0 -J - (1/3)(Da - Dab) 0
|0, 0〉 0 0 0 - 2J

Table 5. Single-Ion Anisotropy Parameters (cm-1)
Obtained for Different Representations of the Monomer
Fragmenta

Ni(en)2Cl2 +AIMP +Zn2+ [Ni2(en)4Cl2]2+

Da -4.82 -6.11 -6.13 -9.43
Ea 1.32 1.33 1.34 2.04

a For convenience, the values of the complete bimetallic
complex have been added in the last column.
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by des Cloizeaux.66 This procedure guarantees that the
eigenvalues of the effective Hamiltonian are the same as for
the all-electron Hamiltonian and that the corresponding
eigenfunctions are the projections Ψ̃i of the eigenfunctions
of the all-electron Hamiltonian onto the model space such
that:

Ĥeff|Ψ̃i〉 ) Ei|Ψ̃i〉 (4)

In any arbitrary frame, the off-diagonal elements of the
Da, Db, and Dab tensors are nonzero. The corresponding
analytical expression of the coupled-spin Hamiltonian matrix
is given in the Supporting Information. The values of the
matrix elements of the effective Hamiltonian (given in Table
6) show that the local anisotropy axes coincide with the
magnetic axes of the molecule (determined from the giant
spin Hamiltonian). All matrix elements arising from off-
diagonal terms in the Da and Dab tensors are almost zero
between the components of the quintet state (for which the
axis frame has been extracted) and negligible between the
other states components (see Supporting Information). Since
the optimal orbital sets for the quintet, the triplet, and the
singlet spin-orbit free states are different, it is not math-
ematically possible to define a proper magnetic axes frame
shared by all these states. Nevertheless, the smallness of the
off-diagonal terms of all these tensors shows that a proper
magnetic axes frame can reasonably be determined for the
study of the coupled-spin Hamiltonian and that these tensors
can be considered as being diagonal in this axes frame.

A closer inspection reveals important differences between
the model Hamiltonian matrix and the effective Hamiltonian
matrix. The most spectacular difference between the two
matrices concerns the 〈1, -1|Ĥ|-1, 1〉 matrix element. These
determinants do not interact through the model Hamiltonian
(see also Table 3), but the effective Hamiltonian shows a
large matrix element equal to 8.6 cm-1. Furthermore,
〈-1, 0|Ĥeff|0, -1〉 * 〈-1, 1|Ĥeff|0, 0〉, while the model
Hamiltonian predicts equal interactions for these determi-
nants. The same occurs for the matrix elements 〈-1, -1|Ĥ|1,
-1〉 and 〈-1, 0|Ĥ|1, 0〉, and the matrix elements 〈-1,
-1|Ĥ|0, 0〉 and 〈-1, 0|Ĥ|0, 1〉.

In order to check that these unexpected results are not due
to an artifact of CASPT2, the effective Hamiltonian has been
extracted from the CASSCF spectrum and wave functions
(see Supporting Information). The form of the effective
Hamiltonian is similar, exhibiting nonzero elements and
either small or large elements at the same place in the matrix.
In this case the 〈1, -1|Ĥ| -1, 1〉 matrix element is equal to
6.4 cm-1 and the observed deviations between the model
and the effective Hamiltonians are similar.

To account for the largest interaction that emerges from
the effective Hamiltonian, it is necessary to include fourth-
order interactions in the model Hamiltonian. The |-1, 1〉
determinant is coupled to |1, -1〉 by the Ŝa

+Ŝa
+Ŝb

-Ŝb
- operator.

A new model Hamiltonian including such fourth-order terms
can be defined as:

Ĥ ) JŜa · Ŝb + ŜaD
)

aŜa + ŜbD
)

bŜb + ŜaD
)

abŜb +

Sba X Sba · Daabb · Sbb X Sbb (5) T
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where Daabb is a fourth-order tensor, a 9 × 9 matrix, where
a, b ) x, y, z. The first two indices refer to site a, the other
two to site b.

This new model Hamiltonian defined by the sum of the
isotropic exchange, local and intersite anisotropy, and a term
that describes the biquadratic anisotropic exchange signifi-
cantly improves the comparison with the effective Hamil-
tonian. The 〈-1, 1|Heff|1, -1〉 matrix elements appear in the
new model Hamiltonian as the (1/4)(Dxxxx + Dyyyy) + Dxyxy

- (1/2)Dxxyy fourth-order in-plane interaction. This is,
however, not the only improvement. The fourth-order term
also contains operators such as Ŝa

+Ŝa
+Ŝb

zŜb
z and Ŝa

+Ŝa
z(Ŝb

+Ŝb
z +

Ŝb
zŜb

+), which cause differential contributions for the other
matrix elements that were found to be different in the
effective Hamiltonian and equal in the standard model
Hamiltonian. The complete matrix representation of the new
model Hamiltonian perfectly reproduces the symmetry of the
numerical effective Hamiltonian, and its expression in the
magnetic axes frame can be found in the Supporting
Information. At the CASSCF level the model and effective
Hamiltonians are also in perfect agreement.

This new definition of the model Hamiltonian for magnetic
anisotropy involves the parametrization of at least 14
interactions, namely the isotropic exchange coupling (J), the
local anisotropy parameters Da and Ea, the anisotropic
exchange parameters Dab and Eab, and nine parameters that
define the fourth-order tensor. Actually, the 81 elements
reduce to just 15 nonzero elements in an appropriate
coordinate frame and finally to nine differents parameters
due to the symmetry of the system. Nevertheless, there are
only nine states in the model space, and there is no direct
way to derive analytical expressions for the parameters, not
even using all the information in the effective Hamiltonian.
In any case, it is not very convenient to work with so many
parameters.

The above presented analysis leads to the conclusion
that fourth-order anisotropic interactions are non-negligible
in Ni(II) polymetallic systems, and that the rigorous
extraction of the magnetic anisotropy parameters is not
possible without introducing any further approximation.
Although the definition of the spin Hamiltonian as a sum
of isotropic, second-order anisotropic, and fourth-order
anisotropic terms leads to a better understanding of the
physics, it does not provide the tools to describe the
phenomenon in a practical manner due to the large number
of parameters.

5. Conclusions

The extraction of the magnetic anisotropy parameters in
bimetallic complexes has been performed within the coupled
Hamiltonian formalism. The local anisotropic spin moments
are coupled by isotropic and anisotropic exchange interac-
tions to describe the total magnetic behavior of the molecule.
The most important conclusions obtained from both CASSCF
and CASPT2 calculations can be summarized in the follow-
ing paragraphs.

The standard coupled Hamiltonian gives an excellent fit
of the ab initio spectrum. However, the comparison of the
matrix representation of this Hamiltonian and the effective

Hamiltonian constructed from the calculated energies and
wave functions shows important discrepancies. Therefore,
it is concluded that while the effective parameters of the
standard Hamiltonian enable one to reproduce the spectrum,
this Hamiltonian does not contain all the operators required
to describe the physics of the anisotropic exchange.

A rigorous description of the magnetic anisotropy in
[Ni2(en)4Cl2]2+ requires the use of fourth-order interactions.
Test calculations on a bimetallic Co2+ complex show that
sixth-order interactions appear in the effective Hamiltonian.
Hence, the spin Hamiltonian should include spin operators
up to order 2Smax, in addition to the standard operators for
local anisotropy, and isotropic and anisotropic exchange
interactions. This Hamiltonian enables one to reproduce the
matrix of the effective Hamiltonian extracted from the ab
initio calculations.

In the giant spin approximation, the molecule is treated
as an effective monometallic species with one (giant) spin
for which the anisotropic properties can be determined. One
important perspective will be the extraction of the giant spin
Hamiltonian and the study of the effect of the coupled-spin
fourth-order interactions in this formalism. Analytical rela-
tions between the multispin and giant spin Hamiltonian have
to be found; this is the subject of ongoing research.
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Abstract: The strengths of noncovalent interactions are generally very sensitive to a number of geometric
parameters. Among the most important of these parameters is the separation between the interacting
moieties (in the case of an intermolecular interaction, this would be the intermolecular separation). Most
works seeking to characterize the properties of intermolecular interactions are mainly concerned with
binding energies obtained at the potential energy minimum (as determined at some particular level of
theory). In this work, in order to extend our understanding of these types of noncovalent interactions, we
investigate the distance dependence of several types of intermolecular interactions, these are hydrogen
bonds, stacking interactions, dispersion interactions, and X-H · · ·π interactions. There are several methods
that have traditionally been used to treat noncovalent interactions as well as many new methods that
have emerged within the past three or four years. Here we obtain reference data using estimated CCSD(T)
values at the complete basis set limit (using the CBS(T) method); potential energy curves are also produced
using several other methods thought to be accurate for intermolecular interactions, these are MP2/cc-
pVTZ, MP2/aug-cc-pVDZ, MP2/6-31G*(0.25), SCS(MI)-MP2/cc-pVTZ, estimated MP2.5/CBS, DFT-SAPT/
aug-cc-pVTZ, DFT/M06-2X/6-311+G(2df,2p), and DFT-D/TPSS/6-311++G(3df,3pd). The basis set
superposition error is systematically considered throughout the study. It is found that the MP2.5 and DFT-
SAPT methods, which are both quite computationally intensive, produce potential energy curves that are
in very good agreement to those of the reference method. Among the MP2 techniques, which can be
said to be of medium computational expense, the best results are obtained with MP2/cc-pVTZ and
SCS(MI)-MP2/cc-pVTZ. DFT-D/TPSS/6-311++G(3df,3pd) is the DFT-based method that can be said to
give the most well-balanced description of intermolecular interactions.

Introduction

The structure, stability, and dynamic properties of biomo-
lecularsystems,suchasproteins,DNA/RNA,andprotein-ligand

complexes, are influenced by several physical factors, the
most important of which are solvation effects1,2 and non-
covalent interactions.3–6 The mode of action of solvation
effects in stabilizing biomacromolecules is generally seen
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as being nonspecific in character, playing roles, for example,
in the aggregation of hydrophobic amino acids in the core
of globular proteins.4,6 The roles that noncovalent interactions
play in the structures and stabilities of biomacromolecules
can be quite different than those played by solvation effects
because of the presence of certain specific binding motifs
that commonly occur in proteins and DNA (as well as other
biomolecular structures), that lead to very stable interactions.
The formation of these strong interactions can have a large
impact on structure and, in the case of protein receptors that
interact with particular ligands, can determine whether or
not the receptor is activated.7–9 Among the most common
of these specific types of interactions are hydrogen-bonds
(H-bonds) and stacking and X-H · · ·π interactions (X is
usually O, N, S, or C). It should be noted that dispersion, or
van der Waals, interactions, which are generally fairly weak,
represent a class of noncovalent interaction that is geo-
metrically nonspecific, that is to say that they do not depend
heavily on the relative orientation of the monomers, such as
in the case of, for example, H-bonds. Although these types
of interactions are weak, they are very important in biomo-
lecular structure because of their pervasiveness throughout
the structures of proteins, DNA and other biostructures. We
will note here that, when we refer to dispersion interactions,
we are describing the types of weak interactions, such as
those between aliphatic molecules, whose attractive nature
is largely attributable to London dispersion forces. In general,
all types of noncovalent interactions contain some degree
of a dispersion-type component. Likewise, even interactions
between aliphatic molecules contain some contribution from
electrostatic forces.

Noncovalent interactions are characterized by a very subtle
energetic scale (with respect to geometric parameters), a
property that is necessary for the fine-tuning and the diversity
of biochemical processes.10 As noted above, there are four
classes of noncovalent interactions that play the largest roles
in biomolecular structure, these are H-bonding and disper-
sion, stacking, and X-H · · ·π interactions. We will note here
that σ-hole bonding, which has been the subject of many
recent investigations, also plays important roles in biology
but, because it is fairly specialized and is not as ubiquitous
as the other noncovalent bonding classes, this type of
interaction will not be discussed here.11–14 Among the
interaction types, H-bonding is the best characterized and is
known to be chiefly attributable to electrostatic forces
(dipole-dipole interactions).10,15,16 Dispersion interactions,
as indicated by the name, are stabilized principally by
London dispersion (part of van der Waals) forces.10,15,16 Both
dispersion and electrostatic forces contribute to the stabiliza-
tion of stacked and X-H · · ·π structures, with the largest
energetic contribution for both these types of interactions
coming from dispersion. It should be noted that, because of
the enhanced electrostatic landscape of heterocyclic aromatic
groups, interactions involving these moieties tend to be more
attractive and to have larger electrostatic contributions than
those involving phenyl rings. This is especially important
when considering the extremely attractive stacking interac-
tions between the nucleobases contained in DNA and
RNA.10,17

The characterization of noncovalent interactions in bio-
molecules has been the subject of many experimental and
theoreticalinvestigationsin(atleast)thepasttwodecades.8–10,18–30

On the computational side, it has been possible for many
years to properly characterize H-bonding interactions because
these dipole-dipole dependent interactions can be described
relativelywellusingone-particlemethods,suchasHartree-Fock
(HF) and density functional theory (DFT). Dispersion,
stacking, and X-H · · ·π interactions are largely dependent
on dispersion forces, which can only be accurately described
by (computationally expensive) high-level theoretical meth-
ods, such as the coupled cluster theory (CC) method using
single, double, and perturbative triple excitations (i.e.,
CCSD(T))alongwithlargebasissets(at leastaug-cc-pVTZ).17,31

Because of the prohibitive cost of these types of calculations
for all but the smallest complexes, there has been relatively
little work done seeking to accurately characterize interac-
tions that are heavily based on London dispersion forces.
Over the past 15 years or so there have been many studies
describing dispersion, stacking, and X-H · · ·π interactions
using the second-order Møller-Plesset perturbation theory
method (MP2), a method that can be said to be of intermedi-
ate computational cost, with various basis sets.10,16,32 It has
been shown (for several different types of intermolecular
interactions) that the results obtained with the MP2 method
can be semiquantitative, with accuracies that are highly
dependent on the basis sets that are employed.32,33 Recently
it has become possible to compute binding energies for
molecular complexes with increasing accuracy by using
techniques that take advantage of the fact that the CCSD(T)
and MP2 binding energies exhibit very similar basis set
behavior.31,34 That is to say that the difference in binding
energy computed using, for example, the aug-cc-pVDZ and
aug-cc-pVTZ basis sets is roughly the same for both the MP2
and CCSD(T) methods. This basis set behavior allows one
to compute the MP2 binding energy using the largest possible
basis set (or extrapolate to the complete basis set limit (CBS))
and then add a CC correction term (∆CCSD(T)), corre-
sponding to the difference between the CCSD(T) and MP2
binding energies for a given (generally small or medium)
basis set. At present, this scheme represents the most accurate
technique for the determination of interaction energies for
systems that cannot be treated using the CCSD(T) method,
along with large basis sets. The use of this type of scheme
along with MP2 binding energies that have been extrapolated
to the complete basis set has been termed the CBS(T)
method. The accuracy of the method was recently confirmed
by performing the direct extrapolation of the CCSD(T)
energies determined with the aug-cc-pVDZ and aug-cc-pVTZ
basis sets.17,35

Most investigations concerned with the accurate charac-
terization of noncovalent interactions in biomacromolecules
have focused on obtaining accurate binding energies either
by using the potential energy minimum (as determined at
some lower level of theory) or the experimentally derived
complex structures (such as those obtained from X-ray crystal
structures). In this study, we investigate the types of
noncovalent interactions that are relevant in biomolecular
structure, focusing on the potential energy curves of these
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interactions along the most important geometrical axis (i.e.,
directly along the dissociation pathway), meaning that the
structure of a biomolecular cluster was optimized with respect
to one geometry coordinate. There are several reasons that
it is important to characterize not only minimum energy
structures but also potential energy curves for these interac-
tions. First, as noted above, noncovalent interactions are very
sensitive to geometric parameters, and their strengths can
often vary significantly with only a small geometric pertur-
bation. This sensitivity can have a tremendous influence on
the structures and the stabilities of proteins and nucleic acid
compounds (DNA/RNA) and may be a large factor in
determining whether or not a ligand (such as a hormone or
pharmaceutical compound) successfully binds to a protein
receptor. Formulating a deeper understanding of the behavior
of noncovalent interactions as a function of geometric
parameters can give us insights into the dynamics of
biomolecular systems, giving us information that could be
very valuable in the interpretation of vibrational (infrared)
spectra of peptides, proteins, and nucleic acid compounds.
Second, studying the potential energy curves for a variety
of noncovalent interaction types can aid in determining the
accuracy, in terms of converging to the geometric energy
minimum, that can be expected of lower level (less compu-
tationally expensive) methods. This last point is very
important because the structures obtained at these lower
levels are often used for high-level binding energy analyses
(as noted above) and because lower level theory is often used
to obtain theoretical infrared spectra, which can potentially
be useful in assigning peaks in experimentally obtained
spectra. Finally, and this point is particularly significant for
complex molecular systems, interactions at long ranges play
a key role in complexes of extended systems, where the
number of contacts at these distances grows extremely
quickly.

It will be noted here that there are many degrees of
freedom that must be considered in studying geometrical
relationships in noncovalently bound systems. The goal of
this work is to study potential energy curves along the
dissociation pathways of several complexes, this is the
coordinate that is generally considered to be the most
important in terms of complex formation and dissociation.
Further studies are underway in our laboratories to investigate
the full geometrical dependence of noncovalent interactions
on structures that have been fully gradient optimized at very
high levels of theory (including estimated CCSD(T)/CBS).36

As noted above, the MP2 method has long been the
method of choice for the computation of intermolecular
interactions, producing binding energies that are generally
semiquantitatively accurate at a reasonable computational
cost. It has been shown that for the S26 test set of complexes,
which contains H-bonded, dispersion-bound, and mixed
(contributions from both electrostatics and dispersion) in-
teractions, the MP2 method yields the best results when it
is paired with the medium-sized cc-pVTZ and aug-cc-pVDZ
basis sets (the S26 test set is related to the S22 test set
described below).32 The use of larger basis sets usually results
in overestimation of binding energies, with electronic ener-
gies for complexes being too high relative to those of the

monomers. Generally the MP2 method treats H-bonding
interactions fairly well but often greatly underestimates the
binding energies of cyclic H-bonds, such as those found in
nucleic acid base pairs. In terms of dispersion and stacking
interactions, the MP2 method generally tends to (sometimes
strongly) overestimate binding energies for these types of
complexes, this is especially true when larger basis sets are
used. It should be stressed that much of the success of the
MP2 method can be attributed to error compensation effects
stemming from the relative energies of a complex and from
its constituent monomers. As a result of this, MP2 binding
energies for intermolecular interactions do not generally
converge to the correct value (as determined with CCSD(T))
with increasing basis set size. For example, the aug-cc-pVDZ
basis set has been observed to obtain a more balanced
description of binding energies for the S26 set than that of
the aug-cc-pVTZ basis.

The use of smaller basis sets, such as those of the Pople-
type 6-31G* family, along with the MP2 method allow for
the treatment of larger systems and have been used with some
frequency in past years when using larger bases was not
possible. In some cases, these types of bases have been
shown to yield very good binding energies. One example of
a small basis set that has been extensively used for the
treatment of noncovalent interactions is 6-31G*(0.25), which
is a modified 6-31G* basis set for which the polarization
functions have been modified to be more diffuse (change in
exponential parameter from 0.80 to 0.25).37 This basis has
been shown to give reasonable results for binding energies
of molecular complexes and has performed especially well
for stacking interactions.32 The surprisingly good agreement
of MP2/6-31G*(0.25) and CCSD(T)/CBS binding energies
for stacked systems has recently been shown.38

The past several years have seen the development of many
new computational techniques that promise to provide well
balanced and accurate descriptions of a wide variety of
different types of noncovalent interactions at much lower
computational costs than the CCSD(T), or even the CBS(T),
method. A great number of these methods have been
parametrized and/or tested using S22,33 S26,32 and
JSCH200533 benchmark data sets; all complexes presented
there are systematically given in their (estimated) global
energy minima. A similar situation also exists for other
noncovalent databases. It is, thus, highly desirable to test
the performance of these methods not only for the stabiliza-
tion energy but also for the geometry.

It is well know that one-particle methods, such as HF and
DFT, generally fail to describe interactions that are strongly
dependent on dispersion forces,39 however, recently several
DFT techniques seeking to take dispersion interaction
contributions into account have been developed; here we will
discuss two of these methods, DFT-D40,41 and M06-2X.22,42,43

The DFT-D method deals with dispersion by using an
empirical term describing the London dispersion energy.
The DFT-D empirical dispersion term has been param-
etrized against the S22 binding energy test set, which
includes H-bonded, dispersion-bound, and mixed (elec-
trostatic and dispersion) complexes. The M06-2X func-
tional is based on the reparameterization of the DFT
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functional in order to take dispersion effects into account;
the parametrization was made on various data sets
including a set of small noncovalent complexes. The M06-
2X functional is a member of the M06 family of
functionals, which, along with several other functionals
(described at http://comp.chem.umn.edu/info/DFT.htm),
represent an extensive effort by Truhlar and co-workers
to develop density functionals with improved reliability
for the computation of many molecular properties.22,23,42–47

The performance of the M06-2X functional (as well as
other functionals from the M06 family) was tested using
the S22 data set.43 In a recent assessment, Sherrill and
co-workers note that the M05-2X and M06-2X descrip-
tions of variously configured nucleic acids from the JSCH-
2005 test set are not as well-balanced as that of the DFT-
D/PBE/aug-cc-pVDZ method by Grimme.48–50

The DFT-symmetry adapted perturbation theory method
(DFT-SAPT)51–56 is the only method considered in this work
treating molecular interaction differently than by the super-
molecular approach. This technique has been shown to
compute accurate binding energies for a variety of interaction
types and has the great advantage of determining the total
intermolecular interactions as a sum of physically meaningful
components, such as electrostatic, exchange, induction, and
dispersion terms. The method provides very good estimates
of stabilization energies close to the CCSD(T) benchmark
data. A very important advantage of the procedure is the
fact that it is almost a genuine ab initio procedure, i.e., it
does not contain any empirical parameter, except for those
in underlying DFT functional, e.g., in the DFT-SAPT
procedure.

The overestimation of the stabilization energy in disper-
sion-dominated complexes by MP2 was shown to be due to
the fact that the supermolecular MP2 interaction energy
includes the dispersion energy determined only at the
uncoupled HF level. Dispersion energies are generally
overestimated by 10-20% in comparison with accurate
values.57 In the past few years, several methods have been
developed with the aim of improving the performance of
MP2, in terms of their abilities, to accurately describe
intermolecular interactions in a well balanced way (across
all interaction types).57,58

The basis for the spin-component scaled MP2 method
(SCS-MP2) is the parametrization of the parallel and
antiparallel spin components of the MP2 correlation energy.59

The parameters for the family of SCS-MP2 methods have
been deduced from either theory or fitted against many test
sets describing several atomic and molecular properties. In
this work, we will only be concerned with the molecular
interactions (SCS(MI)-MP2) variant of the method,60 though
there are several other variants that may produce good
potential energy curves for intermolecular interactions (for
example, SCSN-MP2).61,62 This method, like DFT-D, has
been parametrized against the S22 molecular interactions test
set. The SCS(MI)-MP2 method has been shown to reduce
the systematic overestimation of binding energies for disper-
sion-bound complexes seen with the MP2 technique and,
thus, should be suitable for the description of a wide variety
of molecular interaction motifs. The SCS(MI)-MP2 method

provides very good stabilization energies for stacked as well
as H-bonded complexes, in contrast to the original SCS-MP2
method, which fails for the latter complexes.17 All methods
of the SCS-MP2 family contain empirical parameter(s).
Sherrill and co-workers have recently carried out studies in
which various SCS-MP2 methods (as well as DFT-based
methods) are compared in terms of their ability to accurately
produce potential energy curves for molecular complexes
containing benzene as (at least) one of the monomers and
the methane dimer .61,63 One of the main conclusions of these
studies is that SCS-MP2 methods, and particularly SCS(MI)-
MP2, give reasonable potential energy curves for the systems
considered, although binding energies for the methane dimer
are strongly underestimated.

Recently an interesting property of the interaction energy
calculated at the supermolecular MP3 level was recognized.64

Tests carried out on the S22 as well as the JCSH2005 test
sets revealed that MP3 underestimates stacking interactions
roughly to the same extent as the MP2 overestimates them.64

At the same time MP3 typically slightly increases the
accuracy of the interaction energies of the H-bonded
complexes. This was the basis for formulating the MP2.5
(or in general SMP3, Scaled MP3) method, i.e. the MP2
corrected by scaled E(3) (third-order correlation contribution).
In the case of MP2.5, the scaling factor is 0.5, while in
SMP3, the optimal scaling factor typically ranges from 0.45
to 0.65, depending on the type of molecular complex and
the basis set applied. MP2.5 in general reproduces the
CCSD(T) values very well (outperforms SCS(MI)-MP2 and
all DFT methods mentioned above), but the scaling factor
0.5 is known not to be optimal for all kinds of molecular
complexes and cannot be determined a priori, which could
lead to errors of about (10% of E(3). Fortunately (as shown
further), SMP3, with a particular choice of the scaling factor,
reproduces the CCSD(T) potential energy curves with almost
a constant error along a wide range of geometry displace-
ments. However, one main drawback of the method is in its
N6 scaling with system size, which means an order of
magnitude slowdown compared to MP2 but a dramatic
speedup compared to CCSD(T). The other advantage of the
method is that it contains only one empirical parameter, the
scaling factor.

There have been a number of studies carried out within
the past several years in which high-quality potential energy
curves for intermolecular interaction are produced.17,31,65–81

In a recent work, Pitoňák et al. described both the (cyclic)
H-bonding and stacking potential energy curves for the uracil
dimer, the smallest nucleic acid complex, at various levels
of theory, including the estimated CCSD(T)/aug-cc-pVTZ
level.17 One of the main findings made in this study is that
the DFT-D, M06-2X, and SCS(MI)-MP2 methods produce
potential energy curves for these interactions that are at least
semiquantitatively accurate. The SCS(MI)-MP2 technique
yielded particularly accurate results for both H-bonded and
stacked systems, while the results obtained with the DFT-D
and M06-2X methods were substantially better for the
H-bonded complex than for the stacked one. It should be
noted that Sherrill and co-workers have produced a number
of high-quality potential energy curves for several interesting

WFT and DFT Calculations J. Chem. Theory Comput., Vol. 6, No. 1, 2010 69



intermolecular interactions,31,63,65–70 among these are various
configurations of the (substituted and unsubstituted) benzene
dimer31,67–69 and the H2S-benzene70 and methane-benzene
complexes.66 Extremely high-quality geometries and energies
for the benzene dimer in various configurations have also
been computed by Pulay and Janowski.71 The geometries
and interaction energies of stacked and H-bonded uracil
dimers and stacked adenine-thymine pairs were studied by
means of high-level quantum chemical calculations including
CCSD(T) by Dabkowska et al.72 It was found that geometry
optimization with extended basis sets at the MP2 level
underestimates the intermolecular distances compared to the
reference CCSD(T) results, whereas the MP2/counterpoise-
corrected gradient optimization agrees well with the reference
geometries; therefore, this level (MP2/cc-pVTZ) was recom-
mended for geometry optimizations. In a recent study Sponer
and co-workers produced potential energy curves near the
potential energy minima for several configurations of the
uracil dimer using several electronic structure methods
(including CBS(T)) and using an empirical potential-based
method.82 For these complexes, it was observed that the
DFT-D, DFT-SAPT, and SCS(MI)-MP2 methods all gener-
ated curves that were in very good agreement with reference
data. Tekin and Jansen produced high-quality, CCSD(T) and
DFT-SAPT (both with aug-cc-pVTZ), potential energy
curves for various configurations of the acetylene-benzene
complex.83 Tsuzuki and co-workers have produced high-
quality CCSD(T) binding energies for a number of alkane
dimers, including the propane dimer considered in this work,
and have also generated MP2 potential energy curves for a
number of conformations of the propane dimer.76,84 Very
recently Fusti Molnar et al. produced high-level estimated
CCSD(T) potential energy curves for 20 of the 22 structures
found within the S22 molecular interactions test set.85

One of the main goals of this article is to compute accurate
potential energy curves for the most important classes of
noncovalent interaction motifs relevant to biomolecular
structure, in order to elucidate the properties of these types
of interactions. To this end we have selected seven model
systems representing the four major interaction categories
to be studied here, these are: cytosine-benzene (stacked),
adenine-benzene (stacked), and water-benzene (X-H · · ·π)
and propane (dispersion), methanol (H-bond), methylamine
(H-bond), and formamide (H-bond, cyclic) dimers. Potential
energy curves for each of these complexes have been
computed at the estimated CCSD(T)/CBS level of theory,
the highest level currently possible for the largest of these
systems. Another principal aim of this work is to compare
the performance of several lower-level methods in reproduc-
ing the potential energy curves of these complexes. The
methods considered here include the MP2, which has long
been used for the computation of binding energies of
intermolecular interactions, and the relatively new SCS(MI)-
MP2, DFT-SAPT, DFT-D, and DFT/M06-2X techniques.
More specifically, the method/basis combinations that will
be treated in this work are: MP2/cc-pVTZ, MP2/aug-cc-
pVDZ, MP2/6-31G*(0.25), SCS(MI)-MP2/cc-pVTZ, DFT-
SAPT/aug-cc-pVTZ, DFT-D/TPSS/6-311++G(3df,3pd), and
DFT/M06-2X/6-311+G(2df,2p). It should be noted that some

of these methods, for example SCS(MI)-MP2, may yield
better results when they are used along with larger basis sets.
Our main purpose here is to evaluate the performance of
several methods that could be used (and have been used) to
treat relatively large systems relevant to biochemistry, as such
we have chosen to use medium-sized basis sets for all of
these methods.

Computational Methods

Structures of Studied Complexes. In order to investigate
the noncovalent interactions of varying character, ranging
from strongly electrostatic to strongly dispersive, we have
included examples of four different interaction types into
our study, these are:

i. Stacking interaction: adenine-benzene and cytosine-
benzene.

ii. H-bonding interaction: methanol, methylamine, for-
mamide dimers.

iii. Dispersion interaction: propane dimer.
iv. X-H · · ·π interaction: benzene-water.
Structures of all complexes investigated are visualized in

Figure 1. Initial geometries for the stacking systems were
prepared by positioning the benzene ring in an ideal stacking
position (i.e., perfectly flat) with its center directly above
the center of either cytosine or adenine. The center positions
of benzene and cytosine were determined as the average
position of all atoms within the ring; in the case of adenine,
the center of each ring was determined, and the overall
molecular center was taken to be the position in the middle
of these two points. The geometries of these monomers were

Figure 1. Molecular complexes considered in this work: (a)
adenine-benzene, (b) cytosine-benzene, (c) formamide
dimer, (d) methylamine dimer, (e) methanol dimer, (f) propane
dimer, and (g) benzene-water.
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determined at the B3LYP/6-31+G* level of theory. In order
to generate the points for the potential energy curves of these
systems, the monomers were simply separated in such a way
that they remained parallel to one another.

The initial geometries of the methanol and methylamine
complexes were determined at the estimated CCSD(T)/CBS
level of theory, while the initial geometry of the formamide
complex was taken directly from the S22 data set and
computed at the MP2/cc-pVTZ level, using the counterpoise
correction (CP) to account for the basis set superposition
error (BSSE). Potential energy points for these systems were
produced by modifying the H · · ·O or H · · ·N distances, such
that the O-H · · ·O or N-H · · ·N angles remained constant.
It should be noted that in the case of the formamide dimer,
which contains a cyclic double H-bond, the H · · ·N distances
were modulated such that both H-bonds were consistently
of the same length.

The initial structure for the propane dimer was obtained
at the (CP-corrected) MP2/cc-pVTZ level of theory. Here,
potential energy points were generated by modifying the
distances between the monomers, such that the molecular
planes defined by the three carbon atoms in each of the
monomers were always parallel to one another and the
molecules’ centers of mass formed a line perpendicular to
the two molecular planes.

In the case of the benzene-water complex, the initial
geometry, as determined at the (CP-corrected) MP2/cc-pVTZ
level of theory, was taken from the S22 data set. Here, points
along the potential energy curve were produced by modulat-
ing the distance between the water and benzene monomers
in a direction perpendicular to the plane defined by the
benzene ring.

Electronic Structure Methods. High-level reference data
for each of these curves were obtained using the CBS(T)
method to estimate CCSD(T)/CBS results. These values are
obtained by first computing the binding energies at the MP2/
CBS level and then by adding a ∆CCSD(T) correction
term:10,34

∆ECCSD(T) ) ∆ECBS
MP2 + (∆ECCSD(T) - ∆EMP2)small bassis set

(1)

Here, ECBS
MP2 ) ECBS

HF + ECBS
corr, MP 2 quantities were determined

by extrapolating MP2 electronic energies to the complete
basis set limit, using the extrapolation scheme of Helgaker
and co-workers.86 All MP2/CBS extrapolations were per-
formed using electronic energies produced at the MP2/aug-
cc-pVDZ and MP2/aug-cc-pVTZ levels of theory. As noted
above, all ∆CCSD(T) correction terms were computed using
the relatively large aug-cc-pVDZ basis set.

The success of this method in providing accurate binding
energies is based on the fact that the CCSD(T) and MP2
methods exhibit basis set dependence that is very similar.
Although the binding energies obtained using these two
methods (with a particular basis set) can be quite different,
the difference between these binding energies (∆ECCSD(T) -
∆EMP2)small bassis set remains nearly constant regardless of the
basis set used. It should be noted that binding energy results
generally improve when larger basis sets are used to compute
the ∆CCSD(T) term.

In a recent study, Pitoňák et al. produced very accurate
interaction energies for the stacked and H-bonding uracil
dimers by directly extrapolating CCSD(T) results to the
complete basis set limit (using the aug-cc-pVDZ and aug-
cc-pVTZ basis sets).17 Here it was shown that the CBS(T)
method, as implemented in this study (i.e., based on eq 1),
produces accurate binding energies for these complexes, with
errors no larger than 0.1 kcal/mol for the stacked structure
and 0.2 kcal/mol for the H-bonding structure (both corre-
sponding to errors of roughly 1.0%).

It should also be noted that the MP2 extrapolation to the
complete basis set limit based on the aug-cc-pVDZ and aug-
cc-pVTZ basis sets may cause some small binding energy
errors, as these are the smallest basis sets for which this type
of extrapolation can be carried out. Based on the H-bonding
and stacking structures of the uracil dimer (as described
above), it is seen that this extrapolation scheme underesti-
mates the MP2/CBS binding energy of both structures
compared to the aug-cc-pVTZ to aug-cc-pVQZ extrapolation
by about 1%.17 Jurečka et al. investigated the binding
energies of four H-bonding and nine stacked nucleic acid
pairs using MP2 extrapolation based both on aug-cc-pvDZ
and aug-cc-pVTZ and on aug-cc-pVTZ and aug-cc-pVQZ.33

For the H-bonding pairs, the smaller basis extrapolation
scheme underestimated binding energies, with an average
error of 1.8% (compared to the larger basis MP2 extrapola-
tion), the largest error for these interactions was 2.0%. For
the stacked structures, the average error of the smaller basis
extrapolation was 1.4% (underbinding), with a maximum
error of 2.6%. It should also be noted that, for one of the
stacking pairs, the smaller basis extrapolation overestimated
the binding energy by 1.2%. We expect that the errors present
in our studies would not exceed those observed for the
nucleic acid complexes described above. Fusti Molnar et al.
have also noted the relatively small errors associated with
MP2 extrapolation based on aug-cc-pVDZ and aug-cc-
pVTZ.85

Here all CCSD(T)/aug-cc-pVDZ and MP2/aug-cc-pVDZ
calculations were performed using the Molpro electronic
structure package (Molpro 2006),87 while MP2/aug-cc-pVTZ
values were computed using the resolution-of-the-identity
approach (RI-MP2)88 with the Turbomole package.89 The
RI-MP2 approximation has been shown to introduce negli-
gible errors.90 MP2 and CCSD(T) computations were carried
out using the frozen-core approximation in which the lowest
lying molecular orbitals are constrained to remain doubly
occupied in all configurations.

Here, we study the performance of MP2 along with the
aug-cc-pVDZ, cc-pVTZ, and 6-31G*(0.25) basis sets for the
description of the potential energy curves associated with
the separation of molecular complexes. All MP2 curves were
produced using the Molpro electronic structure package and
incorporate the counterpoise correction in order to account
for the BSSE.91

The DFT-D technique incorporates an empirical London
dispersion energy term, which describes dispersion using
the well-known C6/R6 formula.41 The dispersion energy
term also contains a damping function to account for
overlap effects (most importantly at small values of R).
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DFT-D parameters were fitted against the S22 data set of
intermolecular interactions. In this work, we employ the
DFT-D/TPSS/6-311++G(3df,3pd) technique using em-
pirical coefficients optimized for noncounterpoise-cor-
rected binding energy computations. DFT energies were
computed using the Gaussian package (G03),92 while the
dispersion terms were obtained using an in-house Fortran
program. For DFT calculations, fine grids and tight
convergence were utilized for all calculations (i.e.,
INT(GRID)ULTRAFINE), SCF(CONVER)TIGHT)).

The M06-2X functional of Truhlar and co-workers (along
with several other functional, M05, M05-2X, M06, M06-L,
etc.) was developed to give improved results for several
molecular properties.22,42,43,45,47 One of the large goals
achieved with many of these functionals was a much-improved
description of dispersion forces. Here, we have employed the
M06-2X functional along with the 6-311+G(2df,2p), using the
Gaussian electronic structure package.92 The counterpoise
technique was employed to account for BSSE.

Both DFT-based methods considered here have been
parametrized to be used along with specific basis sets and,
in the case of DFT-D, functionals. Here we have used the
basis sets (and functionals) recommended by the developers
of these two methods in order to give the best results at
reasonable computational costs.

The SCS(MI)-MP2 method obtains improved results for
molecular interactions by scaling the MP2 parallel and
antiparallel contributions to the correlation energy.60 The
main result of the spin parametrization in the SCS(MI)-MP2
method is the reduction of the overstabilization of dispersion
interactions seen with MP2. The SCS(MI)-MP2 parameters
were optimized against the S22 data set of molecular
interactions. Here, SCS(MI)-MP2 calculations were per-
formed along with the cc-pVTZ basis set, using Molpro. The
counterpoise correction for BSSE was included.

DFT-SAPT uses monomer properties and electronic densi-
ties from DFT in order to compute interaction energies using
the symmetry adapted perturbation theory (SAPT).51–56 This
is the only variant of the SAPT methods that can be
practically used for systems containing more than a few
atoms and is, thus, the most useful for computations on
biomolecular systems. DFT-SAPT has been shown in several
studies to obtain accurate binding energies for a wide variety
of intermolecular interaction types. This method determines
the total interaction energy as a sum of physically meaningful
components, such as those arising from electrostatics, disper-
sion, induction, and exchange. The DFT-SAPT interaction
energy is given as the sum of these components:

Eint ) Epol
1 + Eex

1 + Eind
2 + Eex-ind

2 + Edisp
2 + Eex-disp

2 +
δHF (2)

Some of these terms can be combined in order to define
values that correspond to commonly understood physical
quantities. The terms are commonly combined as such:

E(elec) ) Epol
1

E(ind) ) Eind
2 + Eex-ind

2

E(disp) ) Edisp
2 + Eex-disp

2

and
E(exch) ) Eex

1

These four quantities refer to the electrostatic (elec), induc-
tion (ind), dispersion (disp), and exchange-repulsion (exch)
contributions, respectively, to the total interaction energy.
The δHF term is an estimate of higher-order Hartree-Fock
contributions and is determined as the difference between
the HF interaction energy and the sum of all the first- and
second-order contributions (obtained with the HF wave
functions), with the exceptions of the dispersion and
exchange-dispersion terms. Since the HF interaction energy
is determined using a supermolecular description (including
counterpoise corrections), the DFT-SAPT interaction energy
constructed, as in eq 2, is not BSSE free. It is, however,
true that the BSSE for the HF interaction energy is much
smaller than that of the correlation interaction energy.

All DFT-SAPT computations have been carried out using
the LPBE0AC potential along with the aug-cc-pVTZ basis
set. This basis set can generally be viewed as the smallest
basis that gives meaningful results with SAPT methods; the
use of smaller basis sets will result in significant underes-
timation of the dispersion term and, thus, the binding energy.
In a study of the binding in several configurations of the
acetylene-benzene complex by Tekin and Jansen, it was
found that DFT-SAPT/aug-cc-pVTZ produces binding ener-
gies that are up to ∼5% lower than those of DFT-SAPT/
CBS.83

The density fitting procedure was used to significantly
reduce the computational cost of these calculations. It is
necessary to compute a shift term involving the ionization
potentials and the highest occupied molecular orbital (HOMO)
energies for interacting monomers. These terms were ob-
tained using the PBE0 functional along with the aug-cc-
pVDZ basis set. DFT-SAPT calculations were performed
using the Molpro package of programs. Here, it should be
noted that DFT-SAPT/aug-cc-pVTZ computations on the
adenine-benzene complex were not possible to obtain
because of technical (convergence) difficulties.

MP3 (and thus MP2.5) calculations were performed using
the L-CCD (linearized coupled clusters singles and doubles)
module based on the Cholesky decomposed two-electron
integrals implemented in the MOLCAS 7 program package,93

where a 1.10-7 threshold for integral decomposition was
used. Overall estimated MP2.5/CBS results were obtained
analogously to eq 1:

∆ECBS
MP2.5 ) ∆ECBS

MP2 + 1
2

(∆EMP3 - ∆EMP2)small basis set

(3)

assuming that the E(3) term (∆EMP3 - ∆EMP2) converges,
analogously to higher-order correction terms from CCSD(T),
faster with the basis set than with the MP2. Just to illustrate
the speedup of the MP3 calculation compared to the
CCSD(T), a MP3 step of the single-point calculation of the
cytosine-benzene complex using the aug-cc-pVDZ basis set
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took 45 min on four cores of a 2.4Ghz Intel Core2 Quad
processor machine, while the CCSD(T) step took 39 h on
four 2.66 GHz four-core Intel Xeon E5430 processors. It
should be noted, that the MP2 method is still roughly by an
order of magnitude faster than MP3.

Results

Performance of MP2-, DFT-, and SAPT-Based
Methods. H-bonding Interactions. Inspection of Figures 2-4
reveals that all of the computational methods studied here
give similar interaction energy curves for the methanol
(Figure 2), methylamine (Figure 3), and formamide (Figure
4) dimers, which are the three H-bonding complexes
considered here. As would be expected for H-bonds whose
properties are generally well described even by low-level
methods, all of the computational techniques treated in this
work give results that are, at least, semiquantitatively correct.
It should also be noted that all of the methods considered
here exhibit proper long-range behavior.

The estimated MP2.5/CBS method produces extremely
high-quality potential energy curves for these H-bonding
systems, that are generally slightly underbound. The potential
energy minima for all three complexes are at the same
intermolecular separation as those of CCSD(T), with binding
energies that are in error by no more than 2%. In general,
MP2/aug-cc-pVDZ and MP2/cc-pVTZ tend to underbind
these complexes by about 8-12%, with potential energy
minima at slightly too large an intermolecular separation (by
no more than about 0.01 Å, see Table 1). Still considering
MP2, the minimum energy separation is slightly larger for
the aug-cc-pVDZ basis set than for cc-pVTZ for all H-
bonding systems. This finding agrees well with our previous
conclusion mentioned above (Dabkowska et al.),72 showing
that counterpoise-corrected MP2/cc-pVTZ optimization yields
reliable geometries well comparable with the CBS(T) ones.
The SCS(MI)-MP2 method generally produces accurate
results for the H-bonding complexes, matching the CBS(T)
curves for the formamide and methanol dimers extremely
closely. SCS(MI)-MP2 results for the methylamine dimer
are not quite as accurate, with binding energies that are
approximately 8% too high near the potential energy
minimum. It should be noted that the curve produced with
this method, although too shallow, is still in good agreement
with CCSD(T) in terms of the location of the potential energy
minimum. The fact that all calculations based on the MP2
procedure yield reliable distances of the minima is promising,
since it allows one to optimize the structure of H-bonded
complexes at this (rather cheap) level and then to perform a
single-point calculation with some higher-level method
providing accurate energies. DFT-SAPT produces very
accurate potential energy curves for these H-bonding systems,
with minima located at the same locations as those of
CCSD(T) (to within 0.1 Å) and with binding energies that
are slightly too high (underbound) for all complexes. The
largest error in the binding energy at the potential energy
minimum occurs for the methanol dimer, which is under-
bound by about 6%.

For each of the H-bonding complexes, DFT-D yields
binding energies that are too large by about 4-9%. It should,
however, be noted that this method predicts the proper

Figure 2. Potential energy curves for the methanol dimer
using several electronic structure methods (see text for exact
description of methods used). CCSD(T) (black), MP2.5 (dark
blue), DFT-SAPT (purple), MP2/TZ (light green), MP2/aDZ
(dark green), SCS-MI (light blue), DFT-D (red), M06-2X
(orange).

Figure 3. Potential energy curves for the methylamine dimer
using several electronic structure methods (see text for exact
description of methods used).

Figure 4. Potential energy curves for the formamide dimer
using several electronic structure methods (see text for exact
description of methods used).

WFT and DFT Calculations J. Chem. Theory Comput., Vol. 6, No. 1, 2010 73



locations of the potential energy minima for all three
complexes (to within 0.02 Å, Table 1). The M06-2X
functional gives excellent results for each of the H-bonding
complexes, producing binding energies that are only very
slightly too small. The potential energy curves given by this
functional track the estimated CCSD(T) curves almost
perfectly for both the formamide and methanol dimers and
produce very good results for the methylamine dimer. In the
case of the methylamine dimer, the M06-2X interaction
energies, at points in the region of ascent from the potential
energy minimum (moving radially outward), are too high
(underbound) by about 0.15-0.20 kcal/mol. The fact that
both DFT methods (and specifically the M06-2X) yield
proper long-range behavior is not surprising, since the long-
range contribution originates here in the dipole-dipole
interaction, which is well described by the DFT functionals
considered.

Stacking Interactions. Figures 5 and 6 give the potential
energy curves for the interactions of adenine and cytosine

with benzene, respectively. In these figures it can be seen
that the estimated MP2.5/CBS method yields very good
potential energy curves for these complexes, with binding
energies at the potential energy minimum that are overbound
by approximately 4-6%. The fact that these binding energies
are too low indicates that the magnitudes of the scaled E(3)

corrections to the MP2/CBS results are smaller than those
of the CCSD(T) corrections. One of the most prominent
aspects of the data presented in these figures is the dramatic
overbinding exhibited by the MP2 method when paired with
both the cc-pVTZ and aug-cc-pVDZ basis sets. Overbinding
is particularly strong for MP2/aug-cc-pVDZ, with minimum
energy binding energies that are off approximately by 42%
for the adenine-benzene complex and by 27% for the
cytosine-benzene complex. This result is not surprising, as
it is well documented that the MP2 method, along with
medium basis sets, generally tends to overbind for stacking
interactions. It should also be noted that the MP2 method,
with both basis sets, predicts the optimum intermolecular

Table 1. Equilibrium Separation Distances and Binding Energies (in Parentheses) for Complexes/Methods Considered in
This Worka

method methanol methylamine formamide adenine-benzene cytosine-benzene propane benzene-water

CCSD(T) 1.91 2.23 1.86 3.40 3.56 3.81 2.41
(5.66) (3.88) (15.56) (5.28) (3.97) (2.04) (3.26)

MP2.5 1.92 2.24 1.85 3.38 3.54 3.81 2.41
(5.64) (3.83) (15.59) (5.58) (4.16) (1.92) (3.30)

DFT-SAPT 1.93 2.23 1.87 n/a 3.54 3.85 2.42
(5.34) (3.85) (15.09) (3.89) (1.91) (3.23)

MP2/TZ 1.94 2.27 1.87 3.30 3.51 3.87 2.47
(5.17) (3.46) (14.27) (6.84) (4.33) (1.64) (2.93)

MP2/aDZ 1.96 2.30 1.91 3.30 3.49 3.89 2.50
(5.22) (3.48) (15.00) (7.69) (5.19) (1.72) (2.98)

MP2/6-31 2.02 2.37 1.97 3.37 3.57 4.08 2.54
(4.75) (3.01) (13.16) (5.74) (3.64) (1.02) (2.64)

SCS/TZ 1.90 2.25 1.84 3.36 3.58 3.90 2.47
(5.66) (3.57) (15.62) (5.87) (3.79) (1.49) (3.06)

DFT-D 1.89 2.21 1.84 3.37 3.52 3.78 2.45
(5.72) (3.90) (15.95) (5.40) (4.15) (2.87) (3.61)

M06-2X 1.91 2.23 1.87 3.31 3.46 3.65 2.36
(5.57) (3.81) (15.43) (5.10) (3.31) (2.09) (3.58)

a CCSD(T) ) estimated CCSD(T)/CBS, TZ ) cc-pVTZ, aDZ ) aug-cc-pVDZ, 6-31 ) 6-31G*(0.25). MP2.5 refers to estimated MP2.5/
CBS, DFT-SAPT refers to DFT-SAPT/aug-cc-pVTZ, DFT-D refers to DFT-D/TPSS/6-311++G(3df,3pd), and M06-2X refers to DFT/M06-2X/
6-311+G(2df,2p). (See text for detailed descriptions of the complexes and the methods used; distances in Å and binding energies in kcal/
mol.)

Figure 5. Potential energy curves for adenine-benzene
using several electronic structure methods (see text for exact
description of methods used).

Figure 6. Potential energy curves for cytosine-benzene
using several electronic structure methods (see text for exact
description of methods used).
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separations for these complexes to be slightly too small
compared to those of estimated CCSD(T)/CBS results, but
the difference is fairly small. As with H-bonded complexes,
the counterpoise-corrected MP2/cc-pVTZ geometry is closer
to the reference data than that of the MP2/aug-cc-pVDZ. In
the case of cytosine-benzene, the MP2/cc-pVTZ method
overbinds the minimum geometry by only about 5-10%.
One of the goals in developing the SCS(MI)-MP2 method
was to correct for the large overbinding effects seen with
the MP2 method for stacked systems. In the figures, it can
be seen that SCS(MI)-MP2 produces potential energy curves
that are generally better than those given by MP2, with
minimum energy binding energies that are within 10% of
our reference values. Interestingly, this method overbinds
by about 10% for the adenine-benzene complex, while
underbinding by about 5% for the cytosine-benzene com-
plex. For both complexes, the potential energy minima are
located at approximately the same points for both SCS(MI)-
MP2 and CCSD(T). DFT-SAPT results are available only
for cytosine-benzene. For this complex, DFT-SAPT yields
a very accurate potential energy curve, with a binding energy
that is too high at the minimum by about 2%. One interesting
aspect of the DFT-SAPT data depicted here is that the curve
is slightly too shallow moving out (increasing the intermo-
lecular separation) from the potential energy minimum. This
shallowness is observed from the minimum (∼3.6 Å) out to
about 4.2-4.4 Å.

The DFT-D technique obtains very good results for both
of these stacking complexes, with minimum binding energies
that are overbound by no more than about 5% for both the
adenine-benzene and the cytosine-benzene systems. The
locations of the potential energy minima are also in good
agreement with estimated CCSD(T) results, although it
should be noted that the optimum separation for the
cytosine-benzene complex is slightly too short. Brief
inspection of Figures 5 and 6 reveals that the features of the
potential energy curves generated using the M06-2X func-
tional are very different than those produced with estimated
CCSD(T) interaction energies. For both complexes, this
functional produces curves that are too steep near the minima,
resulting in very narrow potential wells. In the case of the
adenine-benzene complex, the optimum separation is pre-
dicted to be slightly too short, with a binding energy that is
in good agreement with CCSD(T) results. However, for the
cytosine-benzene complex, the minimum energy separation
is too short by about 0.1 Å, with a binding energy that is
approximately 20% too low. The incorrect long-range
behavior of the M06-2X functional is due to the fact that
the dispersion energy was covered by reparametrization of
the exchange functional and not by the correlation one.

Dispersion Interactions. Potential energy curves of the
propane dimer, whose chief mode of interaction is dispersion,
for all methods considered here are given in Figure 7. It can
directly be seen that MP2.5 and DFT-SAPT are the only
methods producing good potential energy curves and that,
among all of the MP2- and DFT-based methods, none can
be said to be in excellent agreement with estimated CCSD(T)
results. Both MP2.5 and DFT-SAPT give the correct location
for the potential energy minimum, with binding energies that

are underbound about approximately 6%. Among all other
methods considered here, only DFT-D predicts the correct
point for the potential energy minimum, at a separation of
about 3.8 Å, but this method greatly overbinds the complex
(by 0.84 kcal/mol or approximately 41%). This overbinding
is most probably attributable to the fact that the S22 test set,
from which DFT-D was parametrized, is heavily weighted
toward sp2-hybridized carbons (aromatic systems). The MP2/
aug-cc-pVDZ, MP2/cc-pVTZ, and SCS(MI)-MP2/cc-pVTZ
methods all underestimate the binding energy of the propane
dimer and all predict the potential energy minimum to be
located at a separation close to 3.9 Å. The performance of
SCS(MI)-MP2 is particularly disappointing, with a binding
energy that is 0.54 kcal/mol too low. In terms of the binding
energy at the potential energy minimum, the M06-2X DFT
gives the best result, with a binding energy that is only 0.04
kcal/mol higher than that of the CCSD(T) result. This
minimum is located at 3.65 Å, which is too small a
separation. It should be noted that at longer ranges the
potential energy curve produced by the M06-2X functional
deviates significantly from that of CCSD(T) (and those of
the other methods), with energies that rise too sharply in
the range between the minimum and about 4.5 Å. The result
is a potential energy well that is too narrow near the
minimum. Notice that this method has very similar behavior
for both stacked complexes described in the previous
paragraph.

O-H · · ·π Interactions. One of the most noteworthy
aspects of the curves shown for the interaction between
benzene and water in Figure 8 is the fact that, as in the case
of the dispersion interactions, MP2.5 and DFT-SAPT are
the only computational techniques whose potential energy
curves closely match the CCSD(T) results. The MP2.5
method overbinds near the potential energy minimum,
whereas DFT-SAPT tends to underbind, however, neither
of these methods is in error by more than about 1% of the
minimum. All MP2-based methods tend to underbind this
complex, while the DFT-based methods both overbind. MP2/
cc-pVTZ, MP2/aug-cc-pVDZ, and SCS(MI)-MP2 all pro-
duce curves whose minimum energy separations are too large
(by about 0.05-0.1 Å) and whose binding energies are too

Figure 7. Potential energy curves for the propane dimer using
several electronic structure methods (see text for exact
description of methods used).
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low. The strongest underbinding tendencies are produced by
the MP2/cc-pVTZ method, which is in error by approxi-
mately 10%. SCS(MI)-MP2 produces the best binding energy
results for this mixed dispersion/electrostatic complex, with
a binding energy that is within approximately 6% of the
reference value. The binding energies produced at the
potential energy minima for both DFT-D and M06-2X are
overbound by approximately 10%. While DFT-D, like the
MP2 methods, gives an optimum separation that is slightly
too large, M06-2X gives a separation that is slightly too small
(by 0.05 Å). It is also interesting to note that the curve
produced with the DFT-D method appears to be somewhat
too broad compared to the reference curve. Notice that, in
this case, the long-range behavior is correct and well
comparable with the reference CCSD(T) calculations. This
might be explained by the fact that the electrostatic term
represents the leading energy contribution.

Performance of the MP2/6-31G*(0.25) Method. In the
Supporting Information, Figures S1-S7 give the MP2/6-
31G*(0.25) potential energy curves, along with estimated
CCSD(T)/CBS, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ data,
for all of the complexes considered in this work. One of the
most striking aspects of these data is the fact that this method
outperforms MP2/cc-pVTZ and MP2/aug-cc-pVDZ for both
stacking interactions, being slightly overbound for the
adenine-benzene complex and slightly underbound for the
cytosine-benzene complex. This is in good agreement with
previous results for stacked systems, where it was found that
the 6-31G*(0.25) basis is among the best performers for MP2
binding energies of stacked systems.32,72 It can also be seen
in Table 1 that the potential energy minima obtained with
MP2/6-31G*(0.25) are in very good agreement with the
reference data. Unfortunately this method’s exceptional
performance for stacked systems does not translate to the
other interaction motifs. It can be seen in the Supporting
Information, Figures S3-S5, that MP2/6-31G*(0.25) is
significantly underbound for all of the H-bonding complexes
and also gives optimum intermolecular separations that are
too wide (see also Table 1). Binding curves for the propane
dimer and benzene-water complex are given in the Sup-
porting Information, Figures S6-S7, respectively. MP2/6-
31G*(0.25) is underbound and gives too large an optimum

intermolecular separation for both of these complexes. The
most problematic case is clearly the propane dimer for which
the method gives a binding energy that is far too weak (by
a factor of 2) and an intermolecular separation that is about
0.3 Å too wide.

DFT-SAPT Decomposition of Interactions. As noted
above, the DFT-SAPT technique determines the binding
energy of a complex as a sum of physically meaningful
terms, namely the electrostatic, exchange, dispersion, and
induction contributions. Figure 9 gives the curves for DFT-
SAPT decomposition terms for each of the interactions
consideredinthiswork(withtheexceptionofadenine-benzene).
In Figure 9, it can be seen that the two main components of
all of these interactions are electrostatics and dispersion.
However, in terms of their interaction energy components,
the interaction types are quite different, being dominated
either by electrostatics or dispersion or, as in the case of the
benzene-water complex, by having large contributions from
both electrostatic and dispersive forces.

Figure 9a, b, and c gives the DFT-SAPT decompositions
for the H-bonded systems considered in this work. Here it
can be seen that, as would be expected, electrostatics play
the dominant role in stabilizing these complexes. At their
potential energy minima, electrostatic effects account for
about 59% of the total attractive forces in the methanol and
formamide dimers. It is somewhat surprising that the
electrostatic contribution found in the formamide dimer,
which is bound by a cyclic network of two H-bonds, is not
greater than that of the methanol dimer. It should be noted,
however, that the induction and δHF contributions are both
larger for the formamide dimer (13% induction) than for the
methanol dimer (11% induction). It should be pointed out
that induction is generally the biggest contributor to the
higher-order terms within the δHF term. The methylamine
dimer interaction is the weakest H-bonding interaction
considered in this work and is also the least electrostatic in
nature (54% electrostatic contribution to the total attractive
energy). Dispersion interactions are ubiquitous throughout
intermolecular interaction types and play a role in the
stabilization of H-bonded complexes. Dispersion accounts
for 22, 30, and 17% of the attractive interactions in the
methanol, methylamine, and formamide dimers, respectively
(at their potential energy minima).

The DFT-SAPT interaction energy analysis for the
cytosine-benzene dimer is given in Figure 9d. Here it is
apparent that dispersion is the dominant contributor to this
stacking interaction, with electrostatics playing a lesser role.
At its potential energy minimum (3.6 Å), the attractive
interactions present in this complex are about 74% dispersion,
19% electrostatic, and 4% induction (2% δHF). Interestingly,
the electrostatic interaction increases relative to the dispersion
interaction as the separation distance grows shorter. For
example, at a separation of 3.4 Å, dispersion is responsible
for only 67% and electrostatics about 25% of the attractive
interaction. It should be noted that, in cases where two
heterocyclic aromatic groups are stacked, the contribution
from electrostatics will generally be higher than in this
heterocyclic aromatic and aromatic complex. As an example,
in DFT-SAPT computations recently carried out on the

Figure 8. Potential energy curves for benzene-water using
several electronic structure methods (see text for exact
description of methods used).
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stacked uracil dimer by Pitoňák et al., it was found that, at
the potential energy minimum, dispersion describes ap-
proximately 52% and electrostatics 41% of the total attractive
interaction.17

As in the case of the cytosine-benzene complex, the
interaction in the propane dimer is dominated by dispersion
forces (Figure 9e). This is, of course, an expected result as
there are no strong dipole moments found in propane. At
the potential energy minimum (3.9 Å), dispersion accounts
for about 80% of the attraction in this complex, with
electrostatics describing about 16%. The electrostatic con-
tribution grows slightly more quickly than the dispersion
contribution with decreasing intermolecular separation but
not nearly as quickly as in the case of the cytosine-benzene
complex. At a separation of 3.5 Å, dispersion describes
approximately 67% and electrostatics 25% of the total
attractive interaction.

The O-H · · ·π interaction found in the benzene-water
complex depends strongly on both dispersion and electro-
static contributions, with induction also playing an ap-
preciable role in stabilizing the complex (Figure 9f). Between
the distances of 1.9 and 2.6 Å, the contributions from
dispersion and electrostatics to the overall attraction in this
complex are almost identical (approximately 40-44%).
Beyond 2.6 Å, the electrostatic term begins to have a larger
relative attractive contribution relative to dispersion. The

increase in the relative electrostatic stabilization of the
complex at larger distances can most likely be explained by
the large spacial extent of benzene’s π density and by the
interaction between this π ring and water’s positively charged
hydrogen atom.

Conclusions

One of the major goals of this investigation is to determine
the quality of several modern quantum chemical methods in
describing potential energy curves for a variety of different
types of intermolecular complexes. It has been found that,
generally speaking, each of the methods applied in this work
is capable of describing the H-bonding, stacking, dispersion,
and O-H · · ·π interactions considered here at least qualita-
tively. That is to say that each of the methods predicts bound
states that correspond, upon gross inspection, to the particular
interaction type being studied. In the cases of the two DFT-
based methods, DFT-D and M06-2X, this is a major
accomplishment considering the fact that just a few years
ago it was widely acknowledged that existing DFT methods
were incapable of describing noncovalent interactions, whose
attractive forces are largely attributable to dispersion.

Here, we will summarize some of the general trends that
have been observed in this study. As would be expected,
the H-bonding interactions are generally well described by

Figure 9. DFT-SAPT interaction energy decompositions for: (a) methanol dimer, (b) methylamine dimer, (c) formamide dimer,
(d) cytosine-benzene, (e) propane dimer, and (f) benzene-water. E1elec (red), E1exch (light green), E2disp (dark green),
E2ind (light blue), dHF (pink), intE (dark blue).
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each of the methods used here. MP2, combined with both
the cc-pVTZ and aug-cc-pVDZ basis sets, has a strong
tendency to underbind these types of interactions but provides
reliable geometries. The former basis set yields better
equilibrium geometries. The use of the spin-component
scaled technique (SCS(MI)-MP2) with the cc-pVTZ basis
improves the performance of MP2, but these binding energies
are also generally slightly too low. The potential energy
curves produced by MP2.5, M06-2X, and (to a lesser extent)
DFT-SAPT match those obtained using the estimated
CCSD(T)/CBS method (CBS(T)) very well. DFT-D tends
to (sometimes strongly) overbind H-bonding interactions.

In terms of stacking interactions, the MP2 methods, as
has been previously observed, have a strong tendency to
overbind, this is especially true when MP2 is paired with
the aug-cc-pVDZ basis set. The SCS(MI)-MP2 method
greatly improves on the MP2 results, reducing the amount
of overbinding significantly and, in the case of the
cytosine-benzene complex, actually underbinding at the
potential energy minimum. All calculations based on the
MP2 procedure yield reliable distances of the minima, which
allows for the structural optimization of various complexes
at a rather cheap level (inclusion of the counterpoise
correction is, however, necessary). The cc-pVTZ basis set
yields better geometries than aug-cc-pVDZ ones. The MP2.5,
DFT-SAPT, and DFT-D methods all produce potential
energy curves that are in good agreement with those of
CBS(T). The DFT/M06-2X potential energy curves for
stacked systems are generally not in good agreement with
the reference data, being strongly underbound for the
cytosine-benzene complex, predicting incorrect minimum
energy separations for both complexes, and are generally
having curves with the wrong overall shape.

Only the relatively expensive MP2.5 and DFT-SAPT
methods can be said to produce high-quality potential energy
curves for the propane dimer. All MP2 methods, including
SCS(MI)-MP2, tend to strongly underestimate the binding
energy of this complex, while DFT-D very strongly over-
estimates it. DFT/M06-2X, on the other hand, obtains a
reasonable value for the binding energy at the potential
energy minimum but predicts the minimum to be at too small
an intermolecular separation.

For the benzene-water complex MP2.5 and DFT-SAPT
are, once again, the methods that produce the best results
relative to those of CBS(T). As in the cases of H-bonding
complexes and the propane dimer, all of the MP2 methods
studied here underbind this O-H · · ·π complex. Both DFT
based methods, on the other hand, tend to overbind the
complex, with DFT-D having a potential energy curve that
appears to be much too broad.

Generally speaking, the only two methods that can be said
to provide accurate potential energy curves for all of the
complexes considered here, apart from the reference CBS(T)
method, are MP2.5 and DFT-SAPT. Unfortunately, these
methods are computationally very expensive and can only
be used on complexes containing relatively few atoms (up
to ∼60-80). Furthermore, DFT-SAPT has another two major
disadvantages compared to other methods investigated in this
work. First, the analytic gradients needed for optimization

of geometries have not been formulated or implemented yet,
and second, in DFT-SAPT potential energy surface calcula-
tions, only rigid monomers can be considered (the deforma-
tion energy cannot be included). The MP2 method, long the
“workhorse” used for computations on molecular complexes,
only produces very good potential energy curves for H-
bonding complexes, otherwise its performance can be said
to be semiquantitatively accurate. MP2 results are generally
better when the method is used in conjunction with the cc-
pVTZ basis set, and this result agrees well with our previous
finding.72 The SCS(MI)-MP2/cc-pVTZ method, which seeks
to improve the results of MP2/cc-pVTZ, is largely successful
in this task, with improved potential energy curves for all
of the noncovalently bound complexes with the exception
of the propane dimer. In two of our previous studies, we
thoroughly investigated the PES’s of the uracil and adenine
dimers, and in both studies, the SCS (MI)-MP2 method
provided very good results, well comparable to those of the
benchmark CCSD(T)/CBS method.82,94 In the present study,
SCS(MI)-MP2 gives very good results for all of the
complexes with exception of the propane dimer. We believe
that the reason for this is the same as disscussed above for
the DFT-D method, which is the fact that SCS(MI)-MP2 as
well as DFT-D were parameterized against the S22 set, which
lacks systems containing carbon atoms having sp3 hybridiza-
tion. On the other hand, the aromatic systems, such as DNA
bases and benzene, are well represented in the set, and the
method provides good results, even for complexes not
included within the S22 set (e.g., adenine dimer or
adenine-benzene complex). This finding is important and
should be kept in mind when preparing data sets of the
second generation. Among the much less computationally
expensive DFT-based methods, DFT-D can be said to yield
the best performance, giving accurate potential energy curves
for H-bonding and stacking interactions. This method,
however, tends to strongly overbind for both the propane
dimer and the benzene-water complex. The M06-2X
functional produces good results for H-bonding and O-H · · ·π
interactions but produces curves for stacked and dispersion-
bound complexes that generally have the wrong overall
shape.
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Abstract: Noncovalent interactions, of which London dispersion is an important special case,
are essential to many fields of chemistry. However, treatment of London dispersion is inherently
outside the reach of (semi)local approximations to the exchange-correlation functional as well
as of conventional hybrid density functionals based on semilocal correlation. Here, we offer an
approach that provides a treatment of both dispersive interactions and the electronic structure
within a computationally tractable scheme. The approach is based on adding the leading
interatomic London dispersion term via pairwise ion-ion interactions to a suitably chosen
nonempirical hybrid functional, with the dispersion coefficients and van der Waals radii determined
from first-principles using the recently proposed “TS-vdW” scheme (Tkatchenko, A.; Scheffler,
M. Phys. Rev. Lett. 2009, 102, 073005). This is demonstrated via the important special case of
weakly bound metal-phthalocyanine dimers. The performance of our approach is additionally
compared to that of the semiempirical M06 functional. We find that both the PBE-hybrid+vdW
functional and the M06 functional predict the electronic structure and the equilibrium geometry
well, but with significant differences in the binding energy and in their asymptotic behavior.

1. Introduction

Noncovalent interactions, of which London dispersion is an
important special case, are essential to many fields of
chemistry. Such interactions possess a significant component
of electrostatic attraction between permanent or instantaneous
dipoles and higher order multipoles and dominate in regions
where there is little overlap of charge densities, i.e., at
medium-range to long-range, as compared to the short-range
chemical bond. In principle, exact density functional theory
(DFT) should include accurate treatment of the long-range
correlation, which is essential for describing noncovalent
interactions.1 However, van der Waals (vdW) interactions
(a term that we use here interchangeably with London
dispersion) are inherently outside the reach of (semi)local

approximations to the exchange-correlation (xc) functional
as well as of conventional hybrid functionals, based on
semilocal correlation.1,2

Many strategies toward inclusion of van der Waals
interactions in DFT calculations, at various levels of ap-
proximation, have been proposed. Many of those can be
divided into three broad categories: (1) nonempirical meth-
ods, typically relying on the adiabatic connection theorem,3

wherethelong-rangecorrelationiseithercomputedexplicitly4–11

or integrated with traditional xc functionals;12,13 (2) semiem-
pirically parametrized xc functionals, calibrated for data sets
that include noncovalently interacting systems;14–18 (3)
pairwise addition of C6/R6 corrections to the internuclear
energy expression, damped in the short-range while providing
the desired long-range asymptotic behavior.19–28 Such C6/
R6 corrections are usually semiempirical but can be derived
from first-principles considerations.28

Understandably, most of the literature on DFT computa-
tions of dispersively bound systems has focused on obtaining
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correct geometries and binding energies. There are very
important classes of systems, however, for which it is crucial
to obtain a correct prediction of the electronic structure as
well. An important example, on which we elaborate here, is
that of small-molecule-based organic semiconductors. In such
materials, intermolecular interaction in the molecular crystal
is typically dispersive (or at least has a significant dispersion
component), and geometry predicted using standard func-
tionals can be highly inaccurate, as discussed, e.g., in ref
29. At the same time, an accurate description of the electronic
structure is essential to understanding the relations between
the chemical nature of the constituent molecules and their
function in organic electronic devices.

A key question, then, is whether one can systematically
obtain a sufficiently accurate theoretical treatment of both
noncovalent interactions and the electronic structure, within
a computationally tractable scheme that is preferably widely
applicable and involves as little empiricism as possible. This
is challenging because the electronic structure can be very
sensitive to the type of functional used. A recurring reason
for inadequate treatment of the electronic structure is the
presence of self-interaction errors (SIE),30,31 i.e., the spurious
Coulomb interaction of an electron with itself in the Hartree
term of the Kohn-Sham equation, which is not fully
canceled out by approximate expressions for the exchange-
correlation term. Local and semilocal functionals, e.g., the
local-density approximation (LDA) and various flavors of
the generalized gradient approximation (GGA), respectively,
often exhibit significant SIE that results in a poor description
of the electronic structure of organic molecules and
crystals.32,33 Hybrid xc functionals were found to mitigate
the effect of the SIE significantly via the inclusion of a
fraction of Fock exchange.31–33 Therefore, a desirable scheme
would combine a successful description of van der Waals
interactions with a hybrid functional based description of
the electronic structure.34 This should be possible because
the electronic structure is mostly sensitive to exchange and
short-range correlation, whereas dispersive interactions mainly
affect the total energies and geometries.

In principle, such a successful combination may be
achieved within each of the three above-discussed strategies
for treating van der Waals interactions. The most practical
and successful representative of the first strategy (a nonem-
pirical method relying on the adiabatic connection theorem)
is the “vdW-DFT” functional of Dion et al.13 (see ref 35 for
some recent applications). It is based on a GGA (specifically
revPBE36) exchange functional, combined with LDA for the
local part of the correlation, on top of which the nonlocal
correlation component is added. Although this nonlocal
correlation can be combined with other functionals, results
for, e.g., the binding energy may depend significantly on the
underlying “parent” functional.37 Therefore, we will not be
discussing this approach here. Currently the most popular
representative of the second strategy (semiempirical methods
based on hybrid functionals) is the M06 family of function-
als,17 a family of meta-GGA functionals (i.e., functionals
whose “semi-local” component includes kinetic energy spin-
densities, in addition to the spin-densities and their gradi-
ents31) with varying fractions of exact exchange. This

approach provides some flexibility in the choice of an
appropriate functional, an issue elaborated below. However,
the correct long-range R-6 behavior is still absent from such
functionals even if medium-range noncovalent binding is
well-achieved. The third strategy, addition of pairwise C6/
R6 terms to the internuclear energy term, allows for the
highest degree of flexibility in choosing independently the
appropriate description of the electronic structure, on top of
which a suitable dispersion correction is performed.

Obviously using C6/R6 corrections is not free from
limitations either. First, the approach assumes that nonco-
valent interactions have little direct effect on the electron
density and affect the system mainly by influencing the
equilibrium geometry. Second, screening by the conduction
electrons has to be addressed for metallic systems. Third,
the short-range damping function may be problematic for
the accurate description of short bond lengths. Fourth,
Dobson et al.38 have shown that summation over pairwise
interactions may result in incorrect asymptotic behavior in
certain special cases, e.g., low-dimensional (semi)metallic
systems.

Here, we examine the degree to which a quantitative
treatment of both the electronic structure and the dispersion
interactions is achieved in practice. We show that this is
indeed possible using the recently presented “TS-vdW”
correction scheme,28 in which the leading-order C6 coef-
ficients and vdW radii are determined in a first principles
manner from the DFT ground-state electron density. These
corrections are combined with the GGA of Perdew, Burke,
and Ernzerhof (PBE)39 with the one-parameter nonempirical
PBE-hybrid (also known as PBEh or PBE0),40 or with the
three-parameter semi-empirical hybrid functional B3LYP.41

We compare our results to those obtained from the M06
functional,17 as well as to those obtained from the standard
PBE and PBE-hybrid functionals and to pertinent experiments.

We have chosen two members of the metal-phthalocyanine
(MPc) family as case studies for the above comparison, NiPc
and MgPc. MPc’s are highly stable organic semiconductors
with a broad range of applications in, e.g., light emitting
diodes, solar cells, gas sensors, thin film transistors, and even
single molecule devices.42 Specifically, their electronic
structure has been shown to be highly sensitive to self-
interaction errors.32 Furthermore, it is known that π-π and
π-d interactions, which possess a dispersive component and
are attributed to nonlocal electron correlations that occur in
systems with spatially close-lying π orbitals,43 play an
important role in the stacking of molecules in MPc crystals.
In transition metal Pc’s, such as NiPc, π-d interactions affect
the intermolecular distance in the stack.44 In crystalline
MgPc, π-π interactions not only affect the intermolecular
distance but also lead to a structural change in the molecular
subunit as the Mg atom deviates from the molecular plane
and shifts toward the azamethine N of the adjacent molecule
(see also Figure 1), so that the basic unit of the MgPc crystal
is, in fact, a dimer.45,46 Thus, both NiPc and MgPc provide
stringent test cases for a treatment of both geometrical and
electronic structure.

Here, we calculate the binding energy curves, geometry,
and electronic structure of NiPc and MgPc dimers. We find
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that PBE+vdW, PBE-hybrid+vdW, and M06 all yield
similar geometries, but the electronic structure is well
described only with the PBE-hybrid+vdW, the B3LYP+
vdW,47 and the M06 approaches. Moreover, we find sig-
nificant differences in the binding energy between PBE-
hybrid+vdW and M06. We attribute these differences to the
long-range behavior of these two methods and show that they
can be reduced by applying the TS-vdW C6/R6 correction to
M06.

2. Methodology

a. TS-vdW Correction Scheme. In the TS-vdW28 C6/R6

correction scheme used here, the pairwise vdW interaction,
Edisp, added to the internuclear energy term, is given by

Edisp ) -∑
j>i

fdamp(Rij, Rij
0)C6ijRij

-6 (1)

where C6ij is the dispersion coefficient for the ij pair of atoms,
Rij is the interatomic distance, Rij

0 is the sum of equilibrium
vdW radii for the pair, and fdamp is a damping function
discussed below. The novel feature of the TS-vdW scheme
is that the parameters C6ij and Rij

0 are determined from first
principles. The method yields significantly lower errors for
the S22 database of molecular binding energies than empiri-
cal C6/R6 methods and has been recently shown to outperform
the latter for water clusters.48

Briefly, the TS-vdW scheme is based on accurate ab initio
computed reference values for free atom static dipole
polarizabilities and C6 coefficients,49 a combination rule for
deriving heteronuclear C6 coefficients from homonuclear
static dipole polarizabilities, and Hirshfeld partitioning50–52

of the DFT electron density to calculate the relative polar-
izability of an atom inside a molecule. In this way, different

atomic hybridization states are inherently taken into account
for different molecular geometries. Complete details are
given in ref 28.

The damping function in eq 1 is needed to avoid the
divergence of the R-6 term at short distances and reduce the
effect of the correction on covalent bonds. A Fermi-type
function was used here, in the form

fdamp(Rij, Rij
0) ) [1 + exp(-d( Rij

sRRij
0
- 1))]-1

(2)

where d determines the “steepness” of the damping function
and sR reflects the range of interaction covered by the chosen
DFT exchange-correlation functional.25 By fitting to the S22
database of Jurečka et al.,53 which contains binding energies
of 22 different weakly bound systems close to CCSD(T) basis
set limit, the value of d was set to 20 and sR was set to 0.94
for PBE and 0.96 for the PBE-hybrid.28,54 A similar
procedure for B3LYP yielded an sR of 0.84, indicating that
a smaller range of dispersion interaction is covered, likely
due to a somewhat more repulsive exchange component than
that of PBE or the PBE-hybrid. Finally, as discussed by
Karton et al.,55 the M06 functional yields attraction at
intermediate range but still does not possess the correct long-
range behavior. Therefore, the same fitting procedure was
performed for M06 as well, yielding the sR value of 1.16.

b. Computational Details. The routines for evaluation
of energies and forces using the TS-vdW method have been
implemented in the FHI-aims code56 for consistent geometry
optimizations. FHI-aims is an all-electron electronic structure
code developed at the Fritz Haber Institute. It uses efficient
numerical atomic-centered orbitals (NAO) as a basis set and
allows one to achieve highly converged results with optimum
efficiency in computer resources. In this work, the tier2 NAO
basis set, which yields results that are similar in accuracy to
those of the aug-cc-pVQZ Gaussian basis set for the S22
database, has been employed for geometry relaxation.

Additional calculations of single molecule geometry and
dimer geometry of MgPc and NiPc were performed using
the Gaussian57 code with the PBE, PBE-hybrid, B3LYP, and
M06 functionals. Calculations of the electronic structure of
a single NiPc molecule were performed using the revPBE
functional, the functionals M06L and M062X of the M06
family, and BLYP58-based functionals with similar fractions
of exact exchange. The Def2-TZVP Weigend-Ahlrichs basis
set59 was used for all calculations, except for the MgPc M06
calculations, for which a larger all-electron cc-pVTZ basis60

was used. Throughout this work, the single molecule
geometry was optimized independently for each functional
and basis set.

Binding energy curves were constructed using the PBE,
PBE-hybrid, B3LYP, and M06 functionals, with and without
C6/R6 corrections. The counterpoise (CP) method61,62 was
used to correct for basis set superposition errors (BSSE). In
order to obtain dimer binding energy curves as a function
of a single parameter, the intermolecular distance was varied
under the assumption that the metal atom of one molecule
lies directly above the azamethine nitrogen of the other
molecule,44–46 and that the metal atom is in the molecular
plane. The latter assumption is consistent with experimental

Figure 1. Schematic top-view and side-view of the MPc
dimer. The metal atom of one molecule lies above the
azamethine nitrogen of the other molecule. In the MgPc dimer,
the Mg atom is shifted from the molecular plane, as shown in
the side-view.
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observations for the molecular stacks in crystalline NiPc.44

Therefore, for NiPc the equilibrium geometry was deduced
from the minimum of the binding energy curve. A full
relaxation with the PBE+vdW functional has indeed con-
firmed that the monomers remain planar. As noted above,
for the MgPc dimer the monomers do not remain planar.45,46

Therefore, for this system a full geometry relaxation has
additionally been carried out with all functionals used, so as
to obtain realistic geometries.

The basis set convergence of our calculations was verified
by direct comparison of the eigenvalues and binding energies
obtained from PBE calculations of a MgPc dimer comprising
two planar MgPc molecules at an interplanar distance of 4
Å, using both FHI-aims and Gaussian with the basis sets
specified above. The two spectra were in good agreement
with a maximal difference of 0.0065 eV and a mean error
of 0.002 eV (the latter is equivalent to a relative mean error
of 0.06%), for all eigenvalues larger than -15 eV. The
binding energy obtained using the Gaussian code with the
CP-corrected cc-pVTZ basis set was smaller by 20 meV than
the value obtained using the FHI-aims code with the tier2
basis set, and smaller by 13 meV than that obtained with
the tier3 basis set, which essentially recovers the complete
basis set limit.

For additional insights into basis set convergence issues,
Figure 2 shows binding energy curves of the MgPc dimer,
calculated with PBE using a smaller, double-� (DZ) level
basis set, consisting of an all electron cc-pVTZ basis set for
the Mg atoms and the 6-31G(d,p) basis set for the H,C, and
N atoms. Using a DZ basis set leads to an overbinding of
0.25 eV relative to the FHI-aims tier2 basis set and yields
an intermolecular distance of 3.7 Å, as compared to 4.0 Å
with the tier2 basis set. The CP procedure overcorrects this
overbinding and results in an underbinding of 0.06 eV and
an intermolecular distance of 4.3 Å. The larger, triple-� (TZ)
basis set yields a distance of 4.0 Å, in agreement with the
FHI-aims tier2 result. As expected, its CP correction is much
smaller and reduces the binding energy by 0.05 eV, overcor-
recting by only 0.02 eV compared to the tier2 basis. This
close agreement between results obtained using different
types of basis sets within different codes shows that our
results are well-converged. Basis set convergence tests for
the M06 functional are discussed in the Supporting Informa-

tion (SI). Importantly, we note that reliance on DZ basis sets
may lead to spurious agreement between M06 and PBE+vdW
binding energy curves, whereas the CP-corrected TZ basis
set calculations reveal pronounced differences between the
two curves, which are elaborated below. We note that while
our TZ and tier 2 NAO calculations are sufficiently con-
verged, BSSE errors can also be reduced substantially using
diffuse functions. We have not utilized this route here
because for the large systems studied in this work we have
found that this introduces severe convergence difficulties.

3. Results and Discussion

Because we aim at a treatment of both the equilibrium
electronic structure and the long-range dispersive interactions,
we start our analysis by choosing which functionals are the
most promising candidates for providing such a comprehen-
sive treatment. For examining the TS-vdW C6/R6 correction
scheme, we focus primarily on PBE and the PBE-hybrid as
a prototypical semilocal and hybrid functional, respectively.
We are well aware that B3LYP is likely the most popular
choice for a hybrid functional but even so prefer the PBE-
hybrid for several reasons. First, the PBE-hybrid and B3LYP
yield essentially indistinguishable spectra for metal-phthalo-
cyanines (ref 32 and cf. Figures 5 and 7 below), so we prefer
to introduce as little empiricism as possible. This is especially
so given that the PBE-hybrid has other advantages over
B3LYP, e.g., yielding the correct result for the uniform
electron gas limit and doing significantly better at predicting
solid state atomization energies.31,63 Furthermore, as noted
above the range of dispersion interaction covered by the PBE-
hybrid is somewhat higher than that of B3LYP. Nevertheless,
because of its prominence in applications we do provide
B3LYP results as well.

Next, we assess, using the NiPc electronic structure, which
of the M06 family of functionals we should pursue. This
family, constructed by Zhao and Truhlar,17 consists of four
different functionals, denoted as M06 (fractional Fock
exchange), M06L (fully semilocal treatment of exchange,
i.e., no fractional Fock exchange), M06-2X (with twice as
much Fock exchange as in M06), and M06-HF (with 100%
Fock exchange). Of those, M06 was recommended by Zhao
and Truhlar for systems involving both transition metal
chemistry and noncovalent interactions,17 but it is instructive
to consider the accuracy of the electronic structure obtained
with other functionals of the M06 family. We additionally
examine the electronic structure obtained from the revPBE
GGA, primarily because the above-discussed “vdW-DFT”
functional is based on it.

Figure 3 shows calculated eigenvalue spectra of the NiPc
monomer, as well as the same spectra broadened by
convolution with a 0.35 eV Gaussian to simulate the effective
experimental resolution of ultraviolet photoemission spec-
troscopy (UPS) experiments performed by Ellis et al. on NiPc
thin films,64 also shown in the figure. We note that, strictly
speaking, Kohn-Sham eigenvalues are not equivalent to
quasiparticle excitation energies even if the exact xc func-
tional is used.31 Nevertheless, if a suitable approximate xc
functional is used, they are often good approximations to
electron removal energies.31,33c,65 The figure compares the

Figure 2. Binding energy curves for the MgPc dimer,
obtained with the PBE functional using various basis sets. CP
denotes use of the counter-poise correction method.
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results of three M06 variants with corresponding one-
parameter hybrids66 based on BLYP,58 a semiempirical GGA
functional. To examine the role of exchange, in each case
the M06-variant result is compared to a BLYP-based hybrid
that has the same the fraction of Fock exchange. Two trends
are immediately obvious: First, whereas the M06 spectrum
agrees well with experiment, M06L and M06-2X yield
spectra that do not. This agrees with the recommendation of
Zhao and Truhlar. Second, the M06-variant spectra are
remarkably similar (though, of course, not identical) to the
corresponding BLYP-hybrid ones. This shows that, despite
the many additional fitting parameters used in any M06
variant, the dominant factor in determining the electronic
structure is the fraction of Fock exchange. In turn, the spectra
obtained with BLYP and with BLYP+27% Fock exchange
are remarkably similar to previously published spectra (ref
32 and cf. Figure 5 below), obtained with the nonempirical
PBE and PBE-hybrid (i.e., 25% Fock exchange) functionals,
respectively, further underscoring the dominant role of Fock
exchange. Therefore, of the entire M06 family, only M06 is
considered hereafter.

Interestingly, the leading (HOMO) and second peak of the
revPBE spectrum are much closer to the spectra obtained
from the hybrid functionals (BLYP+27% Fock exchange and
M06) than to those obtained from the semilocal functionals
(BLYP and M06L). We have observed a similar behavior

for other MPc’s (not shown for brevity). Likely, this is at
least partly because the exchange enhancement factor of
revPBE was constructed by fitting to exact exchange-only
calculations of total atomic energies.67 This compensates to
some extent for self-interaction errors and thus improves the
fit to experiment in the higher-lying part of the spectrum.
However, this comes at the price of distorting the shape of
the third and fourth peaks. Because revPBE, while better
than other GGAs in this respect, still fails to yield a
satisfactory electronic spectrum, we do not discuss it further
here.

We now turn to the binding energy curves of NiPc and
MgPc dimers, shown in Figure 4, obtained using the PBE,
PBE-hybrid, B3LYP, and M06 functionals, with and without
the C6/R6 correction. Clearly, the uncorrected PBE and PBE-
hybrid calculations underestimate considerably the strength
of the noncovalent interaction and overestimate the inter-
molecular distance in both dimers. The B3LYP calculations
reveal no net attraction at all. This is a known tendency of
semilocal and conventional hybrid functionals that has been
demonstrated repeatedly for various systems (see, e.g., refs
1, 2, 13, 14, 19, 20, 22, 26). For both dimers, M06
significantly improves upon the semilocal and hybrid func-
tionals, yielding binding energies that are higher by about
1.0 eV. However, the binding energies obtained with
PBE+vdW, PBE-hybrid+vdW, and B3LYP+vdW are higher
yet, by ∼0.7 eV as compared to M06. This difference
between the TS-vdW corrected results and M06 is larger than
the level of accuracy found in recent M06 studies of smaller
dispersively bound systems,55,68 likely due to the sheer size
of the MPc molecules and the contribution of the π-d

Figure 3. Computed NiPc single molecule spectra, calculated
with revPBE, different M06-variants, and BLYP-based single-
parameter hybrid exchange-correlation functionals. Raw eigen-
value data, as well as the same data broadened by a 0.35
eV Gaussian, are shown. This facilitates comparison with the
UPS data of Ellis et al.,64 obtained for a 11.8 Å NiPc film at
θ ) 70°, also shown in the figure.

Figure 4. Binding energy curves, obtained with different
exchange-correlation density functionals, for (a) NiPc and (b)
MgPc dimers, composed of planar molecules.
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interaction. Furthermore, this difference can be traced back
to the long-range behavior of the M06 functional, which is
essentially the same as that of PBE or PBE-hybrid at
intermolecular distances larger than 5.5 Å. For some ap-
plications, the latter difference may be practically unimpor-
tant if the near-equilibrium region is well-described. How-
ever, it is fundamentally important to realize that the hybrid
meta-GGA approach does not possess the correct asymptotic
behavior. This limitation may manifest itself practically as
well, e.g., in systems where a cumulative effect of many
long-range dispersive interactions is important.

For both dimers, the addition of the C6/R6 correction to
the M06 functional recovers the correct long-range behavior
and does not affect the equilibrium intermolecular distance.
However the binding energy increases by ∼1.0 eV, becoming
∼0.3 eV larger than with PBE+vdW or PBE-hybrid+vdW.
We note that the remaining difference may be attributed to
the employed damping function. Since M06 already provides
considerable attraction at the intermediate range, it may
require a different model for the damping function. Without
experimental or high-level quantum-chemical data for the
binding energy, it is hard to say which functional yields a
more accurate binding energy. However, the difference
between PBE+vdW or PBE-hybrid+vdW and M06+vdW
is significantly reduced (0.3 eV) as compared to the differ-
ence between uncorrected M06 and PBE(-hybrid)+vdW (0.7
eV).

To understand how well the approaches studied here do
at geometry prediction, we have computed the equilibrium
intermolecular distances obtained for the NiPc and MgPc
dimers, as well as the shift of the Mg atom from the
molecular plane for the latter. The computed values, com-
pared to experimental data, are given in Table 1 (additional
data on single molecule bond lengths and angles are given
in the SI). As discussed above, PBE and PBE-hybrid
significantly overestimate the equilibrium intermolecular
distance of both dimers, whereas M06 and PBE+vdW yield
values that are in good agreement with the experimental ones.
The distance of the Mg atom from the molecular plane is
underestimated by PBE and PBE-hybrid by ∼0.3 Å, whereas
it is within ∼0.1 Å from experiment with PBE+vdW and
within ∼0.15 Å with M06. Full relaxation was not performed
for M06+vdW, since the latter functional is not implemented
in FHI-aims. However, on the basis of the binding energy
curve of the planar dimer, we expect only minor changes
from the uncorrected M06 dimer geometry.

Having accounted for dispersive interactions such that the
correct equilibrium geometry was obtained, we now return
to the electronic structure. Figure 5 shows calculated
eigenvalue spectra of the NiPc dimer, as well as the same

spectra broadened by convolution with a 0.35 eV Gaussian
to simulate the effective experimental resolution of ultraviolet
photoemission spectroscopy (UPS). The calculated spectra
are compared to the single molecule spectrum calculated with
PBE-hybrid, as well as to the thin film UPS data of Ellis et
al.,64 also shown in the figure.

As expected, the dimer PBE-hybrid spectrum is similar
to that of the single molecule, with some level splitting due
to the interaction between the two molecules. In previous
work, it was shown that for the NiPc single molecule, as
well as for other transition metal Pc’s, the PBE functional
fails qualitatively, primarily because of underbinding of
localized orbitals due to self-interaction errors.32 A similar
picture is revealed for the NiPc dimer, where the spectra
calculated with the hybrid functionals, PBE-hybrid and M06,

Table 1. Intermolecular Distance in the NiPc and MgPc Dimers and Mg Atom Shift out of the Molecular Plane for the Lattera

NiPc intermolecular distance [Å] MgPc intermolecular distance [Å] Mg atom shift [Å]

expt 3.24 [44] 3.172 (120 K), 3.185 (260 K) [45] 0.613 (120 K), 0.454 (260 K) [45]
PBE 4.2 3.79 0.88
PBE-hybrid 4.1 3.73 0.86
M06 3.30 3.30 0.61
PBE+vdW 3.22 3.29 0.56

a Calculated with the PBE, PBE-hybrid, M06, and vdW-corrected PBE functionals, compared to experimental values.

Figure 5. NiPc single molecule (orange online) and dimer
(blue online) spectra, calculated with different exchange-
correlation functionals and broadened by a 0.35 eV Gaussian,
compared to the UPS data of Ellis et al.,64 obtained for a 11.8
Å NiPc film at θ ) 70°. The dimer eigenvalues shown are
those obtained for the equilibrium geometry specified in Table
1, except for the PBE-hybrid+vdW and B3LYP+vdW eigen-
values that were calculated for the geometry obtained with
PBE+vdW.
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agree with experiment even at the overestimated intermo-
lecular distance of 4.1 Å (obtained with the uncorrected PBE-
hybrid). Contrary to the hybrid spectra, the PBE spectra are
quite different from experiment. An obvious difference from
experiment is that the PBE spectrum is “compressed”; i.e.,
there is a general narrowing of the gaps between peaks and
more energy levels are “squeezed” into a given energy
window. “Compression” of experimental spectra is a well-
known tendency of semilocal functionals, which can be
attributed to the comparison of Kohn-Sham eigenvalues
with quasiparticle excitation energies.31,69,70 (Note that in a
hybrid calculation, unlike in a “true” Kohn-Sham one, one
makes use of a nonlocal potential that can mimic the nonlocal
self-energy. This may avoid the “compression” problem.31,32)
Moreover, in the PBE spectrum there is a spurious peak
between the experimentally observed first and second peaks
and the subfeatures for the second peak are missing. This
PBE distortion of the line shape remains with PBE+vdW
geometry, but the PBE-hybrid+vdW and B3LYP+vdW
retain the correct electronic structure.47

Figure 6 shows the eigenvalues of the MgPc molecule,
obtained with different functionals, together with selected
molecular orbitals and their energy positions. In agreement
with trends observed for other transition metal Pc’s,32 the
PBE spectrum of MgPc also appears to be affected by SIE.
The b2g, eu, b1g, and a1g orbitals, localized over the central
region of the molecule, are shifted to higher energies
compared to the hybrid spectra, leading to a distortion of
the PBE spectrum.

Figure 7 shows the calculated eigenvalue spectra of the
MgPc dimer, as well as the same spectra, broadened by
convolution with a 0.35 eV Gaussian to simulate the effective
experimental resolution of UPS. Single molecule spectra
obtained with PBE and PBE-hybrid are also shown. As
expected, the dimer spectra are similar to those of the single
molecule, obtained with the same functional, with some level
splitting due to the interaction between the two molecules.
Similarly to NiPc, the PBE spectra obtained for the PBE
and PBE+vdW geometries appear compressed compared to

the hybrid spectra. However, the differences in the line shape
between the PBE and the hybrid calculations are not as
visually obvious for MgPc as they are for NiPc, at least at
the broadening level used.71 Still, on the basis of the
qualitative differences in molecular orbital ordering shown

Figure 6. Energy and ordering of selected MgPc molecular orbitals, calculated with different exchange-correlation functionals.
All spectra were shifted so as to align the highest occupied molecular orbital (HOMO). For clarity, only one example of each
doubly degenerate eg and eu orbital is shown.

Figure 7. MgPc single molecule (orange online) and dimer
(blue online) spectra, calculated with different exchange-
correlation functionals and broadened by a 0.35 eV Gaussian.
The dimer eigenvalues shown are those obtained for the
equilibrium geometry specified in Table 1, except for the PBE-
hybrid+vdW and B3LYP+vdW eigenvalues that were calcu-
lated for the geometry obtained with PBE+vdW.
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in Figure 6, as well as on previous work on identifying self-
interaction errors in similar32 and other33 organic molecules,
we believe that the hybrid calculations are more reliable. A
comparison against high-resolution experimental data could
provide a definitive answer, should such data become
available.

Even though PBE+vdW yields accurate geometries for
the noncovalently bound systems studied here, it still fails
to give a good description of the electronic structure,
primarily due to self-interaction errors, whereas hybrid
functionals yield spectra that are in good agreement with
experiment (for NiPc) even with overestimated intermolecu-
lar distances. For both the NiPc and MgPc dimers, M06
provides good accuracy for the geometry and the electronic
structure, but M06 does not capture the long-range asymp-
totics and yields a binding energy significantly lower than
those obtained with the TS-vdW correction.

We therefore propose the following scheme for DFT
calculations of systems involving noncovalent interactions:
First, geometry relaxation can be performed with a PBE+vdW
calculation, which is computationally less demanding than
a corresponding PBE-hybrid+vdW calculation, yet yields
binding energy curves that are practically identical to those
obtained with the latter and in good agreement with pertinent
experiments. This step is then to be followed by a calculation
with the PBE-hybrid functional in order to obtain reliable
electronic structure data.72 Such a scheme is expected to
provide a treatment of noncovalent interactions on the one
hand and the electronic structure on the other hand. Since it
is not based on a particular training set, it can be applied
robustly to a wide range of materials.

4. Conclusion

The binding energy curves, geometry, and electronic structure
of NiPc and MgPc dimers were calculated using the PBE,
PBE-hybrid, B3LYP, and M06 functionals with and without
a first principles C6/R6 correction. The PBE and PBE-hybrid
functionals, inherently unsuitable for treating dispersive
interactions, significantly underestimate the strength of the
π-d and π-π interactions in the NiPc and MgPc dimers,
respectively. Unlike PBE and PBE-hybrid, both M06 and
PBE+vdW yield geometries in good agreement with experi-
ment. However, PBE+vdW seriously distorts the electronic
structure due to self-interaction errors.47 Conversely, M06
does very well for the electronic structure but its binding
energy is significantly different from that of PBE+vdW. This
difference, which is accentuated by the sheer size of the
system, reflects the fact that M06 does not possess the correct
R-6 asymptote. Correcting the long-range dispersion brings
M06 into much better agreement with PBE+vdW.

The binding energy curves obtained with PBE-hybrid+vdW
are essentially indistinguishable from those obtained with
PBE+vdW; i.e., both functionals possess the correct asymp-
totic behavior and do equally well on the geometry. But
unlike PBE, PBE-hybrid (as well as B3LYP) mitigates the
self-interaction errors and also describes the electronic
structure well. Still, relaxation with PBE+vdW is less
computationally intensive due to the absence of Fock
exchange. Thus, although one can perform the entire calcula-

tion with the PBE-hybrid+vdW or the B3LYP+vdW
scheme, it is often preferable in practice to perform the
relaxation with PBE+vdW, followed by computation of the
electronic structure with the PBE-hybrid.

We conclude that the thorny problem of obtaining a
description of both geometry and electronic structure can
be generally overcome by decoupling the two issues. We
choose a functional that is appropriate to the electronic
structure, but does not include a good description of
dispersive interactions (e.g., PBE-hybrid), and augment it
with first principles corrections for the leading terms of the
dispersion interaction using the TS-vdW approach. This
provides a robust and efficient scheme which we believe will
find much use in future studies of organic electronic
materials.
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Abstract: We present a novel method for the calculation of large molecules and systems, the
multilevel fragment-based approach. It is based on dividing the system into small fragments
followed by separate calculations of these fragments and the interactions between them. Unlike
previous fragmentation-based methods, we use multiple computational methods for the individual
calculations. Using an accurate method only to calculate local interactions and more approximate
methods for interactions over larger distances, it is possible to achieve results very close to a
more demanding fragmented calculation using the higher level method only. The number of
calculations performed at the higher level scales linearly with the size of the system, which
significantly improves the efficiency and allows this scheme to be used for very large systems.
In this work, we have combined density functional theory with the more approximate density
functional tight binding method and applied this method to the calculation of model peptides.
Formulation of first derivatives of the total energy within this fragmentation scheme is also
presented and tested.

Introduction

One of the important trends in modern computational
chemistry is the application of quantum-mechanical (QM)
methods to molecules and molecular systems of increasing
size while achieving the greatest accuracy possible. This is
not an easy task, because of unfavorable scaling of these
methods with the system size. Even the most efficient ab
initio methods, Hartree-Fock (HF) and density functional
theory (DFT), in their most efficient implementations have
O(N3) complexity. This algorithm complexity arises from a
matrix diagonalization that is an indispensable part of all
these calculations. Post-HF methods are even more demanding.

The ultimate goal is linear scaling. It is obvious that it
can be achieved only by introducing some approximations,
which in turn affect the accuracy of the results. Many
approaches have been developed and published. All these
methods can be divided into two very general groups: The
first one is to set up the calculation of the whole system and
then use approximations within the algorithms used to solve
it (for a recent review of linear scaling methods, see refs 1,
2). The second group of methods relies on partitioning of
the system into small fragments that are calculated separately
and then composing the total energy and properties of the
system from results obtained for the fragments. There is some
overlap between these two groups, because some methods
use the electronic structure of the fragments to build the
electronic structure of the whole system, which is then used
to obtain its properties. The adjustable density matrix
assembler3,4 (ADMA) and fragment molecular orbital5-9

(FMO) methods are examples of this hybrid approach.
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In this work, we focus only on the pure fragment-based
approach (FBA), exploiting the advantages of truly inde-
pendent calculations of the fragments. Using only the final
results of the calculations, such as the energy and its
derivatives, this approach is independent of the method used
and the calculations can be done using readily available
software. This strategy also offers the possibility of lossless
parallelization, because the calculations of the fragments can
be distributed to multiple processors without any need of
communication between them during the calculation.

There exist multiple methods based on the principle of
fragmentation and independent calculation of the fragments:
the molecular tailoring approach10-13 (MTA) of Gadre et
al., the molecular fractionation with conjugated caps14-16

(MFCC), the kernel energy method17,18 (KEM) devised by
Huang, Massa and Karle, the generalized energy-based
fragmentation (GEBF) by Li et al.19 and others.20-22 Most
of these methods are designed to achieve linear scaling, and
they do it by calculating interactions of a fragment with only
a limited number of nearest surrounding fragments, selected
either on the basis of their connectivity or by a distance
cutoff. In large systems, the number of nearest neighbors of
a fragment is practically constant and only kN interactions
have to be calculated in a system consisting of N fragments.
This incomplete description is an approximation that works
well in systems where long-distance noncovalent interactions
are negligible. This limits the use of these approaches to
application to mostly neutral, nonpolar systems, because
electrostatics is the strongest of these interactions. Nonco-
valent interactions play a crucial role in biomolecules, such
as DNA and proteins, and their neglect can lead to serious
errors. This issue will be explored systematically later in this
paper.

This drawback has been addressed within the MFCC
method by Li et al.,14 who added all pairwise interactions
between fragments into the scheme. The kernel energy
method also uses all pairwise terms and was later extended
to use higher-order terms up to four-body effects.17

In general, the linear scaling fragment-based methods rely
on the calculation of a limited number of interactions between
the fragments, neglecting the long-distance ones. Including
all interactions is of course possible, but it brings quadratic
scaling with the number of fragments. We present a novel
approach that goes beyond the binary logic of selection of
interaction and combines the advantage of calculating all
pairwise terms with practically linear scaling. To do so, we
combine multiple methods of calculation where they are
appropriate. Only the local interactions are treated by the
most accurate method, while all other interactions are also
included but calculated at a more approximate and thus more
efficient level. The scaling of the higher-level part of the
calculation is linear, because we calculate only a limited (on
average constant) number of interactions of each fragment
with its neighbors. The lower-level part still scales quadrati-
cally, but its total cost is negligible compared to the higher-
level part, because a more efficient method is used.

This multilevel fragment-based approach (MFBA) is in
some respects related to previously reported MFCC calcula-
tions at the MP2 level,14 where distinct distance cutoffs were

used for the calculation of the correlation energy and the
underlying HF calculations. On the other hand, the present
MFBA scheme is, to the best of our knowledge, the first
fragment-based method that combines completely indepen-
dent methods, which opens up many new possibilities. The
MFBA scheme is very general and its possible applications
reach far beyond the single example described in this work.
It can be applied to systems of moderate size, where we
combine accurate ab initio calculations with more efficient
ab initio calculations, semiempirical methods, or molecular
mechanics. On the other end of the scale, we can combine
more approximate atomistic methods, such as molecular
mechanics, with a coarse-grained method used to calculate
long-distance interactions (for example, as the interaction
of multipoles representing the whole fragments). In this
paper, we will focus on the first possibility, with the aim of
achieving high accuracy by combining DFT with the more
efficient self-consistent charge density functional based tight-
binding (SCC-DFTB) method.23

The MFBA method is not limited to two levels of
calculation. We can define more than one distance threshold
and combine multiple methods in the calculation, utilizing
different distance-dependent behavior of different types of
interactions.

Our method of course shares some limitations with other
fragment-based approaches. First, it can be applied only to
molecules or systems that can be divided into fragments.
The electronic structure of the fragments should represent
the respective part of the molecule as closely as possible. It
is not possible to cut a molecule with delocalized electrons,
such as conjugated or aromatic systems. To limit the
perturbation of the electronic structure, the fragments should
be either independent molecules or connected by a chemical
bond that can be cut and replaced by a suitable cap. We use
hydrogen link atoms as the caps to treat C-C single bonds.
Our scheme includes all pairwise interactions but neglects
three-body and higher-order effects. Finally, apart from
perturbation of the electronic structure of the molecule,
adding link atoms to fragments introduces an additional error
due to interaction of these atoms with the rest of the system.
This problem has not been discussed before, and we will
provide a detailed analysis and suggestions for how to
minimize it.

The use of fragment-based methods is not limited to the
calculation of the energy. Schemes for the calculation of
first13,14,24 and second24,25 derivatives or electrostatic
properties26-28 have been proposed in the literature. We have
formulated the calculation of first derivatives of the MFBA
energy, which allows one to use the method for geometry
optimizations. The simple scheme of composing the gradients
reported for other fragment-based methods does not work
in the MFBA scheme, and a more elaborate solution had to
be developed.

Finally, we would like to discuss the relationship between
MFBA and QM/MM or QM/QM′ methods.29,30 Both ap-
proaches have in common the use of different computational
methods combined to take advantage of the accuracy of the
higher-level method and the efficiency of the other, and both
have their specific uses. QM/MM methods are useful when
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there is a localized region of interest, while the rest of the
system acts only as an environment. MFBA, on the other
hand, aims to achieve the accuracy of the high-level method
for the whole system.

In the past, several hybrid schemes using fragment-based
QM calculation have been proposed. It is worth mentioning
that fragment-based calculations can be used as the QM part
in a QM/MM calculation,31 or it can be used to replace some
terms in the MM forcefield.32 Also, an equivalent of a QM/
QM′ scheme has been set up directly within one FMO
calculation by separating the fragments into layers treated
by different methods.33

The accuracy of the MFBA calculations and its comparison
to a scheme neglecting long-distance interaction are dem-
onstrated on a model system designed to be challenging. To
make our conclusions relevant to applications in biochem-
istry, we have chosen a peptide in which electrostatic forces
are important. We systematically study different states of
the peptide, ranging from neutral to zwitterion forms, as well
as an artificial hydrocarbon structure mimicking the same
peptide. For each state, we calculate the energy difference
between R-helix and �-sheet conformations (Figure 1).
Although the MFBA approach can be applied to much larger
molecules, the peptide was chosen to be relatively small (250
atoms), so that a full DFT calculation is still feasible and is
used for comparison.

Methods

MFBA Formalism. Our fragmentation scheme is based
on dividing the system into N fragments followed by
calculations of these fragments and all of their pairs. In
analogy with the kernel energy method, the total energy of
the system is then expressed as a sum of energies of the
fragments Ei and pairwise interaction energies ∆Eij between
them

E ) ∑
i)1

N

Ei + ∑
i)1

N

∑
j)1

i-1

∆Eij (1)

where interaction energy is defined as the difference between
the energy of a pair of fragments Eij and the energies of the
isolated fragments

∆Eij ) Eij - Ei - Ej (2)

This formulation is straightforward for noncovalent pairs,
but the same can be applied to pairs of fragments connected
by a covalent bond. To construct the fragments, the original
chemical bond is replaced by a cap. For reasons described
later, we are limited to the smallest caps possible, and we
systematically use hydrogen atoms. This is the same approach
as using hydrogen link atoms in QM/MM to terminate
covalent bonds at the QM-MM boundary. In pairs (dimers)
of fragments, the original bond between the fragments is
conserved, and in the final summation, the added caps and
the contribution of the new C-H bonds cancel out, leaving
the contribution of the original C-C bonds that are conserved
in the dimers.

In the MFBA method, the level of calculation for each
fragment is decided using the following rules: All covalent
dimers are calculated at the high level in order to describe
the bond between the fragments accurately. For the rest of
the pairs, the level is selected according to the distance of
the fragments, evaluated as a minimal distance of their atoms.
Pairs with distance below an arbitrary cutoff are calculated
at the higher level, and other pairs are calculated at the lower
level. Multiple cutoffs can be introduced if more than two
methods are used for the calculations. The cutoff distance
should be adjusted to the methods used, and it also represents
the parameter balancing accuracy and efficiency. One
important goal of this study is to show how the results change
when the cutoff is varied in systems of different types.

Caps. The way that the system is divided into fragments
may affect the accuracy of the results in multiple ways. To
introduce as little perturbation as possible, we break only
single C-C bonds, which are nonpolar, and replace them
with C-H bonds, conserving well the original electronic
structure of the fragment. The length of the newly formed
C-H bond is calculated from the length of the C-C bond
it replaces by multiplying it by a ratio of their average
equilibrium distances. This value is not critical, since the
contribution of these bonds cancels out in the summation.

Regarding only the electronic structure, the use of larger
functional groups for the caps would be beneficial, but there
is another reason why we use only hydrogen atoms. The
added caps of course interact both with the rest of the
fragment and with the other fragments. The major part of
these interactions cancels out in the summation, but some
interactions between the caps themselves do not and are an
inherent source of error in this type of fragmentation
schemes. Detailed analysis of an example is provided in the
Appendix. To minimize this error, we have to use caps that
interact as little as possible, hydrogen atoms being the best
solution.

Gradient Calculation. The existing implementations13,14

of gradient calculations in fragmentation-based methods
compose the final gradients from gradients on the respective
atoms in fragments using a scheme analogous to the energy
calculation; the gradients on the caps are discarded. This may
work in schemes where large caps are used and the original
bonds at the boundary of each fragment are conserved, but
it does not work when single atoms are used as the caps.

Figure 1. Model 18-peptide in R-helix and �-sheet conforma-
tions. The sequence QAAAAKAFGGWISAFAAN features
various noncovalent interactions between the side chains.
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First, we compose the gradients on all but the cap atoms
using a formula analogous to eq 1. Then, we go through all
cap atoms in all fragments and apply the following correction
to the atom in the original bond (with the appropriate sign
from eqs 1 and 2). Since the position of the cap atom rc is
determined by the position of the atoms in the bond it
replaces (atom in the fragment rf, the original atom it replaces
ro) and the scaling factor g,

rc ) rf + g(ro-rf) (3)

the gradient on the cap atom has to be projected on those
two atoms:

∂E
∂rf

) ∂E
∂rf

+ (1 - g)
∂E
∂rc

(4)

∂E
∂ro

) ∂E
∂ro

+ g
∂E
∂rc

(5)

These equations are analogous to the ones used in
subtractive QM/MM schemes.34 This treatment works not
only with MFBA, but it can be also applied to obtain
gradients in the kernel energy methods, as it can be
considered as a special case of MFBA calculation (with
infinite cutoff distance for the high-level calculation of
interactions).

In the current implementation, the selection of the methods
is done once prior to the calculation. The use of this
simplification in geometry optimization can be justified only
when we do not expect substantial changes of the geometry.
Updating the lists of fragment interactions during the
calculation was not tested but is in principle possible.
However, it might introduce problems caused by disconti-
nuities of the potential energy surface.

Fragmentation. In this paper, we are working with
peptides. Due to their polymeric nature, it is easy to break
them into fragments. There is only one C-C bond in the
peptidic backbone, the bond between C and CR. To automate
the fragmentation, we have developed a tool that identifies
these bonds in a PDB file and prepares the input for
fragmented calculation.

Implementation. For practical use, the MFBA calculation
has to be automated. The implementation itself should be
independent of the methods used for the particular calculation
in order to take advantage of combining different methods.
Our implementation is written in a high-level, object oriented
programming language, Ruby.35 It uses the Cuby (Chemistry
in Ruby) framework, developed recently by one of the
authors (J.R.). The framework provides unified access to
external software packages used for the calculations and
allows convenient manipulation of the results. Multiple
simulation protocols, including geometry optimization and
molecular dynamics algorithms, are available in Cuby and
can be used with MFBA calculations. The resulting code is
easy to use, as it needs only the geometry of the complete
system and a simple definition of fragments (in the form of
a list of bonds that are to be cut) as input. Currently, the
following software packages and programs can be used for
the calculations: AMBER,36 deMon,37 DFTB+,38 Gaussian
03,39 MNDO99,40 MOPAC,41 and Turbomole.42

Parallelization. The fragmented calculation can be made
very efficient by simultaneous calculation of the fragments
and their interactions. We have implemented a parallelization
strategy that distributes these calculations to multiple nodes
in a cluster and multiple processors on these nodes. The
communication between the master node and other nodes,
the initiation of the calculation, and retrieving the results
use the widely available SSH protocol. When the calculation
is run on a single multiprocessor computer, multiple threads
are used to run the calculations in parallel, one at each
processor.

To minimize the time of waiting for the last calculation
to finish, we have implemented a simple queue system used
to run the calculations on a given numbers of processors.
This approach has been used previously in fragment-based
methodology.13 However, distributing the calculation to
multiple nodes can lead to a situation where everything but
the last calculation is finished and most allocated nodes have
to wait for it. To minimize this waiting time, the calculation
can be sorted by their expected length, as demonstrated
previously for the FMO method.43 In the MFBA scheme,
multiple methods with different efficiency are used, but all
the calculations can be put into one common pool because
they are fully independent. The calculations in the pool are
then sorted by the expected time of calculation, which is
approximated from the method used and the number of atoms
in the systems, and passed to a queue system balancing the
load on multiple processors. The sorting ensures that the
longest calculation will start first, and the shortest ones will
then fill the remaining time with as little wasted time as
possible (see Figure 2). This is particularly efficient in the
case of the MFBA scheme, where there is only a limited
number of demanding calculations.

Methods and Software Used. In this paper, we present
MFBA calculations combining DFT and SCC-DFTB23

calculations. All DFT calculations and the DFT part of
MFBA calculations were carried out with the Turbomole
package,42 using the TPSS functional44 and the TZVP basis
set.45 The resolution of identity approximation46,47 was used
to accelerate these calculations. In the case of the zwitterionic

Figure 2. Calculations of fragments distributed to four
processors using sorted queue. High-level calculations (darker
blue, numbered) run first, faster low-level calculations fill the
remaining time. This procedure minimizes the CPU time
wasted while waiting for the last calculation (red).
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peptide, a level shift of 0.5 au was used to improve
convergence of the calculations.

The SCC-DFTB calculations were done in the DFTB+
code,38 using the parameters set “mio”. For the geometry
optimization of model structures, empirical dispersion48

available in the DFTB+ code was used (method abbreviated
as SCC-DFTB-D).

Model Structures. The basis of all our test molecules is
an 18-peptide of the sequence QAAAAKAFGGWISAFA-
AN. It has net charge +1 due to the presence of a lysine
(K) residue. Two conformers of this peptide were build using
the program Ribosome,49 an R-helix and an antiparallel
�-sheet with the two glycine residues in the middle forming
a �-turn. The orientation of the side chains, especially the
aromatic groups, was adjusted manually to ensure favorable
interactions. From this starting structure, four derivatives
were prepared and their geometries optimized using the SCC-
DFTB-D method.

The first structure is the peptide itself in zwitterionic form
that would exist in solution. This serves as a model of a
molecule with very strong intramolecular electrostatic
interactions.

The second model is the same peptide with acetyl and
N-methyl caps. The ends of the peptide chain are thus neutral,
and the only charged group in the molecule is the lysine
side chain. This model presents a structure where there are
important electrostatic interactions between this charge and
the other neutral, but polar, residues.

The third model is build from the second one by removing
the proton from lysine, making it neutral, to further attenuate
the effect of long-distance electrostatics.

Finally, we need a nonpolar model where there will be
only a very small contribution of electrostatics. It was
prepared from the previous model by replacement of all the
peptide bonds (-CO-NH-) with the trans-alkene analog,
-CHdCH-. The result is a hydrocarbon with functional
groups originating from amino acid side chains. The opti-
mized structures differ slightly from the geometry of the
original peptide, but the overall conformation (helix and
straight, parallel strands) is well conserved, the hydrogen
bonds of the peptide replaced by weaker dispersion interac-
tions. Interaction of the side chains stabilizes the structure
further.

These four models are denoted zwitterion, capped, neutral,
and hydrocarbon in the following text.

Performance of geometry optimizations was tested on a
smaller model, a hexapeptide of the sequence FAGGAF with

acetyl and N-methyl caps in the R-helix conformation. The
structure was prepared analogously to the large model.

Results

Comparison to Full Calculations. First, let us compare
fragment-based calculations to full DFT ones. Here, the
fragmented calculation uses only one level, the same DFT
method as in the full calculation, and all pairwise interactions
are included in the scheme. The results (Table 1) show the
accuracy of the fragment-based approach itself. The error
in relative energies caused by the fragmentation reaches 2.7
kcal/mol in the hydrocarbon and capped models. Errors in
absolute energies are substantially larger, but the major part
of them is systematic and is eliminated by working with the
relative energies only. These errors have multiple sources:
most important are the missing three-body terms; other
sources of the error are differences in electronic structure of
the fragments and the complete molecule, interactions
between the caps, and the lack of higher-order terms. These
problems arise from the approximate nature of the method,
and their further investigation is beyond the scope of this
paper.

For the following discussion of MFBA results, the
fragmented DFT calculations will serve as the benchmark,
because they represent the upper limit of its accuracy,
because no interaction are calculated at the lower level.

Neglected Interactions and MFBA. The most important
parameter of both MFBA and the linear scaling scheme
neglecting long-distance interactions is the cutoff distance
above which the interaction energy is calculated by the more
approximate method or not calculated at all. To show the
advantage of MFBA over neglect of the interactions and to
determine the optimal value of the cutoff for further
calculations, we have performed a set of calculations with
varying cutoff on each model. The results are summarized
in Table 2 and plotted in Figure 3. In addition to the final
energy differences, the number of interactions calculated at
the high level (average for both conformers) is listed, because
it is an important measure of the efficiency of the method.

It is clear that the MFBA energies converge much faster
to the benchmark fragmented DFT value. In all four cases,
the results are a good approximation of the benchmark energy
even when the cutoff is set to zero, which implies that only
the covalent pairs are calculated at the high level.

When the interactions above the cutoff distance are
neglected, reasonable results can be achieved only with very

Table 1. Energies of Model Structures Calculated Using DFT without and with Fragmentation and the Energy Difference
between R-Helix and �-Sheet Conformations of the Peptide

E (au) ∆E(R-�) (kcal/mol)

model conformation full fragmented full fragmented

hydrocarbon R -4456.902 -4456.906
� -4456.961 -4456.969 36.9 39.6

neutral R -6192.697 -6192.708
� -6192.711 -6192.719 8.7 7.0

capped R -6193.111 -6193.145
� -6193.098 -6193.027 -8.5 -11.2

zwitterion R -6020.733 -6020.782
� -6020.903 -6020.950 106.9 105.2
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large cutoff values. This behavior is more pronounced in
the polar and charged systems, while in the nonpolar
hydrocarbon model, the results are similar to the MFBA
values, because the long-range interactions here are very
weak. In the zwitterionic model, it is impossible to get good
agreement with the benchmark energy when some of the
interactions are neglected.

Generally, a cutoff of 5 Å is enough for consistent
agreement with fragmented DFT calculation. This cutoff
corresponds to about four calculations of pairs per fragment
on average. Above 8 Å, the MFBA results are within 0.1
kcal/mol from the benchmark value.

Geometry Optimization. This work introduces the pro-
cedure for the calculation of derivatives of the total energy
in the MFBA scheme and related methods, which allows
one to apply this class of fragment-based methods to
geometry optimizations.

We compare three variants of the method with full DFT
geometry optimization: Fragmented DFT calculation (the
KEM method), MFBA calculation combining DFT and SCC-
DFTB, and the linear scaling scheme neglecting the long-
distance interactions. The model system, an R-helical hexapep-
tide, is smaller than in the case of energy calculations. The
peptide was divided into six fragments using the procedure
described above. To put the method in a test, we use a small
cutoff of 3 Å to select the interaction calculated at the higher
level, which means that all pairs of fragments not connected
by a covalent or hydrogen bond are calculated at the lower
level or neglected. The discussion of the cutoff presented
above suggests that using this cutoff distance should clearly
reveal the differences between the methods.

The following convergence criteria were used: energy
difference in the optimization step <0.006 kcal/mol, largest
element of the gradient vector <1.2 kcal/mol/Å, and absolute

Table 2. Energy Difference between Conformers as a Function of Cutoff Distance and Number of Pairs Calculated at the
High Level, Calculated by MFBA and Fragmentation with Neglected Long-Distance Interactionsa

∆E(R-�) (kcal/mol) number of pairs

method cutoff (Å) hydrocarbon neutral capped zwitterion hydrocarbon neutral capped zwitterion

frag. DFT - 39.6 7.0 -11.2 105.2 171 171 171 153
neglected 0 26.9 89.0 73.6 27.4 18 18 18 17

2 34.4 56.7 62.5 117.5 20 31 24 22
3 41.1 43.7 19.7 129.7 49 47 47 42
4 39.5 27.0 1.7 118.3 70 65 66 60
5 39.6 27.5 2.3 112.9 79 70 70 65
8 39.5 12.8 -7.9 138.0 110 99 101 92

12 39.5 8.7 -10.5 114.2 138 125 127 116
16 39.6 7.6 -11.2 116.7 159 146 149 135
20 39.6 7.2 -11.0 117.0 167 161 162 147

MFBA 0 34.4 2.6 -9.6 114.5 18 18 18 17
2 32.8 0.3 -9.8 105.3 20 31 24 22
3 40.7 9.1 -10.0 106.2 49 47 47 42
4 39.4 8.7 -8.9 106.9 70 65 66 60
5 39.7 9.1 -9.3 106.1 79 70 70 65
8 39.5 7.5 -10.9 105.2 110 99 101 92

12 39.6 7.1 -11.2 105.4 138 125 127 116
16 39.6 7.1 -11.2 104.4 159 146 149 135
20 39.6 7.1 -11.2 102.7 167 161 162 147

a The results of fragmented DFT calculation including all the interactions are provided as a reference.

Figure 3. Energy difference between conformers as a function of cutoff distance. For each model (zwitterions, orange;
hydrocarbon, blue; neutral, red; capped, green), the MFBA calculations (solid line) are compared to fragmentation scheme
neglecting long-distance interactions (dashed line). The benchmark value, fragmented DFT calculation including all the pairwise
interaction, is shown as dots.
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value of the gradient vector <1.2 kcal/mol/Å. The energy
decreased smoothly during the optimizations. All four
geometries obtained were very similar and the original
structure of the peptide was conserved. The quality of the
geometries was evaluated in two ways (the results are
summarized in Table 3): First, we calculated the root-mean-
square deviation (rmsd) between the DFT geometry and the
one obtained by the fragment-based method (minimizing
rmsd by translation and rotation of the geometries). Second,
a full DFT calculation was performed on all the geometries
and the energy is compared to that of the DFT geometry.
Both the fragmented DFT calculation and MFBA combining
DFT with SCC-DFTB yield results very close (0.04 and 0.06
Å, 0.06 and 0.07 kcal/mol) to the reference values. When
the noncovalent interactions are neglected, the agreement is
worse: rmsd 0.10 Å, energy difference 0.30 kcal/mol.

Conclusions

We have developed a novel fragmentation-based method
combining multiple levels of calculations to maximize the
accuracy and efficiency of calculations of large molecular
systems: the multilevel fragment-based approach (MFBA).

This approach is not limited to the DFT/SCC-DFTB
combination presented in this paper. While this combination
allows very accurate calculations to be performed on
molecules and systems containing hundreds of atoms, the
same scheme can be used with both more accurate and more
approximate methods.

The MFBA scheme is not limited to two levels of
calculation. Multiple distance cutoffs can be used to select
from multiple methods for each interaction.

The MFBA method was implemented in our modular
framework, Cuby, which allows one to combine different
methods. External software is employed to perform the
calculations, multiple commercial or free computational
packages and programs are supported now and other
interfaces can be added easily.

Fragment-based calculations have an important advantage
of efficient parallelization, because independent calculations
of fragments can be distributed to multiple computers or
processors. Our implementation allows this parallelization

and uses an internal queue system and sorting of the
calculations to use the allocated computational resources as
efficiently as possible.

The performance of the MFBA method was demonstrated
on model molecules derived from an 18-amino acid peptide.
MFBA is superior to the fragmented calculation neglecting
long-distance interactions while almost the same scaling and
efficiency is conserved. MFBA works well even for charged
systems where the scheme neglecting long-distance interac-
tions fails. The accuracy of MFBA calculations is very close
to the fragmented calculation using the higher level only that
served as a benchmark for our calculations. However, further
improvements are required to improve the absolute accuracy
of the fragmentation-based method when compared to a full
calculation.

We have derived the expressions for the calculation of
gradients in the MFBA scheme, which opens applications
of the method in geometry optimization and molecular
dynamics. The same scheme can be applied to the kernel
energy method.

Geometry optimization of a model hexapeptide has shown
that even very approximate MFBA calculation can yield a
geometry almost identical to that of a fragmented DFT
calculation, and both these geometries are very close to the
one from full DFT optimization. The agreement is better than
in the case of energy calculations and makes MFBA an
interesting choice for geometry optimizations of larger
molecules.
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Appendix

Error Introduced by Interaction of the Caps. The addition
of the caps to the fragments is a source of error not only
because they may not represent exactly the original electronic
structure of the fragment, but also because they interact with
each other and with the fragments themselves. A minor part
of these interactions is not canceled in the final summation.

To demonstrate this issue, we will analyze the simplest
system that can be treated with this fragmentation scheme,
a linear system consisting of three fragments. The original
system, the capped fragments, and their pairs are schemati-
cally depicted in Figure 4. Here, we identify all the
interactions between the caps themselves and between the
caps and the fragments and between the fragments in the
pairs and express the energy of each of these subsystems as
the sum of these interactions ∆Exy, energies of the fragments
without the caps Ef(x) and energies of the caps alone Ec(x).

The total summation (eq 1) for this system can be
simplified using eq 2 to the following sum of the subsystems
(the capped fragments and their pairs):

E ) EAB + EBC + EAC - EA - EB - EC (6)

Table 3. Comparison of Results of MFBA Geometry
Optimizationa

MFBA

full DFT DFT DFTB neglect int

rmsd (Å) - 0.04 0.06 0.10
∆E (kcal/mol) - 0.06 0.07 0.30
chain end-end distance (Å) 9.79 9.86 9.90 10.00
ALA2-ALA5 side chain

distance (Å)
6.12 6.16 6.21 6.18

PHE1-PHE6 side chain
distance (Å)

14.24 14.28 14.33 14.35

H-bonds in helix dist (Å) 7.17 7.25 7.29 7.38

a All noncovalent interactions in the model hexapeptide were
calculated using the method listed in the table. Resulting
geometries are compared to the geometry obtained by full DFT
calculation by root mean square deviation (rmsd) of the Cartesian
coordinates and by the energy difference calculated at the DFT
level. Selected intramolecular distances are listed for illustration.
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By substituting the subsystem energies by the sums of the
contributions outlined above and simplifying the expression,
we obtain the total energy as

E ) Ef(A)+Ef(B)+Ef(C) + ∆Ef(A)f(B) + ∆Ef(B)f(C) +
∆Ef(A)f(C) - ∆Ec(B,1)c(B,2) + ∆Ec(A)c(C) + ∆Ef(A)c(C) +

∆Ec(C)f(A) + ∆Ef(A)c(B,2) + ∆Ef(C)c(B,1)(7)

while the desired total energy is only the sum of energies of
the fragments and their interactions

E ) Ef(A)+Ef(B)+Ef(C) + ∆Ef(A)f(B) + ∆Ef(B)f(C) +
∆Ef(A)f(C)(8)

and the remaining terms (eq 7 minus eq 8) are the artifacts
introduced by interactions of the caps.

For this reason, the nature of the caps should be chosen
in a way that these interactions are minimized. We use the
smallest possible caps, hydrogen atoms. Another factor that
affects this error is the size of the fragments, which
determines also the distance between the caps. When larger
fragments are used, this error will not be as pronounced as
when the caps are close to each other and to the other
fragment in a pair.
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Abstract: An atomic counterpoise method is proposed to calculate estimates of inter- and
intramolecular basis set superposition errors. The method estimates the basis set superposition
error as a sum of atomic contributions and can be applied for both independent particle and
electron correlation models. It is shown that the atomic counterpoise method provides results
very similar to the molecular counterpoise method for intermolecular basis set superposition
errors at both the HF and MP2 levels of theory with a sequence of increasingly larger basis
sets. The advantage of the atomic counterpoise method is that it can be applied with equal
ease to estimate intramolecular basis set superposition errors, for which few other methods
exist. The atomic counterpoise method is computationally quite efficient, requiring typically double
the amount of computer time as required for calculating the uncorrected energy.

Introduction

The calculation of weak intermolecular interactions by
electronic structure methods has long been known to suffer
from a systematic overestimation due to the incomplete basis
sets used in practical calculations.1-3 The reason for the
overestimation is that each fragment in a complex can partly
compensate for basis set incompleteness by utilizing basis
functions on the other fragment(s), which commonly is
denoted as basis set superposition error (BSSE). The
counterpoise (CP) correction4-8 is the most common method
for estimating BSSE, while other approaches,9,10 such as the
chemical Hamiltonian approach,11-14 has been less used.

For a complex consisting of two fragments, the CP
correction is calculated by subtracting the fragment energy
calculated in the regular basis set from the fragment energy
calculated in the full basis set for the whole complex. While
it is recognized that this is only an estimate of the BSSE, it
has been demonstrated that the CP-corrected complexation
energy converges more regular toward the basis set limiting
value than the directly calculated value.15-17

While BSSE primarily has been associated with the
systematic overestimation of the stability of intermolecular
complexes, it has been recognized that intramolecular BSSE
is a component of the change in, for example, relative
conformational energies of a single molecule with respect

to changes in basis set.18-20 The CP method has, in a few
cases, been used to estimate intramolecular BSSE by dividing
the molecule into nonbonded fragments and saturating
dangling bonds, but the partitioning into fragments is
nonunique, neglects the BSSE from the removed moiety, and
requires involvement of the user.21-24 Recently Asturiol et
al. have attributed the artificial nonplanarity of aromatic
systems at the MP2 level with certain Pople-type basis sets
to intramolecular BSSE and have used a fragment approach
to perform a CP correction.25,26 Balabin has also used a
fragment-based approach for estimating intramolecular BSSE
in different conformations of small alkanes.27

The accurate calculation of conformational energies of
systems with up to a few hundred atoms, like small peptides,
is important for understanding, for example, biological
recognition and for calibration of force field methods.28 The
relative energies of conformations with different degrees of
compactness are very sensitive to intramolecular BSSE,29-33

and there is clearly a need for methods capable of reducing
this effect. The developments of explicitly correlated (F12)
methods has the promise of calculating accurate correlation
energies with basis sets of only triple-� quality,34,35 and
developments in linear scaling techniques will allow these
methods to be applied to reasonably large system in the near
future.36 In such cases, the BSSE is likely to become a
limiting factor for calculating accurate energies. In the present
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paper, we show that it is possible to define an atomic version
of the CP correction that provides results similar to the well-
known molecular CP for nonbonded fragments and that it
can be used also for estimating intramolecular BSSE.

Computational Details

For a bimolecular complex A-B, the molecular counterpoise
(MCP) correction is defined in eq 1.

Here EA(BasA) indicates the energy of fragment A in the
regular basis set BasA, while EA(BasAB) indicates the energy
of fragment A in the combined basis set for both fragments
and similar for fragment B.

The atomic counterpoise (ACP) correction is defined in
eq 2:

Here EA(BasA) indicates the energy of atom A in the
regular basis set BasA, while EA(BasAS) indicates the energy
of atom A in a subset of the full basis set, which always
includes the regular basis function on A, and the subscript
S indicates the additional subset of basis functions for atom
A. In the intermolecular case, where the two fragments are
not covalently bonded, the subset includes basis functions
on all the atoms in the other fragment, but basis functions
on atoms within the same fragment are excluded. In the
intramolecular case, the subset includes basis functions on
atoms separated from atom A in terms of bonding and
distance, as discussed in the next sections. For the intermo-
lecular case with fragments beyond a certain size, the ACP
can be used to include both intra- and intermolecular BSSE.
Galano and Alvarez-Idaboy have reported a very similar
method denoted CPaa where BasAS includes all basis functions
for the whole system,37 and this is a special case of the
current ACP. They used it for calculating intermolecular
BSSE where the CPaa for the fragments were subtracted from
the CPaa of the complex to provide an alternative to the
conventional MCP that includes differences in intramolecular
BSSE in each of the fragments. For calculating intramo-
lecular BSSE, they partition the molecule into fragments and
treat these as in the intermolecular case.

All calculations have been done using the Gaussian-03
program package38 using unrestricted wave functions for
open-shell species. The spin contamination for all atomic
calculations is completely negligible. The geometries of all
the systems are provided as Supporting Information.

Results and Discussion

Table 1 shows the molecular and ACP corrections for a
T-shaped complex of two N2 molecules (shortest intermo-
lecular distance between atoms is 3.55 Å) as a function of
increasingly larger basis sets of the correlation consistent
type39,40 at the HF and MP2 levels of theory. The MCP
correction is a sum of two contributions for each of the two

N2 fragments, each employing all the basis functions. The
ACP correction is a sum of four contributions for each of
the four N atoms, each employing basis functions for three
atoms, i.e., neglecting the basis functions on the directly
bonded atom. It is seen that the two different methods of
estimating the BSSE provide similar results and that they
reduce to zero as the basis set approaches completeness.
Table 2 shows similar results for two ethylene molecules in
a face-to-face parallel displaced geometry with a shortest
intermolecular distance between carbon atoms of 3.74 Å.

The benzene dimer has been a popular test case for
evaluating the performance of different theoretical methods.41,42

Table 3 shows the MCP and ACP corrections for a sandwich
(S) and a T-shaped benzene-dimer complex, where the
distance between the centers of the two ring systems is 3.6
and 5.0 Å, respectively. It is again seen that the ACP mirrors
the MCP results quite closely at both the HF and MP2 levels
of theory. The results in Tables 1-3, thus, show that the
familiar MCP estimate of the BSSE can be reproduced quite
accurately as a sum of atomic contributions, with the exact
difference between the two estimates depending on the
system and the basis set.

The results in Tables 1-3 have been obtained using atomic
ground states for the ACP calculations, i.e., a triplet state
for carbon and a quartet state for nitrogen. We have tested
the sensitivity of the results to other choices, like a singlet
state for carbon and a doublet state for nitrogen. For the
N2-dimer system (Table 1), the MP2 ACP result with the
cc-pVDZ basis set changes from 1.55 to 1.74 kJ/mol when
using the lowest energy doublet state as the atomic reference
state instead of a quartet state, and both values can be
compared to the MCP result of 1.71 kJ/mol. A significantly
larger value of 4.95 kJ/mol is obtained if an excited doublet
state corresponding to a (2px)2(2py)1 electron configuration
is employed.

∆EMCP ) EA(BasA) - EA(BasAB) + EB(BasB) -
EB(BasAB) (1)

∆EACP ) ∑
A

atoms

EA(BasA) - EA(BasAS) (2)

Table 1. Molecular and ACP Corrections for a T-Shaped
Complex between Two N2 Molecules (kJ/mol)

basis set HF MP2

MCP ACP MCP ACP

cc-pVDZ 1.32 1.18 1.71 1.55
cc-pVTZ 0.54 0.43 1.10 0.69
cc-pVQZ 0.25 0.15 0.56 0.28
cc-pV5Z 0.15 0.06 0.36 0.11
aug-cc-pVDZ 0.32 0.47 1.12 0.88
aug-cc-pVTZ 0.22 0.21 0.75 0.57
aug-cc-pVQZ 0.07 0.09 0.37 0.33
aug-cc-pV5Z 0.01 0.01 0.12 0.12

Table 2. Molecular and ACP Corrections for a Parallel
Displaced Complex between Two Ethylene Molecules
(kJ/mol)

Basis set HF MP2
MCP ACP MCP ACP

cc-pVDZ 1.68 1.64 2.66 2.54
cc-pVTZ 0.60 0.48 1.20 0.97
cc-pVQZ 0.24 0.14 0.53 0.39
aug-cc-pVDZ 0.93 0.92 3.25 2.15
aug-cc-pVTZ 0.18 0.41 1.11 1.33
aug-cc-pVQZ 0.06 0.14 0.49 0.66
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For the S-shaped benzene-dimer complex, the MP2 ACP
results with the cc-pVDZ basis set change from 10.4 to 12.6
kJ/mol, if the lowest (open-shell) singlet state is used as the
atomic reference state for carbon instead of a triplet state,
while the corresponding results for the T-shaped complex
are 7.4 and 8.5 kJ/mol. These values can be compared to
the MCP results of 8.7 and 6.8 kJ/mol, respectively, for the
two complexes. The ACP differences, due to using a singlet
rather than a triplet atomic reference state, diminish for larger
basis sets, and for the aug-cc-pVTZ basis set, for example,
the values for the S- and T-shaped complexes change from
6.8 to 7.1 kJ/mol and from 5.3 to 5.5 kJ/mol, respectively.

These results show, as expected, that the ACP estimate
of the BSSE increases as the electronic distribution of the
atomic reference state becomes more and more diffuse. The
premise of the ACP method is, thus, that the (local) electron
distribution in the molecule resembles the distribution in the
atomic reference state in terms of spatially diffuseness.

For estimating intermolecular BSSE, the ACP procedure
offers little advantage over the corresponding molecular
version, although the ACP method may be computationally
less demanding for large fragments (see the Computational
Considerations Section). For estimating intramolecular BSSE,
however, the MCP procedure requires an ad hoc definition
of an equivalent intermolecular reference system, which
requires user involvement, is nonunique, and only recovers
part of the BSSE.21-24 The ACP method provides a common
reference system for all molecules but requires the definition
of atomic reference states and the subset of basis functions
to be included in the CP calculations. The interpretation of
BSSE in an intermolecular complex, as an artifact due to
basis functions nearby in space but not directly bonded,
suggests that the subspace in an intramolecular case should
be limited to atoms sufficiently far removed in terms of
bonding to effectively be considered as nonbonded atoms.
This is in analogy to the situation in force field methods,
where the nonbonded energy is only calculated for atoms
that are at least three bonds apart, and contributions from
atom pairs that are separated by exactly three bonds are
sometimes reduced.43 The number of bonds between atoms,
which in an ACP sense is considered nonbonded, is therefore
a free parameter which can be used to tune the performance.

While the magnitude of the intermolecular BSSE can
be assessed by a MCP calculation, the magnitude of the
corresponding intramolecular BSSE is more difficult to
quantify. The commonly employed method consists of

evaluating the MCP for a suitable intermolecular model
system.21-24 Valdez et al. have estimated the intramo-
lecular BSSE in folded and extended conformations of
the phenylalanine-glycine-phenylalanine (FGF) tripep-
tide by partitioning the system into two benzene molecules
with the same geometries, as shown in Figure 1.23 The
aug′-cc-pVDZ (aug′ indicates that diffuse functions are
omitted for hydrogen) HF and MP2 MCP and ACP results
using one to eight bonds for defining the subspace in eq
2 are shown in Table 4. As the model system neglects all
atoms in the peptide backbone, the true intramolecular
BSSE for each conformation will be significantly larger
than that of the MCP estimate. However, the backbone
structure of the two conformations is similar, and the
difference in the MCP between the two conformations is,
thus, expected to provide a reasonably accurate estimate
of the difference in the intramolecular BSSE. The results
in Table 4 show that the ACP estimate of the difference
in intramolecular BSSE is relatively insensitive to the
exact value of the number of bonds for defining the
subspace in eq 2. The ACP(1) method is equivalent to
the CPaa method of Galano and Alvarez-Idaboy37 and
appears to underestimate the BSSE difference, but all of
the ACP(2)-ACP(8) results provide useful estimates of the
difference in intramolecular BSSE between the two
conformations. Given the uncertainty in the MCP estimate

Table 3. Molecular and ACP corrections for a Sandwich (S) and a T-shaped Complex of Two Benzene Molecules (kJ/mol)

HF MP2

S-complex T-complex S-complex T-complex

basis set MCP ACP MCP ACP MCP ACP MCP ACP

6-31G** 9.3 13.5 3.3 9.7 11.6 16.4 7.3 13.1
cc-pVDZ 5.0 7.0 2.7 4.3 8.7 10.4 6.8 7.4
cc-pVTZ 1.9 2.2 1.1 1.4 4.9 4.6 3.3 2.9
cc-pVQZ 0.8 0.7 0.5 0.4 2.2 2.1 1.6 1.3
6-31++G** 2.4 4.9 1.5 3.6 15.6 21.3 13.2 14.3
aug-cc-pVDZ 4.9 4.3 4.7 3.6 13.5 10.2 13.0 9.3
aug-cc-pVTZ 0.9 2.1 0.8 1.5 5.5 6.8 5.2 5.3
aug-cc-pVQZ 0.2 0.7 0.2 0.5 1.9 3.5 1.7 2.5

Figure 1. Folded and extended conformations of the FGF
tripeptide and of the corresponding benzene dimer model
systems used for calculating the results shown in Table 4.
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of the intramolecular BSSE, it is difficult to objectively
select a unique lower bonded criterion based on the results
in Table 4.

Another method for estimating the intramolecular BSSE
is to compare the result with a given basis set to the basis
set limiting result, but data for systems containing 50-100
atoms, where intramolecular BSSE can be significant, is
scarce. We have, in recent work, investigated the perfor-
mance of conventional and local MP2 methods for predicting
the energy difference between peptide conformations, includ-
ing helical and extended structures of polyalanines with four,
six, and eight amino acids (42, 62, and 82 atoms, respec-
tively), as shown in Figure 2.44 The local MP2 method
calculates electron correlation using localized occupied
orbitals, and a restricted set of virtual orbitals which
significantly reduces the intramolecular BSSE compared to
canonical MP2.45-47 Table 5 shows the energy differences
between the two conformations for the three peptides with
the aug′-cc-pVDZ and aug′-cc-pVTZ basis sets. The basis
set limiting value obtained by extrapolating aug′-cc-pVTZ
and aug′-cc-pVQZ results44 for the octaalanine peptide is
60-64 kJ/mol, which the LMP2 method mirrors closely with
both the aug′-cc-pVDZ and aug′-cc-pVTZ basis sets. The
canonical MP2 method, on the other hand, overestimates the
stability of the helical structure by ∼30 and ∼20 kJ/mol,
respectively, which was attributed to differences in intramo-
lecular BSSE. For the tetra- and hexa-alanine peptides, the
MP2 and LMP2 results are much closer, which suggests that
the BSSE almost cancels between the two conformations for
these systems.

If the difference between the results from the local and
canonical MP2 methods is taken as a measure of the
difference in intramolecular BSSE, then this allows another
probe of how many bonds atoms must be separated in order
to be considered nonbonded in an ACP sense. Table 5 shows
the difference in ACP calculated for the two conformations
of the polyalanine peptides using different bond separations
for defining the subspace in eq 2. The ∆ACP values do not
depend strongly on which bond criterion is used, but the best
agreement is obtained using a four-bond criterion. The
ACP(1) result, which is equivalent to the CPaa method, again
appears to underestimate the difference in BSSE. It is worth
noting that the ACP(4) results mirror closely the LMP2-MP2

differences for all three systems, including the small positive
and negative values for the tetra- and hexa-alanines, and for
both basis sets.

The two different independent methods for calibration,
using either a suitable intermolecular model system or using
the difference between local and canonical MP2 results,
suggest that an ACP-type correction using a lower bonded
criterion for defining the nonbonded subspace in eq 2 can
provide a useful estimate of the intramolecular BSSE. From
the limited results in the present paper, a value around four
bonds appears to be a heuristic choice, at least for estimating
differential BSSE between different conformations, but
further studies may reveal a different optimum choice. The
atomic reference state is another possible variable, but the
results in Tables 1-5 suggest that ground atomic reference
states can provide useful estimates of the BSSE for even
quite polar systems, like poly peptides. The optimum choice
of atomic reference states for charged systems, especially
with strongly localized charges, will require careful calibra-
tion studies.

Computational Considerations

The MCP method requires calculations for each of the two
fragments in a dimolecular complex, using all the basis
functions for the whole complex, typically doubles the
computational effort compared to calculating the energy of
the complex and the two fragments. The ACP method
requires Natom calculations, each using a large fraction of all
the basis functions for the whole system, which taken at face
value would indicate a large computational overhead,
especially if correlated methods are used. There are, however,
a number of features that significantly reduce the computa-
tional cost:
1. Each calculation has only one atom and, thus, only a small
number of occupied orbitals.
2. Hydrogen has only one electron and, therefore, no electron
correlation energy.
3. If only the valence electrons are correlated, as is often
the case, then the number of correlating electrons for non-
hydrogen atoms is small.
4. Although each calculation has a large number of basis
functions, many contribute only very little to the final results.

The latter point will automatically reduce the computa-
tional effort, if efficient integral-screening techniques are
employed.48 The computational time may also be reduced
by a priori truncating the basis set based on a distance
criterion. Figure 3 shows the magnitude of the HF and the
MP2 ACP(4) corrections for the helical and the extended
conformations of the octa-alanine peptide, as a function of
a cutoff distance beyond which basis functions are excluded
in the ACP calculations. With the aug′-cc-pVDZ basis set,
the MP2 ACP(4) correction is calculated to within 0.5 kJ/
mol of the limiting value with a cutoff distance of 10 Å (the
dimensions of the two conformations are ∼20 and ∼30 Å,
respectively). Given that the ACP only provides an estimate
of the BSSE, there is little reason to refine the numerical
value to an accuracy better than ∼0.5 kJ/mol. The 10 Å
cutoff limit corresponds qualitatively to a distance where the
maximum overlap between basis functions on different atoms

Table 4. Molecular and ACP Corrections for the
Di-Benzene Complexes and the FGF Tripeptide
Conformations in Figure 1 with the aug′-cc-pVDZ Basis Set
(kJ/mol)a

HF MP2

folded extended ∆ folded extended ∆

MCP 4.3 0.2 4.1 13.7 0.8 12.9
ACP(1) 88.5 86.9 1.6 446.9 440.3 6.6
ACP(2) 58.0 54.8 3.2 176.1 164.4 11.7
ACP(3) 39.5 34.5 5.0 96.5 80.9 15.6
ACP(4) 26.6 20.1 6.5 59.6 42.3 17.3
ACP(5) 20.6 14.1 6.5 44.9 28.7 16.2
ACP(6) 16.3 10.3 6.0 35.2 20.3 14.9
ACP(7) 13.5 7.6 5.9 29.6 15.1 14.5
ACP(8) 12.2 6.4 5.8 26.7 12.8 13.9

a In the ACP(n) notation, n indicates the number of bonds
between atoms for defining the basis set subspace in eq 2.
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drops below a certain critical value and will, thus, be smaller
for basis sets without diffuse functions. For the cc-pVDZ
basis set, the ACP(4) results (not shown) stabilize to the same
level of accuracy at a cutoff distance of 7 Å, while basis
sets employing multiple diffuse functions may require a
cutoff distance larger than 10 Å.

The use of a lower bonded and an upper distance criterion
reduces the number of basis functions for each ACP
calculation, and the latter is especially effective for large

systems. The distance criterion means that the overall
computational effort for calculating the ACP scales linearly
with the number of atoms in the system and is, of course,
trivially parallelizable. For the benzene dimer, the compu-
tational time for an ACP calculation is slightly less than the
time required for the MCP calculation. For the helical
conformation of the octa-alanine peptide, the total compu-
tational time for the MP2 ACP(4) calculations is roughly
twice that of the time for calculating the MP2 energy with

Figure 2. Helical and extended conformations of the tetra-, hexa-, and octa-alanine peptides used for calculating the results in
Table 5.

Table 5. MP2 Energy Differences between the Extended and Helical Conformations of Tetra-, Hexa-, and Octa-Alanine
Peptides Shown in Figure 2 as a Function of Basis Set (kJ/mol)a

aug′-cc-pVDZ aug′-cc-pVTZ extrapolated

tetra-alanine MP2 12.6 15.7 18.0
LMP2 18.2 18.6 19.1
LMP2-MP2 5.6 2.9 1.1
∆ACP(1) 2.0 2.7
∆ACP(2) 3.1 1.4
∆ACP(3) 3.5 2.1
∆ACP(4) 4.3 3.0
∆ACP(5) 3.9 3.3
∆ACP(6) 4.4 3.1

hexa-alanine MP2 47.3 45.6 45.6
LMP2 46.2 44.3 45.8
LMP2-MP2 -1.1 -1.3 0.2
∆ACP(1) -0.4
∆ACP(2) 0.4
∆ACP(3) 1.3 -0.3
∆ACP(4) -1.8 -1.4
∆ACP(5) -0.6 -1.6
∆ACP(6) 2.0 1.1

octa-alanine MP2 -94.5 -84.0 -64.0
LMP2 -60.1 -63.2 -60.2
LMP2-MP2 34.4 20.8 3.8
∆ACP(1) 17.5
∆ACP(2) 26.9
∆ACP(3) 32.0 15.4
∆ACP(4) 33.8 20.4
∆ACP(5) 27.1 20.3
∆ACP(6) 25.1 17.3

a ∆ACP(n) indicates the difference in ACP corrections between the helical and extended conformations, where n is the number of bonds
between atoms for defining the basis set subspace in eq 2. Extrapolated indicates results extrapolated to the basis set limit from
aug′-cc-pVTZ and aug′-cc-pVQZ results.44
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the aug′-cc-pVDZ basis set, while the ACP(4) calculations
only require one-third of the time for the MP2 energy for
the extended conformation, due to the larger number of basis
functions discarded by the distance criterion. For typical
applications, the computational time for performing such a
posterori ACP calculations is, thus, comparable to the time
required for generating the BSSE uncorrected results.

We note that it is possible to improve the computational
efficiency if the ACP corrections are generated as an
integral part of the molecular energy calculation, rather
than as an a posterori correction. In the current ACP
procedure, a significant fraction of all the integrals over
basis functions is regenerated for each atomic calculation,
however, all of these integrals are also required for the
molecular energy calculation. If the ACP calculations are
performed at the same time as the molecular energy is
calculated, then the overhead due to recalculating integrals
Natom times will be removed. This suggests that the ACP
method provides a cost-efficient way of estimating BSSE,
especially for intramolecular systems where few other
methods are available.

Summary

We propose an atomic counterpoise (ACP) method, where
the BSSE is estimated as a sum of atomic contributions,
calculated as differences in energy in a regular basis set and
in a subset consisting of basis functions on atoms separated
by a minimum number of bonds. The computational ef-
ficiency can be improved by omitting functions on atoms
separated by more than ∼7 or ∼10 Å for regular and
augmented basis sets, respectively, without affecting the final
results. Atomic ground states are used for all ACP calcula-
tions, but the results are not overly sensitive to using
alternative atomic reference states. Differences in ACP values
are also relatively insensitive to the exact value of the lower
bonded criterion used, which indicates that the majority of

the difference in intramolecular BSSE between conforma-
tions is due to atoms remote in terms of bonding but close
in physical space. From the (limited) results in the present
paper, a value of four as the minimum bond criterion for
including basis functions in the CP correction appears to be
a heuristic choice, but further work may yield a different
optimum value.

The ACP provides a method for estimating BSSE, which
for intermolecular systems mirrors the results obtained
with the molecular counterpoise method but can be applied
with equal ease to estimate intramolecular BSSE as well.
The ACP method is shown to work at both the HF and
MP2 levels of theory, and it is likely that it will be equally
useful for density functional and higher level electron
correlation methods. The calibration has been done by
comparing the intermolecular model systems and to the
local MP2 results, which reduces the BSSE compared to
canonical MP2. The use of local correlation methods for
estimating BSSE requires a careful consideration of the
parameters used for defining the local correlation space,
while the ACP method can be used for both correlated
and independent particle models. The ACP may, thus, be
useful for estimating intramolecular BSSE for systems
where elimination of the BSSE by enlarging the basis set
is infeasible.

The ACP method, except ACP(1), will require ad hoc
adjustments for systems where the bonding pattern is
ambiguous, like transition structures and perhaps hydrogen-
bonded systems, a feature it shares with the molecular
counterpoise method. For charged systems, the ACP method
may need to be modified by utilizing alternative atomic
reference states for at least some of the atoms, and this will
need to be investigated by careful calibration studies. Finally,
we note that it is straightforward to define derivatives of the
ACP corrected energy,49 which should be useful for reducing
artifacts in molecular structures due to intramolecular BSSE.
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Abstract: We present a quantum chemistry benchmark database for general main group
thermochemistry, kinetics, and noncovalent interactions (GMTKN24). It is an unprecedented
compilation of 24 different, chemically relevant subsets that either are taken from already existing
databases or are presented here for the first time. The complete set involves a total of 1.049 atomic
and molecular single point calculations and comprises 731 data points (relative chemical energies)
based on accurate theoretical or experimental reference values. The usefulness of the GMTKN24
database is shown by applying common density functionals on the (meta-)generalized gradient
approximation (GGA), hybrid-GGA, and double-hybrid-GGA levels to it, including an empirical London
dispersion correction. Furthermore, we refitted the functional parameters of four (meta-)GGA
functionals based on a fit set containing 143 systems, comprising seven chemically different problems.
Validation against the GMTKN24 and the molecular structure (bond lengths) databases shows that
the reparameterization does not change bond lengths much, whereas the description of energetic
properties is more prone to the parameters’ values. The empirical dispersion correction also often
improves for conventional thermodynamic problems and makes a functional’s performance more
uniform over the entire database. The refitted functionals typically have a lower mean absolute
deviation for the majority of subsets in the proposed GMTKN24 set. This, however, is also often
accompanied at the expense of poor performance for a few other important subsets. Thus, creating
a broadly applicable (and overall better) functional by just reparameterizing existing ones seems to
be difficult. Nevertheless, this benchmark study reveals that a reoptimized (i.e., empirical) version
of the TPSS-D functional (oTPSS-D) performs well for a variety of problems and may meet the
standards of an improved functional. We propose validation against this new compilation of
benchmark sets as a definitive way to evaluate a new quantum chemical method’s true performance.

1. Introduction

The benefit of evaluating quantum chemical methods by
benchmarking them against accurate experimental or theoretical
energies was first realized by Pople and co-workers. Their work

culminated into the so-called G2/97 test set1 and the enhanced
versions G3/992 and G3/05.3 However, these works mainly
focused on atomization energies (or, equivalently, heats of
formation). Electron and proton affinities and ionization po-
tentials of small molecules played an additional minor role.

Truhlar and co-workers extended the idea of benchmarking
by introducing databases covering a wide variety of different
physicochemical properties, e.g., proton affinities, atomiza-
tion energies, interaction energies of noncovalently bound
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systems, barrier heights and reaction energies of diverse
reactions, spectroscopic properties, transition-metal systems,
and catalytic processes.4-12 Truhlar and co-workers were
also the first to carry out overall statistical analyses of
combinations of different test sets to obtain one final number
(e.g., an overall mean absolute deviation, MAD) for each
tested method. Such an analysis makes an evaluation of any
quantum chemical method and a comparison with other
approaches more feasible. Important and popular benchmark
sets introduced by other groups are, for example, the S22
set for noncovalent systems by Hobza and co-workers,13 and
the ISO3414 set for isomerization energies of organic
molecules, and the ‘mindless-benchmark’ set (MB08-165)15

developed recently in our laboratory.

Having access to a plethora of different published bench-
mark sets, the question is which combination of these is the
best to obtain a thorough insight into a given quantum
chemical method’s performance. First of all, the requirements
for such a ‘set-of-sets’ are that a large cross-section of
chemically relevant properties should be covered and that
the specific subsets should be of an adequate size. Particularly
for the evaluation of density functional theory (DFT)
approximations, such a set is expected to be useful. Nowa-
days, it is well-known that a given density functional (DF),
that performs well for a certain property, is not necessarily
adequate for computing completely different types of sys-
tems. Actual research continues to develop DFs that are
equally well applicable to a variety of different properties.
Therefore, the aforementioned ‘set-of-sets’ would be a useful
tool for determining whether this aim is reached or not.
Furthermore, it can be sometimes seen that benchmark
studies are only carried out for systems that are similar to
those of the empirical fit sets with which the new functionals
were generated. We think that it is crucial to distinguish
between a fit and a validation set and that the latter one
should also cover systems that were not included in the first
one.

In this work, we present such a ‘set-of-sets’ (database),
which covers a variety of 24 subsets for general main group
thermochemistry, kinetics, and noncovalent interactions
(GMTKN24). It covers atomization, relative, and reaction
energies, electron and proton affinities, ionization potentials,
barrier heights between conformers, and noncovalent interac-
tions (inter- and intramolecular). The majority of sets is taken
from the literature.1,5,8-10,13-37 We also present new bench-
mark subsets that are combinations of already published data.
These are the sets for barrier heights of pericyclic reactions
(BHPERI), reaction energies involving small closed-shell
molecules (G2RC), intramolecular London dispersion inter-
actions (IDISP) and for cases that are difficult to treat with
DFT methods (DC9). Furthermore, completely new sets were
developed for this work. These are SIE11, the first set
focusing on self-interaction error-related problems, and
NBRC, describing oligomerization and hydrogen fragmenta-
tion reactions of ammonia/borane systems.

The GMTKN24 database’s composition reflects many
years of experience in benchmarking and applications of DFT
methods to ‘real-life’ chemical problems. The range of
properties covered by the GMTKN24 data set outperforms,

to the best of our knowledge, all other combinations of
databases that have been previously proposed. Therefore, we
think that GMTKN24 is highly representative for chemistry
(excluding transition-metal chemistry). We propose that any
quantum chemical method, that performs well for the entire
database, can be really regarded as an accurate, robust, and
useful method. GMTKN24 itself is also robust in a sense
that adding or deleting one or two subsets does not
qualitatively change the overall rating for the quantum
chemical method under investigation.

This study focuses mainly on the evaluation of density
functionals at the (meta-)generalized gradient approximation
level (GGA). These functionals are still very important for
the computation of the energetics and geometries of large
systems. Particularly the physics community benefits from
using GGAs for the calculation of solids and surfaces.
Because they can be correct for slowly varying densities,
these semilocal functionals are, in principle, better suited for
solids than for molecules. Since Lee-Yang-Parr (LYP)
correlation is not correct for a uniform gas, the ‘LYP-based’
functionals are less satisfactory than the Perdew-Burke-
Ernzerhof based (‘PBE-based’) functionals for the equilib-
rium properties of metals.38 With our new database, we are
now able to investigate this difference also for molecules.

However, besides investigating (meta-)GGA functionals,
theapplicabilityof‘higherrung’functionals(i.e.,B3LYP-D39-41

and B2PLYP-D30,31) will also be tested in this study. We
also want to note that functionals performing well for main
group molecules need not perform well for solids. In
particular, the best functional for main group chemistry, of
those tested here, is B2PLYP, which diverges for solid
metals.

Current DFs depend on a varying number of parameters,
and there are two philosophies for determining these. The
first one is the requirement of fulfilling physical boundary
conditions (e.g., recovery of the uniform electron gas result
for constant densities). Authors favoring this first approach
argue that a DF should be as ab initio as possible and should
be based on physical grounds. In 2005, Perdew et al. gave
a ‘recipe’ for such an approach.42 Examples are PBE43 and
its successor TPSS.44 Contrary to that, the other main strategy
of determining parameters is fitting them to accurate refer-
ence data. Such empirical DFs are, e.g., B3LYP,39,40

HCTH,45 the M05,46,47 M06,11,48,49 and M0850 classes of
functionals and the double-hybrid functionals B2PLYP30 and
mPW2PLYP.51

In the past, though, it was shown that, independent of the
strategy with which the parameters are obtained, there is no
clear right or wrong regarding the actual parameter values.
Different values are more or less useful for the application
to different chemical problems. Evidence for this are revised
versions (with varying names) of the PBE,52-57 TPSS,58,59

BP86,60 PW,61 B3LYP,62 B2PLYP,16,63 and mPW2PLYP16

functionals. In passing, it is noted that the improved
performance of the revised functional versions could not
always be confirmed by other researchers (for revPBE see,
e.g., ref 64), which highlights the need for accurate and
comprehensive benchmark sets, as outlined above.
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Particularly for (meta-)GGA functionals, a variety of
exchange and correlation functionals were proposed in the
past, and with common quantum chemical codes, it is quite
easy to arbitrarily combine these with each other. When
doing this, though, the important question arises, whether
the parameters of a certain exchange functional are optimal
when combining them with a specific correlation functional.
For example, one may ask, whether BLYP65,66 would yield
better results if the parameters were optimized according to
this specific combination of Becke1988 exchange65 with LYP
correlation.66 To the best of our knowledge, such an
investigation has not been carried out yet.

Furthermore, our experience showed that, e.g., for ther-
modynamic properties, the TPSS meta-GGA functional
yields similar results as the PBE functional. This happens,
though, at a higher numerical complexity due to the inclusion
of the kinetic energy density. Do physical boundary condi-
tions lead to restrictions that inhibit improved performance
of a certain DF, like TPSS? Would lifting these restrictions
improve TPSS’s performance compared to PBE? Finally, it
is justified to ask how far one can go with an empirical fitting
procedure for DFs, in general.

In this systematic study, we try to answer these questions.
Based on a well balanced fit set, the parameters of the BLYP,
mPWLYP, PBE and TPSS functionals are fully reoptimized.
This reoptimization is carried out with an empirical disper-
sion correction (DFT-D)41 to take into account long-range
London dispersion effects and to partially withdraw a
medium-range description of London dispersion by the
semilocal functional parts. We think that this provides a better
picture of a given functional’s true performance.

The optimized functionals and their original versions will
be benchmarked against the here presented GMTKN24
database. This allows a thorough evaluation of their perfor-
mance for energetics. Furthermore, geometry optimizations
of small first- and second-row and transition-metal com-
pounds have been carried out, and the resulting bond lengths
are compared to experimental data.

This manuscript is structured as follows: In the following
section, Section 2, an overview of the GMTKN24 database
is given. In Section 3, the computational details are explained.
Section 4 describes the reparameterization procedure, includ-
ing an overview of the fit set and a description of each
functional. In Section 5, the results for the application to
the GMTKN24 set and the optimized geometries are
discussed.

2. The GMTKN24 Database

The herein presented database for general main group
thermochemistry, kinetics, and noncovalent interactions
covers a large variety of 24 different, chemically relevant
subsets (GMTKN24). In Figure 1, an overview of these
subsets is given. For each set, on average, the easiest and
most difficult reactions (for GGA functionals) are shown.
In Table 1, short descriptions for each part of the GMTKN24
database are given, including the number of entries, the
specification of the reference values, and the relevant
citations. Note that none of the reference data include zero
point vibrational energies (ZPVEs) or thermal (enthalpic)

corrections. The type and source of reference data are given
separately for each subset. By comparing different quantum
chemistry programs with each other, we made sure that each
entry is reliable and that the results are reproducible. Different
codes with different technical setups, but for the same
functional/basis set combination, typically produce differ-
ences for MADs of about 0.1 kcal mol-1 or less. Molecules
that led to problems with orbital initial guesses or electronic-
state symmetries were left out. We suggest to use an extended
Hueckel initial orbital guess for open-shell species. All entries
are shown in the Supporting Information, Tables S1-S24,
and are available for download from our Web site.67 The
optimized coordinates of all systems can also be obtained
from there. In total, the GMTKN24 database comprises 1.049
single point calculations and 731 data points (relative energy
values).

2.1. The MB08-165 Subset. The ‘mindless-benchmark’
set (MB08-165) was recently introduced by Korth and
Grimme.15 It contains 165 randomly created so-called
‘artificial molecules’ (AMs) with varying constituencies. For
these molecules, decomposition energies into their hydrides
(for the main group elements 1-4) and homonuclear
diatomics (main group elements 5-7) were calculated. For
these reactions, estimated CCSD(T)/CBS reference values
were computed. The reference data is listed in Table S1of
the Supporting Information. See ref 15 for more details on
the creation of the AMs and the reaction schemes. In contrast
to other benchmark sets, MB08-165 is less biased toward
certain chemical aspects, as it just contains artificial systems.
Korth and Grimme assessed a variety of density functionals
and could reproduce nicely the Jacob’s Ladder scheme,42

with higher-rung functionals yielding better results. We chose
MB08-165 to be the first subset of our benchmark study,
as it can be regarded as one of the most important of all 24
subsets. Compared to the other subsets, it contains a large
number of reference values and involves rather high reaction
energies: 180 single point calculations have to be carried
out to compute all 165 decomposition energies; the average
absolute energy of these reactions is 117.2 kcal mol-1.

2.2. The W4-08 Subset. The W4-08 database by
Karton et al. contains atomization energies of 99 small
molecules.16 The systems are dominated by dynamical
correlation (e.g., H2O and CH4), and a few also include
nondynamical correlation effects (e.g., O3, C2, and BN). Out
of these 99 molecules, 16 are such multireference cases.
Therefore, an additional analysis of this database without
these cases is carried out (see Table 1). This subset is denoted
as W4-08woMR. All reference data are based on W4 or
higher levels of theory (see ref 16). For the complete W4-08
subset, 111 single point calculations have to be carried out.
The average absolute atomization energy is 237.5 kcal mol-1

for the whole set and 261.5 kcal mol-1 for W4-08woMR.
The W4-08 database is listed in the Supporting Information,
Table S2.

2.3. The G21IP and G21EA Subsets. The G21IP subset
contains 36 adiabatic ionization potentials of atoms and small
molecules that were taken from the G2-1 set by Curtiss et
al.17 Note that G2-1 also includes the SH2 molecule in its
singlet and triplet, and N2

+ in its 2Πu state, which are
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problematic in unrestricted Kohn-Sham computations with
some DFs. Thus, these cases were left out. The G21EA set
contains 25 adiabatic electron affinities from the same work.
Reference values are based on back-corrected experimental
data. In total, 71 single point energies for G21IP and 50 for
G21EA have to be calculated. The average absolute energies
are 250.8 and 33.6 kcal mol-1, respectively. The G21IP and
G21EA databases are listed in Tables S3 and S4 of the
Supporting Information.

2.4. The PA Subset. The PA database includes 12
adiabatic proton affinities. On the one hand, the PA set
includes eight small molecules (H2O, C2H2, SiH4, PH3, H2S,
HCl, and H2) based on vibrationally back-corrected W118,68

reference values.18 On the other hand, a homologous series
of four conjugated polyenes (from ethene to all-trans-
octatetraene) is included, that are taken from a study by Zhao
and Truhlar.5 Their reference values are based on estimated
CCSD(T)/CBS results. Note that the polyenes from butadiene
to octatetraene have a large impact on the complete subset’s
MAD because the results are influenced by the delocalization

error of density functionals. Therefore, they could also be
made part of the self-interaction error subset (SIE11).
However, from a chemical point of view, it is still justified
to include them in the PA subset, as protonation of larger
organic compounds is also a relevant issue that needs to be
considered. In order to assess this subset, 24 single point
energies have to be carried out. The average absolute
reference energy is 174.9 kcal mol-1. The PA database is
shown in Table S5 of the Supporting Information.

2.5. The SIE11 Subset. The self-interaction error (SIE)
is a severe flaw in common DFT methods, and finding
appropriate correction schemes is still on the agenda of actual
research.69-73 Although several studies have been carried
out on the SIE and, although it also plays a role in some of
the subsets included in GMTKN24 (barrier heights, proton
affinities), a set which exclusively deals with the SIE has,
to the best of our knowledge, not been proposed yet.

The SIE11 subset comprises 11 systems, which are
extremely prone to the SIE. Five of these are positively
charged, and seven systems are neutral. Examples, are the

Figure 1. The subsets of the GMTKN24 database. For each set, on average, the easiest (top) and most difficult (bottom in
each box) reactions (for GGAs) are shown.
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dissociation of He2
+ into He and He+, the decomposition of

LiF2 intoLiandF2,or thebindingenergyof thelithium-benzene
complex. The complete subset, including reference data, is
shown in Table S6 of the Supporting Information.

Geometries were optimized with SCS-MP274/TZVPP,75

except for the LiF2 decomposition (PBE43/TZVPP). The
reference data were obtained as estimated CCSD(T)76/CBS
values as by Jurečka and Hobza:77

According to the formalism by Halkier et al.,78 an
extrapolation to the complete basis set limit on the MP2 level
(from cc-pVTZ to cc-pVQZ)79 was carried out, and the
difference between MP2 and CCSD(T) correlation energies
on the cc-pVDZ79 level was added (eq 1). For the LiF2

decomposition, this difference was calculated with the cc-
pVTZ basis.

The complete SIE11 subset involves 29 single point
calculations and has an average absolute reaction energy of
34.0 kcal mol-1.

2.6. The BHPERI Subset. The BHPERI subset contains
26 barrier heights of pericyclic reactions. The systems are
taken from three publications and are shown in Table S7 of
the Supporting Information. Ten reactions are taken from a
work by Guner et al.19 They include, among others, the ring-
opening reaction of cyclobutene, the intramolecular Diels-

Alder reaction of cis-1,3,5-hexatriene, and the intermolecular
Diels-Alder reaction of cis-butadiene with ethene. Reference
values were based on CBS-QB3 calculations. Recently,
Karton et al. published W1 reference values for 8 of these
10 reactions.16 For the present study, we chose these eight
W1 and the remaining two CBS-QB3 values as reference
data. Furthermore, BHPERI includes nine 1,3-dipolar cy-
cloadditions that were taken from a publication by Ess and
Houk,20 with improved reference values by Grimme et al.
(CBS-QB3).21 These reactions are based on diazonium,
azomethine, and nitrilium betaines as 1,3-dipolar species.
Finally, seven Diels-Alder reactions of different dienes with
ethene are taken from the work of Dinadayalane et al. (CBS-
QB3 reference values).22 The final BHPERI set involves 61
single point calculations and has an average barrier height
of 19.4 kcal mol-1.

2.7. The BH76 and BH76RC Subsets. The BH76 subset
is a combination of the HTBH388 and NHTBH389 databases
by Truhlar and co-workers. HTBH38 contains forward and
reverse barriers of 19 hydrogen atom transfer reactions.
NHTBH38 comprises 38 barriers of 19 heavy-atom transfer,
nucleophilic substitution, unimolecular, and association reac-
tions. Reference values are based on W1 calculations and
‘best theoretical estimates’ (see refs 8 and 9 for more details).
The combined BH76 test set involves 95 single point
calculations and has an average barrier height of 18.5 kcal
mol-1. It is shown in Table S8 of the Supporting Information.

Table 1. Description of the Subsets within the GMTKN24 Database

set description no. av |∆E|a ref method reference

MB08-165 decomposition energies of artificial molecules 165 117.2 est. CCSD(T)/CBS b

W4-08 atomization energies of small molecules 99 237.5 W4 c

W4-08woMR W4-08 without multi reference cases 83 261.5 W4 c

G21IP adiabatic ionization potentials 36 250.8 expt. d

G21EA adiabatic electron affinities 25 33.6 expt. d

PA adiabatic proton affinities 12 174.9 est. CCSD(T)/CBS and W1 e,f

SIE11 self-interaction error related problems 11 34.0 est. CCSD(T)/CBS this work
BHPERI barrier heights of pericyclic reactions 26 19.4 W1 and CBS-QB3 c,g,h,i,j

BH76 barrier heights of hydrogen and heavy-atom transfers,
nucleophilic substitution, unimolecular and
association reactions

76 18.5 W1 and theor. est. k,l

BH76RC reaction energies of the BH76 set 30 21.5 W1 and theor. est. k,l

RSE43 radical stabilization energies 43 7.5 est. CCSD(T)/CBS m

O3ADD6 reaction and association energies and barrier heights
for addition of O3 to C2H4 and C2H2

6 22.7 est. CCSD(T)/CBS n

G2RC reaction energies of selected G2/97 systems 25 50.6 expt. o

AL2X dimerization energies of AlX3 compounds 7 33.9 expt. p

NBRC oligomerizations and H2 fragmentations of
NH3/BH3 systems

6 30.2 est. CCSD(T)/CBS this work

ISO34 isomerization energies of organic molecules 34 14.3 expt. q

DC9 nine difficult cases for DFT 9 35.7 theor. and expt. i,r,s,t,u,v,w, this work
DARC reaction energies of Diels-Alder reactions 14 32.2 est. CCSDT/CBS p

IDISP intramolecular dispersion interactions 6 14.1 theor. and expt. q,x,y

WATER27 binding energies of water, H+ (H2O)n and OH- (H2O)n

clusters
27 82.0 est. CCSD(T)/CBS;MP2/CBS z

S22 binding energies of noncovalently bound dimers 22 7.4 est. CCSD(T)/CBS aa

PCONF relative energies of phenylalanyl-glycyl-glycine
tripeptide conformers

10 1.5 est. CCSD(T)/CBS bb

ACONF relative energies of alkane conformers 15 1.8 W1h-val cc

SCONF relative energies of sugar conformers 17 4.9 est. CCSD(T)/CBS dd,ee, this work
CYCONF relative energies of cysteine conformers 10 2.1 est. CCSD(T)/CBS ff

a Averaged absolute energies in kcal mol -1, excluding ZPVEs. b Ref 15. c Ref 16. d Ref 17. e Ref 18. f Ref 5. g Ref 19. h Ref 20. i Ref 21.
j Ref 22. k Ref 8. l Ref 9. m Ref 23. n Ref 10. o Ref 1. p Ref 24. q Ref 14. r Ref 25. s Ref 26. t Ref 27. u Ref 28. v Ref 29. w Ref 30. x Ref 31.
y Ref 32. z Ref 33. aa Ref 13. bb Ref 34. cc Ref 35. dd Ref 36. ee G. Csonka, private communication. ff Ref 37.

ECCSD(T)/CBS ≈ EMP2/CBS + (Ecorr
MP2/small basis -

Ecorr
CCSD(T)/small basis) (1)
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Having calculated the necessary reactants and products of
the above-mentioned 36 reactions, it is straightforward to
also compute the corresponding reaction energies. These are
combined to another subset, denoted by BH76RC. In 6 of
the 36 reactions, the reactants and products are identical (e.g.,
H + FH f HF + H), and therefore, the BH76RC set
contains only 30 reactions. Reference values were calculated
from reference data of the BH76 set. The final BH76RC set
has an average reaction energy of 21.5 kcal mol-1 and is
listed in Table S9 of the Supporting Information.

2.8. The RSE43 Subset. The RSE43 subset contains 43
radical stabilization energies (RSE), defined as H-abstraction
energies for the reactions of hydrocarbons with a methyl
radical (see ref 80 for a thorough discussion of RSEs). All
relevant structures (B3LYP/TZVP) and reference values (est.
CCSD(T)/CBS) are taken from a recent work by Neese et
al.23 Note that their study included the acetyl radical, which
was herein excluded from the RSE43 set due to state ordering
problems. The complete set comprises 88 single point
calculations and has an average absolute RSE of 7.5 kcal
mol-1 (Table S10, Supporting Information).

2.9. The O3ADD6 Subset. Recently, Zhao et al. carried
out an assessment of a variety of different quantum chemical
methods for the thermochemical properties of a multirefer-
ence system.10 They studied the addition reactions of ozone
to ethane and ethyne. For each reaction the formation energy
of the primary ozonide, the barrier height and the association
energy of the van der Waals (vdW) complex were calculated.
Geometries were based on M05/MG3S calculations, and
reference values were obtained at the estimated CCSD(T)/
CBS level. In this work, the same systems are investigated,
and the resulting test set is denoted by O3ADD6. Geometries
and reference data are the same as in the work by Zhao et
al. The complete database includes nine single point calcula-
tions. The average absolute energy is 22.7 kcal mol-1. The
O3ADD6 subset is listed in Table S11 of the Supporting
Information.

2.10. The G2RC Subset. The G2RC subset contains 25
reactions, whose reactants and products are part of the
G2/97 set of heats of formation.1 Based on vibrationally
back-corrected experimental data from ref 1, reference
energies were calculated. The 25 reactions and their reference
values are shown in Table S12 of the Supporting Information.
The G2RC set comprises 47 single point calculations and
has an average absolute reaction energy of 50.6 kcal mol-1.
It contains similar (small) molecules as already included in
BH76RC, which allows cross-checking, and is a test for
internal consistency of the results for different methods.

2.11. The AL2X Subset. In 2008, Johnson et al. reported
a systematic study of delocalization errors in density func-
tionals and their implication for main group thermochemis-
try.24 Their study contained, among others, a test set for the
calculation of the binding energies of the dimers of seven
aluminum compounds of the type AlX3 (X ) H, CH3, F,
Cl, and Br). As reference values, they used back-corrected
experimental data. Here we denote this test set by AL2X.
For this subset, 13 single point calculations have to be carried
out. The average absolute dimerization energy is 33.9 kcal

mol-1. The AL2X database is shown in Table S13 in the
Supporting Information.

2.12. The NBRC Subset. The formation of nitrogen-boron
bonds is sometimes difficult to describe with DFT methods,
and indeed, the investigation of ammonia-borane adducts
gave first evidence for problems of the popular B3LYP
functional.81 In this study, we present a new benchmark set,
called NBRC, which describes oligomerization and hydrogen
fragmentation reactions of ammonia/borane systems. It
consists of six reactions, which are shown in Table S14 of
the Supporting Information. These reactions are the dimer-
ization of ammonia with borane to the NH3BH3 adduct, the
H2 abstraction yielding NH2BH2, and the subsequent dehy-
drogenation to NHBH. Furthermore, three cyclization reac-
tions of NH2BH2 to the four-membered (NH2BH2)2 and the
six-membered borazine and (NH2BH2)3 rings are considered.
The reference values are based on estimated CCSD(T)/CBS
computations (eq 1). The MP2/CBS limit was obtained from
an aug-cc-pVTZ/QZ82 extrapolation. The difference between
the CCSD(T) and MP2 correlation energies was obtained
with the cc-pVTZ basis. Effects due to the frozen core
approximation were estimated at the MP2/cc-pwCVTZ79

level. Geometries are based on PBE083/TZVP75 calculations.
In order to calculate all reaction energies of the NBRC set,
nine single point calculations have to be carried out. The
average absolute reaction energy is 30.2 kcal mol-1.

2.13. The ISO34 Subset. In 2007, Grimme et al. carried
out an evaluation of quantum chemical methods for the
calculation of 34 organic isomerization reactions (ISO34,14

originally from refs 84 and 85). It turned out that some of
these reactions are challenging tasks for common density
functionals and that a benchmark study of new methods
should include these types of reactions. These authors listed
back-corrected experimental reference data that are also used
in our work (see ref 14). The ISO34 set includes 63 single
point calculations and has an average isomerization energy
of 14.3 kcal mol-1. It is shown in Table S15 of the
Supporting Information.

2.14. The DC9 Subset. The DC9 subset comprises nine
reactions that were shown to be difficult to treat with DFT
methods. An overview of the DC9 set is given in Table S16
of the Supporting Information. The first system was discussed
by Piacenza and Grimme, who carried out a systematic
quantum chemical study on DNA base tautomers.25 Among
others, they investigated the tautomeric 2-pyridone/2-hy-
droxypyridine system. The reference value was obtained from
QCISD(T)/TZV(2df,2pd)//B3LYP/TZV(2df,2pd) calcula-
tions. Note that the absolute reference value is rather small
compared to that of the other reactions of this set. For many
DFs, it is particularly difficult to predict the correct sign for
this reaction, and deviations are often of the same magnitude
as the actual reference value. Thus, although this reaction
plays only a minor role in the overall statistics (note that,
therefore, the second easiest reaction is shown in Figure 1),
we still regard it as being important and, consequently, made
it part of the DC9 subset.

The second entry describes the relative energy between
the C20 cage and its bowl isomer. The structures were taken
from the work by Grimme and Mück-Lichtenfeld.86 The
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reference value was computed here at the estimated CCSD(T)/
CBS level (eq 1; MP2/CBS, difference between CCSD(T)/
cc-pVDZ and MP2/cc-pVDZ correlation energies).

The third case was taken from Woodcock et al.26 They
discussed the fact that DFT methods sometimes yield
problematic results for the energetic differences between
cumulenes and poly-ynes. Among others, they studied the
energy separation of the hepta-1,2,3,5,6-hexaene and hepta-
1,3,5-triyne (C7H4) isomers. The reference value is based
on CCSD(T)/cc-pVTZ//MP2/cc-pVTZ calculations.

The fourth case is the dimerization of tetramethyl-ethene
to octamethyl-cyclobutane. The reference value was calcu-
lated here on the SCS-MP2/TZVPP level of theory.

In 2006, Schreiner et al. published a study on the relative
energies of several (CH)12 isomers and showed that many
DFs failed to correctly describe these energies.27 For this
work, two isomers were chosen that are labeled with the
numbers 1 and 31 in the work of Schreiner et al. (see ref 27
for structures).

The sixth reaction is taken from a work by Lepetit et al.,
which dealt with an assessment of density functionals on
carbo-[n]-oxocarbons and on their valence isomers.28 For the
DC9 set, carbo-[3]-oxacarbon and its valence isomer, as
shown in ref 28, were taken from their work. Reference data,
though, were recalculated here. They are based on an
estimated QCISD(T)76/CBS level of theory (SCS-MP2/CBS
with cc-pVTZ and cc-pVQZ; difference between the
QCISD(T)/cc-pVDZ and SCS-MP2/cc-pVDZ correlation
energies).

The seventh entry is the reaction energy for the 1,3-dipolar
cycloaddition between ethene and diazomethane. This reac-
tion was studied by Grimme et al.21 and the reference value
was determined at the CBS-QB3 level.

The eighth reaction describes the decomposition of a Be4

cluster into beryllium atoms. The structure and reference
value (CCSD(T)/CBS) were taken from a study by Lee.29

The last entry is the reaction of diatomic S2 to the S8. This
reaction was also part of the first study of the double-hybrid
functional B2PLYP.30 The experimental reference value and
the geometries were taken from that study (see ref 30 for
more details).

The complete DC9 database includes 19 single point
calculations. The average reaction energy is 35.7 kcal mol-1.

2.15. The DARC Subset. In their work on the delocal-
ization errors of DFT methods, Johnson et al. also investi-
gated 14 typical Diels-Alder reactions.24 These are the
reactions of butadiene, cyclopentadiene, cyclohexadiene, and
furane with ethene, ethyne, maleine, and maleinimide acting
as dienophiles. Reference values are based on CCSD(T)/
CBS calculations. The complete DARC database comprises
22 single point calculations. The average reaction energy is
32.2 kcal mol-1. It is listed in Table S17 in the Supporting
Information.

2.16. The IDISP Subset. The IDISP set covers intramo-
lecular London dispersion effects of large organic systems.
The complete set and its reference values are shown in Table
S18 of the Supporting Information. The first and the last two
systems are taken from a study by Schwabe and Grimme.31

These are the dimerization of anthracene, the hydrogenation

reaction of [2.2]paracyclophane yielding p-xylene, and the
energetic differences between the linear and folded conform-
ers of the C14H30 and C22H46 hydrocarbons. Structures and
reference values were taken from the study by Schwabe and
Grimme. They are based on theoretical or experimental data
(see ref 31 for more details). The third reaction, in Table
S18, is the isomerization of n-octane to iso-octane, which is
also part of the ISO34 database.14 The fourth reaction is the
isomerization of n-undecane to 2,2,3,3,4,4-hexamethyl-
pentane, which was shown in 2006 to be a problematic case
for DFT methods by Grimme.32 The reference value for this
reaction is based on the SCS-MP2/cQZV3P//MP2/TZVP
level of theory. The complete IDISP set involves 13 single
point calculations. The average relative energy is 14.1 kcal
mol-1.

2.17. The WATER27 Subset. Recently, Vyacheslav et
al. published a DFT study on the binding energies of water
clusters.33 Their assessment was based on 27 neutral (H2O)n,
positively charged H+(H2O)n, and negatively charged
OH-(H2O)n clusters. As structures, their optimized B3LYP/
6-311++G(2d,2p) geometries were taken. Reference data
are based on either CCSD(T)/CBS or MP2/CBS calculations.
We included this benchmark set as it can be regarded as a
tough test for the description of strong hydrogen bonds and
of long-range interactions. In the following, this set is denoted
by WATER27. In total, 30 single point calculations have to
be carried out for this set. The average binding energy of
these clusters is 82.0 kcal mol-1. The complete set is listed
in Table S19 in the Supporting Information.

2.18. The S22 Subset. The S22 set was introduced in
2006 by Jurečka et al.13 Since then it has become a very
popular benchmark set for studying noncovalent interactions.
It includes the binding energies of seven hydrogen bonded
dimers, eight complexes with predominant London dispersion
interactions, and seven mixed complexes, where both
hydrogen bonds and dispersion effects are important. Ge-
ometries are based on CCSD(T) or MP2 calculations.
Reference data are estimated CCSD(T)/CBS values (see ref
13 for more details). The complete set comprises 57 single
point calculations. Its average binding energy is 7.4 kcal
mol-1. The S22 set is listed in Table S20 in the Supporting
Information.

2.19. The PCONF Subset. In 2005, Řeha et al. carried
out a thorough conformational study for the phenylalanyl-
glycyl-glycine tripeptide.34 Herein, we present a database
denoted by PCONF, which is part of Řeha and co-workers’
so-called ‘Set 3’ (see ref 34 for more details). In fact, we
took the structures of the eleven most stable conformers of
that particular set, which were obtained at the RI-MP2/cc-
pVDZ level of theory. The relative energies, with respect to
the most stable conformer, were calculated by Řeha et al. at
the estimated CCSD(T)/CBS level of theory. These 10
relative energies, which are used as reference data for our
study, have an average value of only 1.5 kcal mol-1. The
complete PCONF set is shown in Table S21 in the Support-
ing Information.

2.20. The ACONF Subset. The ACONF subset com-
prises 15 relative energies of n-butane, n-pentane and
n-hexane conformers. The relative energies are based on the
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completely staggered conformation for each molecule.
Geometries and reference values are taken from a recent
work by Gruzman et al.35 The latter ones are based on W1h-
val calculations. The complete set comprises 18 single point
calculations and has an average absolute energy of only 1.8
kcal mol-1 (Table S22, Supporting Information).

2.21. The SCONF Subset. Recently, Csonka et al. carried
out an evaluation study of DFs and of basis sets for a variety
of different carbohydrate conformers.36 They presented 3 test
sets consisting of 15 D-allopyranose conformers (ALL15),
15 conformers of the five-membered ring system 3,6-
anhydro-4-O-methyl-D-galactitol (AnGol15), and 4 �-D-
glucopyranose conformers (GLC4). For each test set, Csonka
et al. calculated the energetic differences relative to each
most stable conformer.

The herein considered subset called SCONF combines the
AnGol15 and GLC4 sets of Csonka et al. Geometries are
based on their B3LYP/6-31+G* calculations. As reference
data, the authors used MP2/aug-cc-pVTZ(-f) values. We
regard this level of theory as insufficient and recalculated
the reference data. For the AnGol15 subset the reference
values are based on an estimated CCSD(T) extrapolation (eq
1). The MP2/CBS limit is based on aug-cc-pVDZ and aug-
cc-pVTZ calculations. The difference between CCSD(T) and
MP2 correlation energies was estimated with the cc-pVDZ
basis set. The reference values for the GLC4 set were
provided by Csonka in a private communication (MP2/CBS
with aug-cc-pVTZ and aug-cc-pVQZ; difference between
CCSD(T)/cc-pVTZ and MP2/cc-pVTZ). The reference val-
ues are shown in Table S23 of the Supporting Information.
The notation of the different conformers is the same as
in the original work (see ref 36 for more details). Compared
to the original MP2 reference data, one can clearly see a
difference between those and the herein presented CCSD(T)/
CBS data.

The complete SCONF subset comprises 19 single point
calculations and has an average conformational energy of
4.9 kcal mol-1.

2.22. The CYCONF Subset. The CYCONF subset
contains 10 relative energies of 11 cysteine conformers that
were recently studied by Wilke et al.37 Reference values are
based on estimated CCSD(T)/CBS calculations (see ref 37
for more details). The average relative energy of this set is
only 2.1 kcal mol-1 (Table S24, Supporting Information).

3. Computational Details

The CCSD(T)76 calculations for obtaining reference data were
done with MOLPRO Version 2006.1.87 For QCISD(T)76

calculations, the program RICC developed in our group was
used.88 All other calculations were carried out with a
modified version of TURBOMOLE 5.9.89-92 In general, the
large Ahlrichs’ type quadruple-� basis sets def2-QZVP were
applied93 that yield results quite close to the Kohn-Sham
limit. For the calculations of electron affinities, diffuse s-
and p-functions (for hydrogen only an s-function) were added
from the Dunning aug-cc-pVQZ basis sets;82 the resulting
set is denoted by aug-def2-QZVP. Preliminary calculations
for the WATER27 database showed that the results are very

basis set dependent. As negatively charged species are
included in this set, we decided to add one diffuse s- and
one diffuse p-function (taken from aug-cc-pVQZ) for oxygen.
For example, this procedure reduced the MAD for this set
from 8.2 to 3.8 kcal mol-1 in the case of BLYP-D.

For all (meta-)GGA calculations, the resolution of the
identity (RI-J) approximation was applied.94 For B3LYP39,40

and the DFT part of B2PLYP,30 the RI-JK approximation
was applied.95 For the perturbative part of the B2PLYP
functional, the RI approximation was used as well.92

Auxiliary basis functions were taken from the TURBO-
MOLE basis set library.96 In all cases, SCF convergence
criteria were set to 10-7 Eh and the TURBOMOLE grid m4
was used.94 All open-shell calculations were done within the
unrestricted Kohn-Sham formalism (UKS). Geometry op-
timizations with the (meta-)GGAs were carried out with a
convergence criterion of 10-7 Eh, regarding the changes of
the total energy between two subsequent optimization cycles.

The refitting procedure was applied to the BLYP,65,66

mPWLYP,61,66 PBE,43 and TPSS44 functionals. This proce-
dure and subsequent benchmark calculations were carried
out with the empirical dispersion correction, developed by
Grimme (DFT-D).41 This correction (Edisp) is added to the
conventional Kohn-Sham DFT self-consistent field total
energy EKS-DFT (eq 2):

with

where Edisp is the dispersion energy, C6
ij denotes the dispersion

coefficient for atom pair ij, s6 is a global scaling parameter,
and Rij is an interatomic distance. To avoid near singularities
for small R and for electron correlation double-counting, a
damping function fdmp is applied, which is given by

Here, d ) 20 is a damping parameter and Rr is the sum of
atomic vdW radii. There is overwhelming empirical evidence
that the actual value of d (e.g., in a reasonable range between
d ) 15-25) has only a minor impact on the results. For a
more detailed description of the dispersion correction, see
ref 41.

The DFT-D approach uses a scale factor to derive the
atomic vdW radii (rscal

vdW ) 1.1 in the original work) from
computed atomic electron densities. These original radii,
however, lead to small double-counting effects with some
functionals. Preliminary investigations carried out for this
work showed that this choice of the scale factor, in particular,
influences the description of hydrogen bonds. Therefore, we
decided to rescale the radii in Table 1 of ref 41 by 1.04545
(i.e., rscal

vdW ) 1.15) for all reoptimized functionals. Further-
more, a fixed s6 value of unity gives an asymptotically correct
and consistent description of the London dispersion energy.
Applying the DFT-D correction during the fitting procedure,

EDFT-D ) EKS-DFT + Edisp (2)

Edisp ) -s6 ∑
i)1

N-1

∑
j)i+1

N C6
ij

Rij
6

fdmp(Rij) (3)

fdmp(Rij) )
1

1 + e-d(Rij/Rr-1)
(4)
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furthermore, reduces the very approximate description of
dispersion effects by the semilocal DF.

The parameter optimization procedure is based on the fit
set introduced in Section 4.1. The root-mean-square deviation
(rmsd) for the complete fit set is calculated in each fitting
cycle and is minimized. The, thus, obtained functionals are
in the following denoted by the prefix ‘o’, which stands for
optimized, while the suffix ‘-D’ indicates the use of the
dispersion correction (e.g., oPWLYP-D or oTPSS-D). To
investigate the effect of the reoptimization procedure, calcu-
lations were also carried out with the original (meta-)GGA
functionals. Again the empirical dispersion correction was
applied, but this time in the originally proposed version, i.e.,
rscal

vdW ) 1.1 and the originally determined s6 parameters: 1.20
(BLYP-D), 0.75 (PBE-D), and 1.00 (TPSS-D).41 So far, no
s6 parameter for the mPWLYP functional has been published.
Therefore, we determined it by calculations of the S22 test
set (def2-QZVP basis). The optimal s6 parameter was found
to be 0.90, which yielded the lowest MAD of 0.60 kcal
mol-1. B3LYP-D and B2PLYP-D calculations were carried
outwith theoriginals6 valuesof1.05and0.55, respectively.31,41

4. Reoptimization of Common (meta-)GGA
Functionals

4.1. The Fit Set. The database used for the fitting
procedure consists of 143 entries, comprising seven different
chemical properties. The complete set is shown in Table S25
of the Supporting Information. All reference data are ZPVE
exclusive and without thermal corrections. The first 49 entries
are atomization energies and 47 of them are taken from the
G2/97 test set.1 In addition to the 47 mentioned G2/97
systems, the total atomization energies of the adamantane
and anthracene molecules, derived from experiment,97 are
included. These hydrocarbons have about the same size, but
the uniformly accurate description of their unsaturated and
saturated structures is difficult to achieve by DFs. The next
15 entries are total atomic energies.98 As these energies are
rather large, we scaled down the deviations between the
investigated method and the reference data in order to be
compatible with the other relative energies (see Table S25,
Supporting Information). The fit set includes, furthermore,
eight atomic ionization potentials and seven atomic electron
affinities taken from the G2-1 test set.17 As already men-
tioned above, density functional methods sometimes fail to
correctly predict isomerization energies. Therefore, we
included the difficult isomerization reaction from isooctane
to n-octane, which is also part of the ISO34 database, with
a weighting factor of 5. As the fitting procedure is carried
out with the empirical dispersion correction, it was also
important to include noncovalently bound systems. Therefore,
we took the five smallest systems from the S22 database.
These are the ammonia, water, formic acid, methane, and
ethene dimers. Deviations from the reference values are
scaled by 20 for the first 3 and by 30 for the last 2 systems.
Finally, we included 58 decomposition energies from the
MB08-165 subset, which involves rather small but still
complicated artificial structures.

The fitting procedure itself was already outlined in the
Computational Details Section. In the following, each
reoptimized functional will be discussed.

4.2. The oBLYP-D Functional. The BLYP functional
consists of Becke1988 (B88) exchange65 combined with LYP
correlation. The expression for B88 exchange is65

where EX
LDA is the LDA exchange energy, σ is the spin

variable (for R and � spin, respectively), and xσ is the reduced
gradient variable, defined in eq 6:

The parameter �B88 was originally obtained by a fit to the
Hartree-Fock exchange energies of the six rare gas atoms
from He to Rn. It was determined to be 0.00420 au (see
Table 2).

Lee, Yang, and Parr derived the LYP correlation functional
as a second-order gradient expansion of the Colle-Salvetti
formula.66,69 Miehlich et al. eliminated the second-order
gradient from the LYP formula by partial integration and
presented the following expression, which is usually imple-
mented in DFT program packages (eq 7):100

with

Table 2. Original and Reoptimized Parameters of the
BLYP-D Functional

�B88 aLYP bLYP cLYP dLYP rmsda

BLYP-Db 0.00420 0.04918 0.132 0.2533 0.349 10.01
oBLYP-Db 0.00401 0.05047 0.140 0.2196 0.363 8.26

a Root mean square deviation for the complete fit set in kcal
mol-1. All calculations were carried out with (aug)-def2-QZVP. b s6

) 1.00 and rscal
vdW ) 1.15.

EX
B88 ) EX
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The LYP functional depends on four parameters aLYP, b
LYP

,
c

LYP
, and d

LYP
that were determined from a fit to the He atom

(see Table 2).
An evaluation of the BLYP-D functional with the original

parameters and the modified dispersion correction (s6 ) 1.00
and rscal

vdW ) 1.15) gave an rmsd of 10.01 kcal mol-1. During
the fitting procedure, the rmsd was reduced by 17% and was
converged to a value of 8.26 kcal mol-1. The optimal
parameters of the new oBLYP-D functional are also shown
in Table 2. A reduction of the parameter values �B88 and
b

LYP
is observed, while the other values increased.

4.3. The oPWLYP-D Functional. The Perdew-Wang
(PW) exchange101 can be regarded as an enhanced form of
B88 exchange, that additionally fulfills the Levy condition102

and the Lieb-Oxford bound.103 Its expression is shown in
eq 9:

with

It depends on three parameters bPW, cPW, and dPW. In order
to enlarge the applicability of the PW functional, Adamo
and Barone proposed an adjustment of these three parameters,
leading to the modified Perdew-Wang exchange functional
(mPW).61 This adjustment was carried out as a fit to exact
exchange energies of isolated atoms and to the differential
exchange energies of the helium and neon dimers near their
vdWs minima. These adjusted parameters are given in Table
3.

We started our reoptimization of the parameters with the
mPWLYP-D functional, that yields an rmsd of 8.99 kcal
mol-1. Interestingly, the fitting procedure did not im-
prove the rmsd value as much as for BLYP-D. In fact, the
final rmsd value of the optimized PWLYP-D functional
(oPWLYP-D) is exactly the same as that of oBLYP-D (8.26
kcal mol-1).

All three parameter values of the exchange part were
reduced. The final value of bPW is almost the same as for
�B88 in oBLYP-D (0.00402 compared to 0.00401 au). The
value of cPW was reduced by about 50%. The impact of the
fitting procedure, though, is largest for the parameter dPW.
Its value decreased from 3.72 to 0.79. (Table 3). Adamo and
Barone argued that this parameter is of particular importance
for the long-range behavior of the functional. The observed
large decrease can, thus, be explained by the fact that the

dispersion correction was applied throughout the fitting
process, therefore, reducing the long-range influence inherent
in the mPW functional. Due to the strongly reduced
parameter values for cPW and dPW and the fact that bPW has
a similar value to �B88 of the reoptimized B88 exchange, we
can conclude that the reoptimized PW exchange became
more ‘B88-like’. Evidence for this are the identical rmsd
values for both oBLYP-D and oPWLYP-D.

The changes in the four LYP parameter values show
similar tendencies as for the combination with B88 exchange,
with the exception that here dLYP also decreases. The exact
values, though, are different than for oBLYP-D. All values
of the new oPWLYP-D functional are shown in Table 3.

4.4. The oPBE-D Functional. The PBE exchange func-
tional has the following form (eq 11) in which εX

LDA is the
LDA exchange energy density and FX

PBE(s) the PBE enhance-
ment factor (eq 12):43

κPBE and µPBE are functional parameters and
sσ ) xσ/2(3π2)1/3.

The correlation portion of the PBE functional can be
written as a gradient expansion based on the correlation
energy density of the uniform electron gas εC

LDA (using its
PW parametrization) and on another reduced gradient vari-
able tσ (eqs 13 and 14):

with

The parameter �PBE controls the amount of gradient
correction to the LDA part.

The original parameter values for κPBE, µPBE, and �PBE are
shown in Table 4. Several modifications of these were
already published in the past and showed the sensitivity of
the functional’s results toward the parameters’ values.
Examples are the revised functionals revPBE,52 RPBE,53

mPBE,54 PBEsol,55 and other variants.56,57

When employing the PBE-D functional with the modified
empirical dispersion correction (with s6 and rscal

vdW defined
above), the rmsd for the complete fit set is very large with

Table 3. Original and Reoptimized Parameters of the mPWLYP-D Functional

bPW cPW dPW aLYP bLYP cLYP dLYP rmsda

mPWLYP-Db 0.00426 1.6455 3.72 0.04918 0.132 0.2533 0.349 8.99
oPWLYP-Db 0.00402 0.8894 0.79 0.04960 0.144 0.2262 0.346 8.26

a Rmsd for the complete fit set in kcal mol -1. All calculations were carried out with (aug)-def2-QZVP. b s6 )1.00 and rscal
vdW ) 1.15.
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17.11 kcal mol-1. The reparameterization gave an rmsd of
9.02 kcal mol-1, which means a reduction of about 50%.
The optimized parameter values are also shown in Table 4.
A strong increase for κPBE can be observed. The final value
is 1.2010, i.e., similar to that of revPBE (1.245).52 The other
two parameter values (µPBE and �PBE) decrease.

4.5. The oTPSS-D Functional. Based on the PBE
functional, Perdew, Kurth, Zupan, and Blaha derived a new
meta-GGA functional called PKZB.104 Further adjustments
to PKZB were then undertaken by Tao, Perdew, Staroverov,
and Scuseria resulting in the TPSS functional.44

The exchange part of the functional is similar to that of
PBE in eq 11, but a new enhancement factor FX

TPSS is defined
(eq 15):

κPBE is the same as for PBE. The variable x is given as
(eq 16):

where

p is s2, τ the kinetic energy density, τW the von Weizsäcker
kinetic energy density, and τUEG the uniform gas kinetic
energy density. The µPBE parameter is the same as for PBE;
bTPSS, cTPSS, and eTPSS are new functional parameters (see
Table 5).

The TPSS correlation functional is defined as follows (eq
18):

with

where

As defined in eq 14, � is the relative spin polarization.
The TPSS correlation part depends on two parameters. These
are dTPSS, as shown in eq 18, and �PBE, which is part of the
PBE correlation functional εC

PBE and of ε̃C (ref 44 gives a
detailed description of all the necessary variables in the TPSS
functional). In 2007, Perdew et al. published a reparameter-
ized version of TPSS, with different values for µPBE, cTPSS,
and eTPSS (Table 5).58 In this study, we will refer to this
modified variant as ‘mod-TPSS’. Very recently, another
revised version of TPSS (revTPSS) was presented.59

In total, we chose to optimize seven parameters as shown
in Table 5. Initially, TPSS-D yielded an rmsd of 9.69 kcal
mol-1, which was reduced by about 30% to 6.81 kcal
mol-1. This is the lowest rmsd obtained for the fit set in this
study. Lifting all physical constraints, that were imposed on
the original derivation of TPSS, has a great influence on all
seven parameter values (see Table 5). In particular, bTPSS,
eTPSS, and dTPSS change significantly. The original PBE
parameters show the opposite trend for oTPSS-D than for
oPBE-D, i.e., κPBE decreases, whereas µPBE and �PBE strongly
increase.

5. Results and Discussion

5.1. The GMTKN24 Set. 5.1.1. oBLYP-D and
oPWLYP-D. The MADs for all subsets of the GMTKN24
database are shown for the BLYP-D and oBLYP-D func-
tionals in Figure 2. The actual MAD and the rmsd values
for these functionals with and without dispersion correction
are shown in Tables S26 and S27 of the Supporting
Information. Reparameterizing the functional lowers the
MAD for the MB08-165 subset by 1 kcal mol-1 (from 9.2
to 8.2 kcal mol-1). Atomization energies, on the other hand,
are better described by the original parameters (the MAD
increases by about 1 kcal mol-1 for oBLYP-D). Ionization
potentials and electron affinities are not affected by the
reparameterization. Proton affinities are slightly better de-
scribed by 0.4 kcal mol-1 with oBLYP-D. The effect of the
reparameterization on SIE related problems either is negli-
gible (see the almost identical MADs for BHPERI) or leads
to slightly worse results: the MADs for the SIE11 and BH76
sets increase by 0.5 kcal mol-1 each.

The impact of the new parameters on reaction energies
depends on their type. Whereas the values for the BH76RC,

Table 4. Original and Reoptimized Parameters of the
PBE-D Functional

κPBE µPBE �PBE rmsda

PBE-Db 0.8040 0.21952 0.06672 17.11
oPBE-Db 1.2010 0.21198 0.04636 9.02

a Rmsd for the complete fit set in kcal mol -1. All calculations
were carried out with (aug)-def2-QZVP. b s6 ) 1.00 and rscal

vdW )
1.15.
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RSE43, and ISO34 sets do not change much, improvements
for oBLYP-D can be observed for O3ADD6 (improvement by
0.5 kcal mol-1), G2RC, AL2X, and NBRC (0.7 kcal mol-1,
each). The MADs for the difficult cases (DC9) and Diels-Alder
reactions (DARC) also decrease, although they are still at a
high level with 13.8 and 13.3 kcal mol-1, respectively.

The description of intramolecular dispersion effects im-
proves (from 4.7 to 4.1 kcal mol-1). For the WATER27 set,
though, a peculiar behavior is observed. The MAD value
increases from 3.8 to 6.9 kcal mol-1. On the contrary, oBLYP
without dispersion correction shows an MAD of 4.1 kcal
mol-1 (compared to 9.9 kcal mol-1 for BLYP). This can be
primarily attributed to the large (H2O)20 clusters that contain
many hydrogen bonds. When applying the dispersion cor-
rection to such systems, the results are very prone to the
scale parameter of the vdW radii. On the other hand, the
chosen functional also seems to be important, and compen-
sating effects between functional and dispersion correction
cannot be always foreseen. Another example is the S22 test
set for which the original BLYP-D shows an extraordinary
good result (MAD of 0.29 kcal mol-1), which is in the range
of double-hybrid functionals (see Tables S26 and S35 in the
Supporting Information). The oBLYP-D method yields an
MAD of 0.45 kcal mol-1, which is worse than BLYP-D but
still a good result compared to other functionals.

The four conformer subsets benefit for both BLYP and
oBLYP from the dispersion correction. But for these sets, a
heterogeneous behavior can be observed. While the values

increase for PCONF (by 0.14 kcal mol-1) and CYCONF (by
0.09 kcal mol-1), ACONF and SCONF are better described
by oBLYP-D (by 0.26 and 0.04 kcal mol-1).

The mPWLYP-D and oPWLYP-D functionals (Figure 2 and
Tables S28 and S29 in the Supporting Information) show a
different behavior. The MAD of mPWLYP-D for MB08-165
is already very good for a GGA functional with 8.0 kcal mol-1.
It worsens slightly by 0.2 kcal mol-1 for oPWLYP-D. For most
of the subsets, the MAD almost stays the same when changing
the parameters. Improvements are observed for atomization
energies (by 0.6 kcal mol-1), O3ADD6 (0.5 kcal mol-1), DC9
(1.1 kcal mol-1), DARC (0.7 kcal mol-1), IDISP (0.4 kcal
mol-1), WATER27 (2.1 kcal mol-1), and S22 (by 0.14 kcal
mol-1). The description of conformers improves slightly for
PCONF, does not change at all for ACONF, and worsens
slightly for SCONF and CYCONF.

A direct comparison between BLYP-D and mPWLYP-D
clearly shows that in some cases both functionals differ
significantly from each other, while in others they show similar
results. The reparameterization, though, has the effect that both,
oBLYP-D and oPWLYP-D yield almost identical MADs for
all 24 subsets. This underlines the statement already made in
the previous section, that the PW exchange part became more
‘B88-like’, and that a mathematically simpler functional per-
forms almost identically to a more complicated one.

5.1.2. oPBE-D and oTPSS-D. The behavior of PBE-D and
oPBE-D is more heterogeneous than for the functionals
discussed above (Figure 3 and Tables S30 and S31 in the

Table 5. Original and Reoptimized Parameters of the TPSS-D Functional

bTPSS cTPSS eTPSS µPBE κPBE �PBE dTPSS rmsda

TPSS-Db 0.40 1.59096 1.537 0.21952 0.804 0.06672 2.8 9.69
‘modTPSS’c 0.40 1.39660 1.380 0.25000 0.804 0.06672 2.8 -
oTPSS-Db 3.43 0.75896 0.165 0.41567 0.778 0.08861 0.7 6.81

a Rmsd for the complete fit set in kcal mol-1. All calculations were carried out with (aug)-def2-QZVP. b s6 ) 1.00 and rscal
vdW ) 1.15.

c Modified TPSS variant taken from ref 58. No rmsd value was calculated for this functional.

Figure 2. MADs of the (o)BLYP-D and o/mPWLYP-D methods for the GMTKN24 benchmark set. For a better visualization, a
different scale is used for the last five data sets. All calculations were carried out with (aug)-def2-QZVP.
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Supporting Information). In many cases, oPBE-D performs
better than PBE-D. The MAD for the MB08-165 subset
decreases by 0.7 to 9.2 kcal mol-1, although this value is
still 1 kcal mol-1 higher than for oBLYP-D. A large
improvement is observed for atomization energies, which is
in accordance with the parameter value of κPBE becoming
more ‘revPBE-like’. The MAD for W4-08 is reduced by
more than 40% from 13.0 to 7.4 kcal mol-1. The MAD for
the SIE11 test set is reduced by 1.2 kcal mol-1. A closer
look at the barrier height subsets reveals that the original
PBE-D approach shows worse results than the BLYP-D
functional (e.g., 5.7 compared to 2.5 kcal mol-1 for BHPERI
and 9.8 vs 9.2 kcal mol-1 for BH76). The optimized version
though yields better MADs than that of oBLYP-D (2.4 vs 2.6
kcal mol-1 for BHPERI and 8.3 vs 9.7 kcal mol-1 for BH76).

Improvements for oPBE-D are also observed for the ‘small
molecule’ reaction energy test sets, as can be seen for
BH76RC, RSE43, and G2RC. For the latter one, the MAD
is 2 kcal mol -1 lower than for PBE-D. The other reaction
subsets show more or less similar results (O3ADD6, NBRC,
ISO34, and DC9). This is also the case for the ionization
potentials for which neither the dispersion correction nor the
reparameterization have any significant effect.

Worse MADs are observed for the description of electron
and proton affinities and the AL2X, DARC, and IDISP
subsets. For the DARC subset, the very good MAD of 2.8
kcal mol-1 for PBE-D (better than any other functional in
this study) increases by a factor of 3, although the MAD of
8.2 kcal mol-1 for oPBE-D is still better than those of the
other optimized functionals.

For WATER27, the functionals again exhibit a peculiar
behavior. Adding the dispersion correction with the originally
proposed scale factors leads to an increased MAD from 3.2
(PBE) to 10.0 kcal mol-1 (PBE-D). The opposite behavior
is observed for the optimized functional with different scale
factors for the dispersion correction. Here, the MAD for

oPBE is quite large with 12.1 kcal mol-1, but it decreases
to a very small value of 2.8 kcal mol-1 for oPBE-D.

The MAD for the S22 set is slightly larger (by 0.04 kcal
mol-1) for oPBE-D than for PBE-D. The MAD increases
also for the tripeptide conformers. On the other hand, the
alkane, sugar, and cysteine conformers are much better
described by oPBE-D.

Similar trends can also be observed for the TPSS-D and
oTPSS-D functionals (Figure 3 and Tables S32 and S33 in
the Supporting Information). Although located on a higher
rung on Jacob’s Ladder, TPSS-D does not perform better
for MB08-165 than the GGA functionals (MAD of 10.0
kcal mol-1). On the contrary, oTPSS-D performs very well
with 7.1 kcal mol-1, which is a value that comes close to
that of hybrid functionals. Large improvements are also
observed for atomization energies, proton affinities, SIE
related problems, and barrier heights and the BH76RC,
G2RC, ISO34, and IDISP subsets. On the other hand, MADs
worsen for G21IP, NBRC, DC9, and DARC, but only the
results for the last two sets can be regarded as ‘outliers’ for
the complete database (MADs of 11.9 and 8.5 kcal mol-1).
The combination of the new functional parameters and
slightly modified dispersion correction parameters performs
better for IDISP and WATER27. In fact, the MAD of
oTPSS-D for WATER27 is with 2.6 kcal mol-1 the best of
all functionals tested in this study. On the other hand, the
MAD for the S22 test increases by 0.2 kcal mol-1. The
description of the tripeptide conformers also deteriorates (1.4
kcal for TPSS-D vs 2.2 kcal mol-1 for oTPSS-D). The MADs
for ACONF and SCONF improve by about 60%. CYCONF,
though, shows a slightly worse MAD for oTPSS-D (0.76 vs
0.93 kcal mol-1).

Another way to compare the oTPSS-D functional with
TPSS-D is shown in Figure 4, part a. There the ratios of the
MADs of both functionals [i.e., MAD(oTPSS-D)/MAD(TPSS-
D)] are shown. A value smaller than 1 means that oTPSS-D

Figure 3. MADs of the (o)PBE-D and (o)TPSS-D methods for the GMTKN24 benchmark set. For a better visualization, a
different scale is used for the last five data sets. All calculations were carried out with (aug)-def2-QZVP.

Density Functional Thermochemistry J. Chem. Theory Comput., Vol. 6, No. 1, 2010 119



performs better than TPSS-D and vice versa. Values close to 1
indicate only minor changes. The curve clearly shows the
reoptimized functional’s improved performance for most of the
considered subsets. Additionally, we tested the modified TPSS
variant (‘modTPSS’) by Perdew et al. for the complete
GMTKN24 database. The MADs and rmsds are shown in the
Supporting Information, Table S34. A comparison between
oTPSS-D, TPSS-D, and ‘mod-TPSS-D’ is shown in Figure S1
in the Supporting Information. It can clearly be seen that ‘mod-
TPSS-D’ often yields results that are similar to TPSS-D and
that it is also outperformed by oTPSS-D.

As the TPSS functional belongs to a higher rung on
Jacob’s Ladder, it is also more expensive than, e.g., PBE,
due to the calculation of the kinetic energy density. This
increase in computing time, however, is less than the
corresponding increase when going to hybrids, and using
TPSS would be adequate if its accuracy and robustness were
significantly higher than for PBE.

The GMTKN24 database allows a direct comparison between
PBE and TPSS, and thus, it is possible to evaluate the
cost-benefit ratio for TPSS. In only five cases, the TPSS-D
approach shows an improvement of more than 1 kcal mol-1

compared to that of PBE-D: W4-08, SIE11, RSE43, NBRC,
and DC9. In two cases, PBE-D is better by more than 1 kcal
mol-1 (PA and IDISP). In all of the other cases the PBE-D
and TPSS-D results lie close to each other, and there is no real
improvement when applying the meta-GGA functional.

When comparing the optimized versions with each other,
one sees that the number of cases for which the meta-GGA
functional is, on average, better by more than 1 kcal mol-1

increases to six: MB08-165, W4-08, G21EA, SIE11,
O3ADD6, and G2RC. On the other hand, oPBE-D shows
superior behavior only for the DC9 and CYCONF subsets.

5.1.3. B3LYP-D and B2PLYP-D. Additional calculations
were carried out with the B3LYP-D and B2PLYP-D meth-
ods. The results are shown in Figure 5 and in the Supporting

Figure 4. Ratios of the MADs of oTPSS-D and TPSS-D (a), oTPSS-D and B3LYP-D (a and b), and TPSS-D and B3LYP-D (b)
for the complete GMTKN24 database. The lines between the data points are just drawn to guide the eye.
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Information, Tables S35 and S36. Not unexpectedly, we find
that B2PLYP-D clearly outperforms the allegedly ‘state-of-the-
art’ B3LYP functional in all cases. In most of them, the MAD
is reduced by 50% or more. Only for G21EA and O3ADD6,
the results are quite similar. Both functionals are the only
methods in this study that yield an MAD lower than 1 kcal
mol-1 for the PCONF subset (0.70 for B3LYP-D and 0.35 for
B2PLYP-D). A comparison between B3LYP-D and the original
and optimized (meta-)GGA functionals shows that the latter
ones sometimes yield better or comparable results. The oTPSS-D
functional shows lower or very similar MADs in eight cases:
W4-08, BHPERI, AL2X, NBRC, ISO34, IDISP, WATER27,
and ACONF. From the results, it can be seen that the other
methods also partially outperform B3LYP-D, though not in so
many cases as for oTPSS-D (five cases for TPSS-D, seven cases
for oPBE-D and PBE-D, and one case for BLYP-D, oBLYP-
D, mPWLYP-D, and oPWLYP-D). In Figure 4, the ratios of
the MADs of oTPSS-D and B3LYP-D [i.e., MAD(oTPSS-D)/
MAD(B3LYP-D)] and of TPSS-D and B3LYP-D [i.e.,
MAD(TPSS-D)/MAD(B3LYP-D)] are given. The curves clearly
show that, in the case of oTPSS-D, the ratios are closer to 1
and in many cases even smaller. On the other hand, the curve
for TPSS-D shows that it is by far outperformed by B3LYP-D
in the majority of cases.

Compared to B2PLYP-D, better or similar results are
obtained for WATER27 (by oTPSS-D and oPBE-D), S22
(by BLYP-D), and ACONF (by oTPSS-D and oPBE-D).
Still, B2PLYP-D shows for the majority of cases the best
results of all functionals investigated in this study.

5.1.4. OVerall Statistical Analysis. The analysis of the
GMTKN24 database is completed by an overall statistical
evaluation. In the spirit of the work by Truhlar and
co-workers, we define a weighted total mean absolute
deviation (WTMAD) to combine all obtained MADs to one
final number for each tested method. Of course, such a value
can be defined in several ways, and there is no real right or
wrong. We tested many schemes, and the overall interpreta-

tion was not altered by the actual way of calculating the
WTMADs. In the scheme, which we finally present here,
each of the 24 MAD values is weighted by the number of
entries of each subset (see eq 21). This takes into account
the size of each set. Furthermore, each subest is weighted
by an additional factor that was calculated as the ratio
between the MADs of BLYP and B2PLYP-D [i.e., MAD-
(BLYP)/MAD(B2PLYP-D)]. This takes into account the
difficulty of a certain subset. As one of the worst methods
without dispersion correction in this study, BLYP and, as
the best method, B2PLYP-D are chosen. The actual values
of these scale factors are usually in a range between 2.0 and
3.0 for reaction energies, atomization energies, ionization
potentials and proton and electron affinities. They are
significantly larger for SIE11, BHPERI, AL2X, NBRC, DC9,
and DARC, and for subsets where London dispersion effects
are important. The final formula is:

Figure 5. MADs of the B3LYP-D and B2PLYP-D methods for the GMTKN24 benchmark set. For a better visualization, a different
scale is used for the last five data sets. All calculations were carried out with (aug)-def2-QZVP.

WTMAD ) [2.7 × 165 × MAD(MB08-165) +
2.8 × 99 × MAD(W4-08) +

2.0 × 36 × MAD(G21IP) + 2.4 × 25 × MAD(G21EA) +
1.6 × 12 × MAD(PA) + 2.4 × 11 × MAD(SIE11) +

4.5 × 26 × MAD(BHPERI) +
3.2 × 76 × MAD(BH76) +

3.0 × 30 × MAD(BH76(RC)) +
4.4 × 43 × MAD(RSE43) +

2.2 × 6 × MAD(O3ADD6) +
3.1 × 25 × MAD(G2RC) + 7.1 × 7 × MAD(AL2X) +
6.8 × 6 × MAD(NBRC) + 2.9 × 34 × MAD(ISO34) +
4.1 × 9 × MAD(DC9) + 6.2 × 14 × MAD(DARC) +

12.9 × 6 × MAD(IDISP) +
2.8 × 27 × MAD(WATER27) +

11.7 × 22 × MAD(S22) +
13.8 × 10 × MAD(PCONF) +
3.5 × 15 × MAD(ACONF) +
5.2 × 17 × MAD(SCONF) +
5.0 × 10 × MAD(CYCONF)]/2682.5 (21)
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The WTMADs for all functionals with and without
dispersion correction are listed in Table 6. For all methods,
one can see the importance of adding the empirical dispersion
correction, as the WTMADs are lowered significantly. The
only exception is the PBE functional, where the WTMAD
stays nearly the same, due to compensation effects. This is
mainly due to the typical overbinding behavior of PBE (e.g.,
for atomization energies or hydrogen bonds), which is further
increased by the dispersion correction.

A comparison between the original and reparameterized
versions of BLYP-D and mPWLYP-D shows that, overall, the
reparameterization does not change the WTMADs significantly.
In the case of BLYP-D and oBLYP-D, the WTMADs have
identical values (5.3 kcal mol-1); the WTMAD of oPWLYP-D
is also 5.3 kcal mol-1 and is just 0.3 kcal mol-1 lower than
that of mPWLYP-D. While the PBE-D functional at 5.9 kcal
mol-1 has a higher WTMAD than the ‘LYP-based’ ones,
oPBE-D yields a value slightly lower than oBLYP-D and
oPWLYP-D (4.9 kcal mol-1). Thus, all GGA functionals yield
WTMADs of about 5 kcal mol-1 or more. The WTMAD for
TPSS-D is 5.0 kcal mol-1. This again emphasizes that TPSS-D
cannot be regarded as an improvement compared to GGA
functionals. This statement is also valid for the modified TPSS
variant (‘mod-TPSS-D’; WTMAD ) 5.0 kcal mol-1). The only
reparameterized functional with a value significantly smaller
than 5.0 kcal mol-1 is oTPSS-D. With 4.0 kcal mol-1, it is even
close to B3LYP-D (3.6 kcal mol-1). B2PLYP-D shows the
lowest WTMAD of all tested functionals with 2.0 kcal mol-1,
underlining again its superior performance.

5.2. Benchmark Study of Geometries. To test the
influence of the reparameterization on molecular structures,
the original and optimized (meta-)GGA functionals were
applied to three geometry benchmark sets. The first one
contains 36 bond lengths of 31 small molecules containing
first-row elements.105 The second test set comprises 42 bond
lengths of 32 small molecules containing second-row ele-
ments.106 The third test set is made up from 24 transition-
metal compounds (28 bond lengths).107,108 All reference
values were derived from experiments. Table 7 shows the
mean (MD), MAD, rmsd, smallest (min), and largest

deviations (max) for all test sets and functionals. The actual
deviations for each molecule are listed in the Supporting
Information, Tables S37-S39.

The results for the light element test set indicates that the
reparameterization only has a small influence on the MDs,
MADs, and rmsds and the error range. BLYP-D and
oBLYP-D yield an MAD of 1.2 and 1.1 pm, respectively.
Both mPWLYP-D and oPWLYP-D yield geometries of the
same quality with MADs of 1.2 pm. Also for the other
functionals the MAD does only change marginally: 1.0 pm
for PBE-D, 1.2 pm for oPBE-D, 0.8 pm for TPSS-D, and
0.9 pm for oTPSS-D.

The MADs for the heavy element test set are higher than for
the first one, but the same trends can be observed as before.
There is only a marginal improvement for oBLYP-D and
oPWLYP-D, and similar to the GMTKN24 database, both
functionals give identical MADs with 2.2 pm. Both oPBE-D
and oTPSS-D yield slightly worse results with 2.0 and 1.6 pm
compared to 1.6 (PBE-D) and 1.3 pm (TPSS-D).

The errors for the transition-metal test set are in the same
range as for the second one. Again, there is only a small
improvement for the ‘LYP-based’ functionals. Compared to its
original version, oPBE-D worsens by 0.6 pm. The MAD of
oTPSS-D is larger by 0.3 pm compared to that of TPSS-D.

For all test sets, the reparameterization has only a small
impact on the quality of the results. In all three cases, the
meta-GGA functionals yield the best bond lengths.

6. Conclusions

In this study, we presented a new benchmark database for
applications to general main group thermochemistry, kinetics,
and noncovalent interactions (GMTKN24). It is an unprec-
edented compilation of 24 different, chemically relevant
subsets, that either were taken from already existing databases
or are presented here for the first time. The new subsets are
benchmarks for self-interaction error-related problems (SIE11),
barrier heights of pericyclic reactions (BHPERI), reaction
energies for small closed-shell molecules (G2RC), reaction
sets for ammonina/borane systems (NBRC), intramolecular
London dispersion interactions (IDISP) and for cases that
are difficult to treat with DFT methods (DC9). Furthermore,
new reference data for a set of sugar conformers (SCONF)
were presented. The complete set comprises 1.049 single
point calculations and 731 reference energies, based on
accurate (excluding zero point vibrational energy and thermal
corrections) theoretical or experimental data. We additionally
suggested a scheme for calculating a weighted total mean
absolute deviation (WTMAD) with which we combine the
MADs of all subsets to one final statistical number, thus
enabling an overall evaluation of each investigated quantum
chemical method. We regard this new combination of sets
as particularly useful for the evaluation of DFT methods.
This was demonstrated by applying common density func-
tionals on the (meta-)GGA, hybrid-GGA, and double-hybrid-
GGA levels, including the empirical London dispersion
correction developed in our group. Furthermore, we carried
out a systematic study on the reparameterization of (meta-
)GGA functionals to investigate the effect of an empirical
parameter fitting procedure on the performance for the

Table 6. WTMADs for functionals without (DFT) and with
dispersion correction (DFT-D)a

functional DFT DFT-Db

BLYP 7.6 5.3
oBLYP 6.8 5.3
mPWLYP 6.8 5.6
oPWLYP 6.8 5.3
PBE 6.2 5.9
oPBE 6.6 4.9
TPSS 5.8 5.0
‘modTPSS’c 6.3 5.0
oTPSS 5.5 4.0
B3LYP 5.4 3.6
B2PLYP 3.0 2.0

a In kcal mol -1. All calculations were carried out with
(aug)-def2-QZVP. b Empirical dispersion correction. For the
optimized functionals with s6 )1.00 and rscal

vdW ) 1.15; for the other
functionals with rscal

vdW ) 1.1 and different s6 values: 1.20 (BLYP-D),
0.90 (mPWLYP-D), 0.75 (PBE-D), 1.00 (TPSS-D and
‘mod-TPSS-D’), 1.05 (B3LYP-D) and 0.55 (B2PLYP-D).
c ‘modTPSS’ is the modified TPSS variant taken from ref 58.
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GMTKN24 database and of three different geometry bench-
mark sets. The refitting was carried out using a fit set
containing 143 systems and seven chemically different
problems. Our study led to the following conclusions:

(1) The influence of the new parameters is small for
molecular structures (bond lengths). The MADs for
the oBLYP-D and oPWLYP-D methods improve by
a few tenths of a picometer compared to the original
methods. The MADs for oPBE-D and oTPSS-D
worsen slightly. As the quality of geometries is not
significantly altered, one only has to evaluate the
influence of the new parameters on energetics.
The reparameterized oBLYP-D version shows, in
many cases, slight improvements compared to that of
the original functional. On the other hand, the MADs
of some subsets are worse or remain unchanged.
Optimizing the parameters of the mPWLYP-D func-
tional led to the oPWLYP-D functional, which yields
results almost identical to oBLYP-D. The optimized
PW-exchange seems to be more ‘B88-like’. In the case
of oPBE-D (which is more ‘revPBE-like’) and oTPSS-
D, the influence of the new parameters is stronger than
for oBLYP-D and oPWLYP-D. The description of
many subsets is improved, as shown for the ‘mindless-
benchmark’ set, atomization energies, barrier heights,
some reaction energies, water clusters, and relative
energies of alkane and sugar conformers. On the other
hand, this study also shows that reaching a homoge-
neous, well-balanced behavior by just refitting existing
functionals is difficult, as the description of other
properties worsened, like for proton affinities, difficult
cases for DFT, the description of Diels-Alder reac-
tions, and relative energies of tripeptide and cysteine
conformers.

(2) A comparison between the B3LYP-D and B2PLYP-D
results for the GMTKN24 set shows that the double-
hybrid exhibits superior performance by halving the

MADs of B3LYP-D and by yielding the best results
for the majority of subsets.

(3) An analysis of the WTMADs shows that including
the empirical dispersion correction is crucial and that
it reduces the values by about 1 kcal mol-1 or more,
in most cases. The reparameterization has a small
influence on the GGA functionals. The WTMADs are
all around 5 kcal mol-1. The TPSS-D method is in
the same range, whereas a significant improvement is
found for the WTMAD of oTPSS-D, which is
comparable to that of B3LYP-D. This clearly indicates
that the meta-GGA functional benefits most from
lifting all physical constraints. B2PLYP-D yields by
far the smallest WTMAD value (2.0 kcal mol-1).

(4) oTPSS-D outperforms the GGA functionals, particu-
larly for the MB08-165, W4-08, G21EA, SIE11,
O3ADD6, and G2RC subsets. It also shows in eight
cases better or comparable performance than B3LYP-
D. Only for the DC9, DARC, and PCONF subsets is
the applicability significantly worsened compared to
that of TPSS-D. The above-discussed WTMAD value
also underlines oTPSS-D’s good performance, and we
can recommend it in general and in particular for the
calculation of atomization and reaction energies,
electron affinities, ionization potentials, barrier heights,
and noncovalent interactions. The very good result for
the difficult WATER27 set is also striking. We cannot
recommend it for self-interaction error-related prob-
lems, but note that it performs better than all other
semilocal approximations. Functionals of at least
hybrid-GGA quality (including a London dispersion
correction) should be applied for the description of
tripeptide conformers. Our study seems to be the first
one that can confirm on very solid grounds previous
statements that meta-GGAs can be almost as accurate
as hybrid functionals.

Table 7. MD, MAD, rmsd, min, and max Deviations for Bond Lengths in pm for the Original and Reoptimized Functionals for
Three Test Setsa

BLYP-D oBLYP-D mPWLYP-D oPWLYP-D PBE-D oPBE-D TPSS-D oTPSS-D

Light Element Test Setb

MD 1.2 1.1 1.2 1.1 1.0 1.2 0.7 0.8
MAD 1.2 1.1 1.2 1.2 1.0 1.2 0.8 0.9
rmsd 1.4 1.3 1.4 1.3 1.2 1.3 1.0 1.2
min -0.1 -0.2 -0.2 -0.2 -0.6 0.0 -0.5 -1.1
max 3.3 2.8 3.2 2.9 2.8 3.3 2.9 3.2

Heavy Element Test Setc

MD 2.4 2.2 2.3 2.2 1.6 2.0 1.3 1.4
MAD 2.4 2.2 2.3 2.2 1.6 2.0 1.3 1.6
rmsd 2.9 2.6 2.8 2.7 1.8 2.3 1.6 1.9
min 0.3 0.3 0.2 0.4 0.3 0.7 0.1 -1.6
max 7.6 6.3 7.2 6.4 3.4 4.7 4.5 6.0

Transition-Metal Test Setd

MD 2.6 2.3 2.5 2.3 0.7 1.8 0.7 0.3
MAD 2.7 2.4 2.6 2.5 1.5 2.1 1.4 1.7
rmsd 3.2 3.1 3.2 3.1 1.8 2.6 1.8 2.1
min -1.2 -1.6 -1.3 -1.6 -3.8 -2.6 -3.6 -4.7
max 8.3 9.7 9.1 9.7 3.4 6.2 3.9 3.7

a Deviations are defined as theory-experiment. All calculations were carried out with def2-QZVP. The particular s6 and rscal
vdW values for

each functional can be found in the footnote of Table 6. b Experimental data taken from ref 105. c Experimental data taken from ref 106.
d Experimental data taken from refs 107 and 108.
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(5) The new GMTKN24 database turned out to be
effective for the evaluation of a given density func-
tional’s overall performance, and we strongly suggest
it in future validation works of new functionals with
regards to their applicability to chemically relevant
problems. We regard this collection of databases as
an open project. Whenever new, promising benchmark
sets are proposed, we may consider to add them to
our compilation, which will always be actualized (also
regarding new density functionals) on our Web site.67
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Abstract: There is current interest in the random phase approximation (RPA), a “fifth-rung”
density functional for the exchange-correlation energy. RPA has full exact exchange and
constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases
(uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged
effect that is captured by a local spin density approximation (LSDA) or a generalized gradient
approximation (GGA). Nonempirical density functionals for the correction to RPA were
constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the
fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth,
Lundqvist, and collaborators. While they make important and helpful corrections to RPA total
and ionization energies of free atoms, they correct the RPA atomization energies of molecules
by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average,
about 10 kcal/mol lower than those of accurate values from experiment. We find here that a
hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies
much more accurate than either one does alone. This suggests a solution to the puzzle: While
the proper correction to RPA is short-ranged in some systems, its contribution to the correlation
hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of
the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation
hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF
nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

1. Introduction: Local, Semilocal, and Fully
Nonlocal Density Functionals

Modern electronic structure calculations for atoms, mol-
ecules, and solids are usually made within the Kohn-Sham
density functional theory.1,2 The many-electron problem is
replaced by the computationally efficient self-consistent one-
electron problem, in a way that is formally exact for the
ground-state energy and the electron spin densities. In

practice, some approximation must be made for the
exchange-correlation energy Exc as a functional of the
electron spin densities nv(rb) and nV(rb). Exc is the correction
to the Hartree approximation without self-interaction cor-
rection and provides most of the binding between atoms. Its
functional derivative δExc/δnσ(rb) is the exchange-correlation
potential seen by the fictitious noninteracting electrons.

The exact Exc can be expressed3-5 as the electrostatic
interaction between an electron at position rb and the density
nxc(rb,rb′) at rb′ of the coupling constant averaged exchange-
correlation hole that surrounds it:

Exc ) (1/2)∫ d3rn( rb)∫ d3r′nxc( rb, rb′)/ | rb′- rb| (1)

Here nxc ) nx + nc is the sum of the separate exchange
and correlation holes. The exchange hole density is non-

* Corresponding author. Telephone: (504) 862-8144. E-mail:
aruzsinszky@gmail.com.

† Department of Physics and Quantum Theory Group, Tulane
University.

‡ Department of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics.

J. Chem. Theory Comput. 2010, 6, 127–134 127

10.1021/ct900518k  2010 American Chemical Society
Published on Web 11/23/2009



positive and integrates over rb′ to -1 and is the same as in
the Hartree-Fock theory (apart from the difference between
Kohn-Sham and Hartree-Fock orbitals). The correlation
hole density integrates over rb′ to zero. It is negative and
Coulomb cusped at a small interelectronic separation u )
|rb′ - rb| but typically positive at a large separation, where (in
the system and spherical average of eq 1 that determines
Exc) it tends to cancel some or all of the exchange hole
density. The exact exchange-correlation hole density is
bounded by the electron density: nxc(rb,rb′)g - n(rb′).

Semilocal approximations:

Exc
sl [nv, nV] ) ∫ d3rnεxc

sl (nv, nV, ∇nv, ∇nV, ...) (2)

where n ) nv + nV, are simple and computationally tractable
and are sometimes usefully accurate. The local spin density
approximation (LSDA),1,6,7 which employs only the local
spin densities as arguments in eq 2, is exact for a uniform
electron gas and is still often used to describe solids. The
generalized gradient approximation (GGA),8 which adds the
gradients of the local spin densities, can give a much better
description of atoms and molecules, and in particular of the
atomization energy of a molecule. LSDA and GGA are the
first two rungs of a ladder of density functional approxima-
tions.9 The third or meta-GGA rung, which can be accurate
for both molecules10,11 and solids10 near equilibrium, adds
the spin-resolved noninteracting kinetic energy densities of
the occupied orbitals, τσ(rb) ) ∑R|∇ψRσ(rb)|2/2. Although the
Kohn-Sham orbitals ψRσ are fully nonlocal functionals of
the electron spin densities, meta-GGA is also semilocal in
the sense that it employs only the information in an
infinitesimal neighborhood of position rb, that is available in
any Kohn-Sham calculation. The added arguments in eq 2
can be used to satisfy additional exact constraints, and in
fact, the three semilocal rungs of the ladder have been
constructed in this way without empirical parameters.7,8,10

Semilocal functionals require only a single integration over
rb, while fully nonlocal functionals require (at least in
principle) a double integration over rb and rb′.

Models for the spherically- and system-averaged hole exist
for many of the semilocal functionals. In some cases, the
functionals are derived from models for this hole. In other
cases, the hole models are “reverse engineered”12,13 from
the functionals. Sophisticated semilocal holes nxc

sl (rb,’ rb′) are
found to be of shorter range than the LSDA hole and are
necessarily not long ranged in the separation |rb’ - rb|, since
they employ only information from an infinitesimal separa-
tion. To the extent that the exact exchange-correlation hole
is also of short or intermediate range, sophisticated semilocal
approximations can work well. Because the exact exchange-
correlation hole is typically deeper and more short-ranged
for exchange and correlation together than for exchange,
semilocal functionals are typically more accurate for ex-
change and correlation together than for either of them
separately.14 This error cancellation between semilocal
exchange and correlation manifests much more strongly in
the atomization energies of molecules than it does in the
surface energy of jellium, where a sophisticated semilocal
functional can accurately predict the separate exchange and
correlation contributions.10

As argued in greater detail in ref 14, making the
exchange-correlation hole density more localized around
its electron leads to a lower total energy. This effect is
manifested in the atomization energy of a molecule, the total
energy difference between the free component atoms and
the molecule, all at rest. Exact exchange without correlation
underbinds chemically, underestimating the atomization
energy, because the exact exchange hole in a molecule is
too spread out in comparison with the exact exchange-
correlation hole. LSDA overbinds molecules, overestimat-
ing the atomization energy, because it makes the holes
too diffuse, more so in the free atoms than in the molecule.
GGA overbinds less, producing a realistic hole localization
in the free atoms but somewhat too much hole localization
in the molecule or solid. Further improvement of the
molecular atomization energy and the solid-state properties
can be achieved by using meta-GGA, or using a global
hybrid functional (mixing in with GGA or meta-GGA a
little exact exchange, which yields more hole delocaliza-
tion in the molecule or solid), or by using both.

To the extent that the exact exchange-correlation hole
is long-ranged, as it can be in systems with multiple atomic
centers, sophisticated semilocal functionals fail, and fully
nonlocal ones are needed.14 This problem can become
increasingly worse for stretched bonds and for dissociation
limits,15 where it can be solved to some extent by fourth-
rung functionals or hyper-GGA’s that employ information
about exact exchange, such as global, local, or range-
separated hybrid functionals (all of which rely on empirical
parameters).14 These dissociation problems of “many-
electron self-interaction freedom”15 are distinct from the
problem of long-range van der Waals attraction, which is
not accounted for even by the fourth-rung or hybrid
functionals. Recently, Langreth, Lundqvist and their
Rutgers-Chalmers collaborators have proposed a useful
double-integral nonlocal functional for the van der Waals
interaction16 (vdW-DF), which does not employ exact
exchange and so probably does not correct the dissociation
limit problems.

Fifth-rung functionals employ the unoccupied as well as
the occupied Kohn-Sham orbitals in a fully nonlocal way
that can potentially solve both these problems. The simplest
fifth-rung functional is the random phase approximation (“in
a density functional context”3,5,17), as discussed in Section
2.

Yan, Perdew and Kurth18 found LSDA and GGA correc-
tions to RPA (nearly the same in GGA as in LSDA) by
taking the difference between the same semilocal functional
constructed beyond and within RPA. Their corrected RPA
is called RPA+. They claimed that the correction to RPA is
a short- or intermediate-range effect and, thus, is well
modeled at the semilocal level. That claim is correct in the
uniform electron gas,7,12 the jellium surface,19 and the free
atom.18,20 (In the free atom, the exact and RPA holes cannot
be long-ranged.) Their corrections were accurate for the total
energies of atoms (where RPA energies are too negative by
about 0.02 hartree/electron, due to a too-negative on-top hole
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density nxc
RPA(rb,rb)).12,13 Jiang and Engel20 found that these

corrections also improve the RPA ionization energies of free
atoms.

The approach of ref 18 unfortunately has no natural
extension to find a meta-GGA for the correction to RPA,
since a constraint used in the construction of the beyond RPA
meta-GGA,10 zero correlation energy for all one-electron
densities, has no analog within RPA (and another constraint
on the low-density limit would require new calculations).
For the one-electron density of the molecule H2

+, the RPA
correlation energy is small for compressed and equilibrium
bond lengths but is disturbingly large for long bond lengths.21

Reference 18 also computed the LSDA and GGA correc-
tions to RPA atomization energies. Atomization energies were
increased by typically 1 kcal/mol, suggesting that RPA would
be accurate for atomization energies and that RPA+ still more
so. The smallness of the computed correction is easy to
understand: If the correction to RPA were +0.02 hartree/
electron, then it would exactly cancel out of the atomization
energy since there are as many electrons in the component free
atoms as in the molecule. Puzzlingly, the careful RPA
calculations of molecular atomization energies by both
Furche22 and Harl and Kresse23 found that these atomization
energies were too low by typically 10 kcal/mol, in compari-
son to experiment. We will argue here that the correction to
RPA in molecules requires full nonlocality of the kind found
in fourth-rung or hybrid functionals. This correction is too
long-ranged for LSDA and GGA, although it is still possible
that the RPA hole is correct at a longer range. RPA is
computationally much more expensive than GGA or
meta-GGA,22-28 but in view of the good performance of
RPA and RPA+ for solids24-27 and surfaces19,25 and of
continuing improvements in RPA implementation,28 it is
important to find a general (hence fully nonlocal) correc-
tion. After discussing RPA in Section 2, we will mention
some of the nonlocal corrections already proposed and
tested.

2. The Random Phase Approximation

The roots of RPA go back to the plasma theory of electron
correlation by Bohm and Pines29,30 in the 1950s. In those
days, the focus was on the uniform electron gas, for which
finite-order perturbation theory in the electron-electron
interaction diverges in second order, requiring a partial
resummation to all orders. The orbitals for the electron gas
are just plane waves in both the Hartree and Kohn-Sham
schemes, but before the Kohn-Sham theory was proposed,
the Hartree orbitals would likely have been chosen even for
inhomogeneous systems, where they yield unrealistic densi-
ties. The work of Langreth and Perdew3,5,17 brought RPA
into the density functional context by introducing the
Kohn-Sham orbitals for inhomogeneous systems, which
depend only on the true electron density and are, therefore,
independent of the coupling constant. Quantum chemists may
recognize RPA as a ring coupled cluster doubles approach;31

a coupled cluster code can be simplified to do RPA.
The RPA is the simplest member of the family of

adiabatic-connection fluctuation-dissipation theorem density
functional methods.3-5,17,25,32,33 The Kohn-Sham nonin-

teracting system and the real interacting system are assumed
to be adiabatically connected through a series of systems,
all at the same electron density, in which the electron-electron
interaction is λ/|rb′ - rb|, where 0 e λ e 1. The adiabatic-
connection functionals employ exact exchange. Because they
also require the unoccupied orbitals (and the orbital energies)
for correlation, they stand at the top of the Jacob’s ladder9

of approximations, more sophisticated and more computa-
tionally demanding than lower-rung functionals. The zero-
temperature fluctuation-dissipation theorem is used to
express the ground-state correlation energy functional in
terms of the imaginary part of the frequency-dependent
density-density response function �λ(rb,rb′;ω):

Ec ) -1
2 ∫

0

1

dλ∫
0

∞
dω
π ∫ d3rd3r′Im[�λ( rb, rb′;ω) -

�0( rb, rb′;ω)]/ | rb′- rb| (3)

where �λ(rb,rb′;ω) satisfies the Dyson equation:

�λ ) �0 + �0*(λVCoul + fxc,λ)*�λ (4)

�0( rb, rb′;ω) )

∑
R,R′,σ

θ(µ - εR) - θ(µ - εR′)

ω + i0+ + εR - εR′
ψR*( rb)ψR′( rb)ψR′* ( rb′)ψR( rb′)

(5)

fxc,λ is the exchange-correlation kernel and is not known
exactly as an explicit density functional. We can relate eqs
3 to 1 by defining:

n( rb)nc( rb, rb′) ) -∫
0

1

dλ∫
0

∞
dω
π

Im[�λ( rb, rb′;ω) -

�0( rb, rb′;ω)] (6)

The simple or direct RPA we discuss here sets fxc,λ ) 0
(time-dependent Hartree response). (There is also a more
elaborate “RPA with exchange” (RPAE), which sets fxc,λ )
fx,λ time-dependent exact-exchange-only response, so that for
a one-electron density �λ ) �0 and Ec ) 0.) RPA becomes
relatively exact for the uniform gas7,12 in the high-density
limit. It includes a reasonable description of the long-ranged
van der Waals interaction. It is even able to describe the
strong static correlation in the dissociation of the H2 molecule
in a spin-restricted formalism.34 The RPA correlation energy
can also be expressed as the change in the zero-point energy
of the plasmons or the collective density oscillations.28 In
many cases, RPA provides a good description of the long-
range exchange-correlation hole, but it has too much short-
range correlation, making a total-energy error of roughly
-0.02 hartree/electron at high and normal electron densities.

The correction to RPA in the high-density limit is the
second-order exchange energy. More generally, the dominant
correction is a higher order exchange effect, which in finite
systems provides a kind of self-interaction correction35,36 to
RPA correlation. Thus, one might make a Perdew-Zunger35

self-interaction-corrected RPA:

Ec
RPASIC ) Ec

RPA[nv, nV] - ∑
Rς

occup

Ec
RPA[nRσ, 0] (7)
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where nRσ(rb) ) |ψRσ(rb)|2 is the one-electron density of an
occupied orbital. For the H atom, this SIC correction is +0.02
hartree (the value also predicted by the GGA correction),
but for infinitely stretched H2

+, the SIC correction is +0.17
hartree.21 This fact suggests that the correction to RPA can
be highly nonlocal in stretched bond situations. Of course,
eq 7 is not very practical, requiring an RPA calculation for
each occupied orbital density. (To satisfy the uniform-gas
limit, it would be better to replace RPA by RPA+ in eq 7.)

A different fully nonlocal correction models the
exchange-correlation kernel fxc,λ(rb,rb;ω′).32,33 Another, at
greater cost, is the RPAE defined above. Still another
makes an RPA-based range-separated hybrid functional.37,38

In the range separation approach, the Coulomb interaction
between electrons is smoothly divided into a short- and
long-ranged part, with the help of an empirical range
separation parameter. Then the long-range part of eq 1 is
evaluated using RPA or related methods, while the short-
range part is evaluated using a modified semilocal
functional. While these various nonlocal corrections are
sometimes successful, they have not provided a clear
conceptual answer to the RPA atomization energy puzzle,
and they are computationally demanding. We will discuss
simpler corrections to RPA in the rest of this paper.

3. Additive Density Functional Correction of
RPA

Yan, Perdew, and Kurth18 have presented a semilocal (sl)
short-range correction to RPA correlation. Their RPA+ is

Ec
RPA+[nV, nv] ) Ec

RPA[nV, nv] + {Ec
sl[nV, nv] - Ec

slRPA[nV, nv]}

(8)

The semilocal functional can be either LSDA or GGA, and
there is typically little difference between these two choices.
Their beyond-RPA GGA was PBE,8 while their within-RPA
GGA was constructed by a real-space cutoff of the RPA
gradient expansion for correlation, similar to the one that
(beyond RPA) yields PBE.39 Since RPA was expected to
be exact at long-range and LSDA or GGA is accurate at
short-range, RPA+ was expected to provide an accurate
correction.18 RPA+ dramatically improves total energies of
free atoms,18 without damaging jellium surface energies.19

More generally, RPA+ provides a useful correction to RPA
in a free atom or an atomic ion, where the exchange-correla-
tion hole and every component of it are well-localized around
the electron and, thus, can be accurately described by a
semilocal approximation. Numerical evidence for this can
be found in the work of Jiang and Engel.20 For neutral atoms
(He, Li, Be, N, Ne, Mg, P, and Ar), they found that the RPA
correlation energy is too negative, on average, by 0.021
hartree/electron, while the RPA+ correlation energy is too
negative by only 0.002 hartree/electron. For eight free atoms
and atomic ions (Li, Be+, Be, B+, Na, Mg+, Mg, and Al+),
they found that the RPA first ionization energy is too large,
on average, by 0.017 hartree, while the RPA+ first ionization
energy is too large by only 0.002 hartree. Unfortunately, as
described in Section 1, RPA+ significantly underestimates
the atomization energy of a molecule, by an average of about

10 kcal/mol,22,23 while the PBE-GGA overestimates them
by about the same amount. In one sense, this is still a good
result.22,28 For atomization energies, RPA+ makes about the
same absolute error as PBE, but without the strong error
cancellation between exchange and correlation that PBE
demonstrates. But greater accuracy is desired, especially since
the RPA calculation is expensive.

Since a fully nonlocal correction to RPA is needed, the
natural next step beyond eq 8 is

RPA++:

Ec
RPA++[nv, nV] ) Ec

RPA[nv, nV] + {Ec
nl[nv, nV] - Ec

nlRPA[nv, nV]}

(9)

where nl is a fully nonlocal approximation that can be
constructed both beyond and within RPA. The last require-
ment can only be satisfied by a nonempirical functional. If
the fully nonlocal approximation happens to be a functional
of the total density n ) nv + nV, we define

Ec
RPA++[nv, nV] ) Ec

RPA+[nv, nV] + {Ec
nl[n] - Ec

nlRPA[n]} -

{Ec
sl[n] - Ec

slRPA[n]} (10)

which starts from RPA+ and then corrects it for the difference
between nl and sl applied to the total density. From now on, we
will take the semilocal functional to be sl ) GGA.

4. vdW-DF Fully Nonlocal Functional

The vdW-DF correlation energy16 is a nonempirical fully
nonlocal functional of the total density:

Ec
vdW-DF[n] ) Ec

LDA[n] + ∆Ec
nl[n] (11)

and, thus, a candidate for our eq 10. (Its variant of ref 40 is
a functional of the spin densities and, thus, a candidate for
our eq 9.) In eq 11, the first term is the local density
approximation (LDA). The second term is a double integral
over position space:

∆Ec
nl ) (1/2)∫ d3r∫ d3r′n( rb)�([n]; rb, rb′)n( rb′)

(12)

constructed to vanish for a uniform density and to provide a
van der Waals interaction between isolated fragments of
electron density. The uniform-gas correlation energy per
particle appears in both terms of eq 11, and we know this
quantity both beyond and within RPA,7 so we can use eq
11 to construct a nonempirical and fully nonlocal correction
to RPA, one which is certainly correct in its LDA term. Of
course, the authors of the vdW-DF never intended it to be
used to find a correction to RPA.

Our RPA+ approximation of eq 8 for the correlation
energy can be written as

RPA + ) RPA + {GGAsdf} (13)

where a curly bracket denotes a deviation of beyond-RPA
from within-RPA correlation energy, and the argument of
the curly bracket denotes the functional employed to find
this deviation; for example, GGAsdf is the spin-density
functional GGA. Then our RPA++ approximation of eq 10
can be written as
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RPA + + ) RPA + {sl} + {∆nl} (14)

where

{sl} ) {LDA} + {GGAsdf} - {GGAdf} (15)

is the semilocal part of the correction, GGAdf is the total-
density functional GGA, and {∆nl} is the fully nonlocal part
of the correction:

{∆nl} ) ∆Ec
nl - ∆Ec

nlRPA (16)

where ∆Ec
nl is given by eq 12.

For numerical evaluation, we have taken 10 molecular
atomizations from ref 22. The semilocal part of the correc-
tion, eq 15, was computed from a modified GAUSSIAN03
code,41 using a fixed accurate molecular geometry, the
6-311+G(3df,2p) basis set and a ultrafine grid. For each of
the various semilocal correlation functionals, a self-consistent
calculation was made with the fixed spin-density PBE-GGA
exchange energy functional; this ensured that all considered
electron densities for a particular atom or molecule were
realistic and similar. For a given level of correlation
functional (say the total-density PBE-GGA), the density
difference between the within- and beyond-RPA versions was
even smaller because the correlation potentials differed by
a nearly constant 0.02 hartree over most of the density. Our
RPA+ values from Tables 1 and 2 agree fully with those of
ref 22. The fully nonlocal part of eq 14, a computationally
expensive double integral, was evaluated non-self-consis-
tently from the PBE density using a smaller grid and a special
approach, as described in the Appendix.

Table 1 shows how the semilocal parts of the correction
to RPA, from eq 15, contribute to the atomization energies.
The individual terms in Table 1 are rather small and tend to
cancel one another when combined together. Table 2 shows
the RPA and experimental atomization energies from ref 22
as well as the corrected RPA+ and RPA++ atomization
energies (including the fully nonlocal contribution {∆nl}).
Our RPA++ method improves over RPA+, but neither gives
significant improvement over RPA. The vdW-DF, on which
our RPA++ results are based, is fully nonlocal in the way
needed to describe dispersion interaction but not in the way
needed to correct RPA atomization energies.

5. Global Hybrid Functional for Corrected
RPA Atomization Energies

Correction of RPA atomization energies requires full non-
locality but (as can be seen from Table 2) not the full
nonlocality responsible for the van der Waals interaction.
The other familiar kind of nonlocality is that of the global,
local, and range-separated hybrids.14,37,38 We have found
empirically that the global hybrid of 50% RPA+ with 50%
PBE-GGA:

Exc
hyb ) (1/2)[Exc

RPA+ + Exc
PBE-GGA] ) Exc

RPA+ +

0.5[Exc
PBE-GGA - Exc

RPA+] (17)

i.e.:

Ec
hyb ) Ec

RPA+ + 0.5[Exc
PBE-GGA - Exc

RPA+] (18)

yields accurate atomization energies, as shown in Table 2.
Equation 18 is exact for the uniform or slowly varying
electron gas, but its empirical construction makes it some-
what unsatisfactory as a general correction to RPA. More-
over, it shares with other global hybrids the defect that its
correlation energy for an inhomogeneous system scales
improperly,like exchange in the high-density limit.42 How-
ever, it does suggest the physics that a proper correction must
have: RPA+ atomization energies are too low because the
RPA+ exchange-correlation hole is too spread out in a
molecule. The PBE-GGA atomization energies are too high
because the PBE-GGA exchange-correlation hole is not
spread out enough in a molecule. The hybrid of eq 17
achieves about the right spread of the exchange-correlation
hole in a molecule.

Our global hybrid of RPA+ with PBE differs in detail
from the more standard global hybrids of GGA or meta-
GGA with a fraction of exact exchange. GGA’s or meta-
GGA’s tend to be the most accurate near the upper or

Table 1. Semilocal Contributions of Eq 15 to the RPA++
Correction to the RPA Atomization Energy, in kcal/mol, and
the Total Semilocal Contributiona

molecule {LDA} {GGAsdf} {GGAdf} {sl}b

H2 -1.2 1.1 -1.6 1.5
N2 -1.9 0.1 -2.8 0.9
O2 -1.4 -1.2 -2.2 -0.4
F2 -0.8 -1.4 -1.6 -0.6
Si2 -1.0 0.2 -1.7 0.9
CO -2.0 -1.4 -2.8 -0.6

CO2 -3.8 -3.6 -5.5 -1.9
H2O -2.6 -0.7 -3.9 0.5

C2H2 -4.5 -2.3 -6.6 -0.2
HF -1.4 -0.6 -2.0 0.1

a (1 hartree ) 627.5 kcal/mol). b {sl} ) {LDA} + {GGAsdf} -
{GGAdf}.

Table 2. Ground-State Atomization Energies from RPA
(ref 22), RPA+, and RPA++ Compared to the Experimental
Results from Ref 22a

molecule RPA RPA+ RPA++ (PBE + RPA+)/2 expt

H2 109 110 110 108 109
N2 223 223 225 234 228
O2 113 111 113 128 121
F2 30 29 30 41 38
Si2 70 70 71 76 75
CO 244 242 244 266 259
CO2 364 360 364 388 389
H2O 223 222 224 228 232
C2H2 381 378 381 397 405
HF 133 132 133 137 141

ME -11 -12 -10 -1
MAE 11 12 10 4

a Both the calculated and corrected experimental values are
for static nuclei. All calculations, including RPA, use PBE
orbitals. RPA+ is the GGA correction of eqs 8 and 13. RPA++
is the vdW-DF-based correction of eqs 10 and 14 with its
nonlocal term {∆nl}evaluated on a cubic grid (roughly 60 × 60
× 60) and with a spacing of roughly 0.17 bohr. We also show
the empirical hybrid of eq 17, which averages the PBE and
RPA+ exchange-correlation energies. All results are shown in
kcal/mol. ME is the mean error, and MAE is the mean absolute
error.
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physical limit of the coupling onstant integration3 and the
least accurate at the lower limit, where exchange dominates.
But RPA+ is actually exact at the lower limit and makes its
greatest error near the upper limit.

Reference 38 presents two range-separated hybrids that
use a RPA or scaled RPA exchange-correlation hole at long-
range and a LSDA hole at short-range. One of the authors
(B. Janesko) of ref 38 kindly provided us with the errors for
our 10 molecules. The MAEs are 5.8, 4.2, and 4.2 kcal/mol
for their one- and two-parameters and for our one-parameter
hybrids, respectively. Range-separated hybrids might achieve
higher accuracy through the replacement of LSDA by GGA
or meta-GGA holes.

In Table 3, we test the global hybrid of eqs 17 and 18 for
the jellium surface energy. While the exact surface ex
change-correlation energy is unknown, it probably19 falls
in the narrow range between LDA and RPA. Our global
hybrid values fall at or a little below the lower end of this
range (while PBE-GGA falls well below).

6. Conclusions

The random phase approximation (RPA) is a promis-
ing18-20,22-28,34 fifth-rung density functional, but one that
requires a correction. The correction to the total18,20 and the
ionization20 energies of a free atom, or to the surface energy
of a solid,19,25 is a short-range correlation describable by
LSDA or GGA (RPA+), but RPA molecular atomization

energies22,23 surprisingly require a fully nonlocal correction,
which we argue arises due to the multiple atomic centers of
the molecule. The nonlocal RPA++ correction, based upon
the vdW-DF,16 is, however, not very different from RPA+.
(And probably the vdW-DF correlation functional, like the
LSDA and the GGA, does not have the kind of nonlocality
that would make it compatible with exact exchange for
molecular atomization energies.) The needed kind of non-
locality is present instead in the global hybrid functional of
eq 17. The RPA, RPA+, and RPA++ exchange-correlation
holes in a molecule can be more localized around an electron
than that of the exact exchange hole but still too spread out
in comparison to the exact exchange-correlation hole. While
the global hybrid of eq 17 is not a satisfactory general
correction to RPA, its accuracy strongly suggests this
conclusion. RPA may still be nearly correct at longer range
in normal systems, justifying range-separated hybrids, such
as refs 37 and 38. However, the range-separated hybrids share
two drawbacks with the global hybrids: the appearance of
an empirical parameter and the incorrect behavior under
uniform density-scaling to the high-density limit.43,42

A satisfactory fully nonlocal correction should be
constructed by constraint satisfaction, without empirical
parameters. A nonempirical self-interaction correction to
RPA correlation is intrinsic to the inhomogeneous
Singwi-Tosi-Land-Sjoelander (ISTLS) functional.44,19

ISTLS is nearly exact for the uniform electron gas and
yields jellium surface energies close to those of RPA+
(Table 3). So it would be interesting to see what ISTLS
predicts for molecular atomization energies. Equally
interesting would be atomization energy and surface
energy tests of the “RPA with exchange”, as defined in
Section 2, with a small LSDA additive correction (RPAE+).
RPAE already shows promise for the correlation energies
of atoms.45 References 19 and 46 suggest that, while the
spatial dependence of fx,λ(rb,rb′;ω)might be important, the
frequency dependence might not be. The fully nonlocal
second-order screened exchange correction to RPA, related
to RPAE, has been used recently by Grueneis et al.47

7. Appendix

Numerical Double Integration on a Three-Dimensional
Grid. Semilocal functionals (eq 2) require only a single
integration over a three-dimensional grid of M points, with
a computation time proportional to M. Fully nonlocal
functionals require a double integration, with a computation
time proportional to M2. Thus, grids commonly used for

Table A1. Contribution of the Beyond-RPA vdW-DF Nonlocal Energy ∆Ec
nl (Hartree) of Eq 12 to the Atomization Energy of

the N2 Molecule vs the Spacing of the Grid Points (Bohr)a

spacing of the grid points nonlocal contribution core elimination gradient calculation

0.237-0.224 0.01528 no numeric
0.197-0.186 0.01227 no numeric
0.168-0.159 0.01063 no numeric
0.200 0.01343 no analytic
0.200 0.01151 yes numeric
0.200 0.01192 yes analytic
0.150 0.01083 yes analytic

a The effect of making the same core elimination for free atoms and molecules is shown in the last three lines. Where two spacings are
given on one line, the first is for the molecule, and the second is for the free atom.

Table 3. Jellium Surface Exchange-Correlation Energies
σxc in erg/cm2. The bulk density is n ) 3/(4πrs

3), with rs in
bohra

rs LDA RPA RPA+ ISTLS (PBE + RPA+)/2

2.00 3354 3467 3413 3417 3337
2.07 2961 3064 3015 3026 2948
2.30 2019 2098 2060 2072 2011
2.66 1188 1240 1214 1227 1183
3.00 764 801 781 800 761
3.28 549 579 563 580 547
4.00 261 278 268 (281) 260
6.00 53 58 54 (60.5) 53

a The electron density at the surface is more slowly varying
for smaller rs. All calculations, including RPA, use LDA orbitals.
The exact surface exchange-correlation energy probably (ref
19) falls in the narrow range between LDA and RPA. RPA and
ISTLS values from ref 19 are compared to LDA and RPA+
values from ref 18. While RPA+ makes a GGA correction to
RPA, ISTLS makes a promising fully nonlocal correction. The
last column is from our global hybrid of eq 17. Note that the
exchange-correlation contribution can far exceed the total
surface energy.
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semilocal functionals can be impractical for fully nonlocal
ones. For the contributions of {∆nl} to the RPA++
atomization energies of Table 2, we used cubic grids (roughly
60 × 60 × 60) with spacings of roughly 0.17 bohr. The
grids for the molecule and the free atom were slightly
different. The high-density cores were eliminated, somewhat
as in the pseudopotential approach usually employed with
the vdW-DF: Where n > 1 (rs < 0.6), we set n ) 1 and ∇n
) 0. With this core elimination, we can achieve a given level
of convergence with a coarser grid, as shown in Table A1.

Later we devised the more elaborate methods described
below, which confirmed our earlier result of Table 2 for N2

and C2H2, and could be used for future work. These methods
take maximum advantage of the error cancellation between
molecule and free atoms. (We have not attempted to use the
efficient implementation of the vdW-DF presented in ref 48).

For dissociation energy calculations of diatomic molecules,
we use a cubic grid centered on the bond critical point of
the molecule. This grid is typically displaced with respect
to the atomic nuclei. The same displacement and density grid
were used for the free atom. This way the electron density
and its gradient are directly comparable for free atoms and
molecules; the grid points have exactly the same arrangement
around the nucleus.

In our calculations of Table 2, the density gradients were
evaluated numerically on the grid. In Tables A1 and A2, we
also check the effect of using analytic gradients instead of
numerical ones.

Tables A1 and A2 show that, while the nonlocal contribu-
tion to the beyond-RPA correlation energy and the nonlocal
correction to the RPA correlation energy are not so well
converged, the nonlocal correction to RPA atomization
energies is well converged.
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Abstract: Two new tools for the acceleration of computational chemistry codes using graphical
processing units (GPUs) are presented. First, we propose a general black-box approach for the
efficient GPU acceleration of matrix-matrix multiplications where the matrix size is too large for
the whole computation to be held in the GPU’s onboard memory. Second, we show how to
improve the accuracy of matrix multiplications when using only single-precision GPU devices
by proposing a heterogeneous computing model, whereby single- and double-precision
operations are evaluated in a mixed fashion on the GPU and central processing unit, respectively.
The utility of the library is illustrated for quantum chemistry with application to the acceleration
of resolution-of-the-identity second-order Møller-Plesset perturbation theory calculations for
molecules, which we were previously unable to treat. In particular, for the 168-atom valinomycin
molecule in a cc-pVDZ basis set, we observed speedups of 13.8, 7.8, and 10.1 times for single-,
double- and mixed-precision general matrix multiply (SGEMM, DGEMM, and MGEMM),
respectively. The corresponding errors in the correlation energy were reduced from -10.0 to
-1.2 kcal mol-1 for SGEMM and MGEMM, respectively, while higher accuracy can be easily
achieved with a different choice of cutoff parameter.

1. Introduction

Ever since scientists began to solve the equations of
molecular quantum mechanics using numerical methods and
computational tools, the interplay between fundamental
theory and application has been inextricably linked to
exponential advances in hardware technology. Indeed, many
influential contributions to quantum chemistry have been
motivated by insights into how best to utilize the available
computational resources within the same theoretical model.
One example is Almlöf’s appreciation of the discrepancy
that had appeared between data storage capacity and raw
processor speed.1 His subsequent introduction of the direct

SCF technique transformed calculations from being memory
(or disk) bound into being processor bound; previously
impossible applications could be attempted by using ad-
ditional processor time.

We are now witnessing yet another era in the optimization
of quantum chemistry codes, following an explosion of
interest in the application of coprocessors, such as graphics
processing units (GPUs) to general scientific computing.2

This interest in GPUs and related massively parallel proces-
sors is largely driven by their tremendous cost to performance
ratio (in operation counts per second per unit of currency),
which arises from the economies of scale in their manufacture
and in their great demand in numerous multimedia applica-
tions. Another key factor in their widespread uptake for
scientific use is the recent release of NVIDIA’s compute
unified device architecture (CUDA) programming interface
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that allows development of algorithms for the GPU using a
relatively simple extension of the standard C language.2

A GPU is an example of a stream-processing architecture3

and can outperform a general-purpose central processing unit
(CPU) for certain tasks because of the intrinsic parallelization
within the device, which uses the single-instruction, multiple
data (SIMD) paradigm. Typical GPUs contain multiple
arithmetic units (streaming processors), which are typically
arranged in groups of eight to form multiprocessors that share
a fast access memory and an instruction unit; all eight
processors execute the same instruction thread simultaneously
on different data streams. In contrast, in multiple-core or
parallel CPU architectures, each thread must have an
instruction explicitly coded for each piece of data. One of
the most recent GPU cards, the Tesla C1060 from NVIDIA,
contains 240 streaming processors, can provide up to 933
GFLOPS of single-precision computational performance, and
has a cost which is approximately 1 order of magnitude less
than an equivalent CPU cluster.

GPUs are, therefore, well-suited for high-performance
applications with dense levels of data parallelism where very
high accuracy is not required. (Although double-precision
cards are available, in the case of NVIDIA GPUs, they have
a peak FLOP count approximately 10 times less than those
of single precision cards.) The challenge for scientists
wanting to exploit the efficiency of the GPU is to expose
the SIMD parallelism in their problem and to efficiently
implement it on the new architecture. A key component of
this task is a careful consideration of the memory hierarchy
to efficiently hide memory access latency.

Already, GPUs have been recruited extensively by the
scientific community to treat a wide range of problems,
including finite-difference time-domain algorithms4 and
n-body problems in astrophysics.5 For computational chem-
istry, GPUs are emerging as an extremely promising
architecture for molecular dynamics simulations,6,7 quantum
Monte Carlo,8 density functional theory, self-consistent field
calculations,9-14 and correlated quantum chemistry15 meth-
ods. Efficiency gains of between one and three orders of
magnitude using NVIDIA graphics cards have been reported
compared to conventional implementations on a CPU. In this
way, new domains of scientific application have become
amenable to calculation where, previously, extremely ex-
pensive and rare supercomputing facilities would have been
required.

As an example of the more general impact of accelerator
technologies, Brown et al.16 have accelerated density func-
tional theory up to an order of magnitude using a Clearspeed
coprocessor. The Clearspeed hardware is a proprietary
compute-oriented stream architecture promising raw perfor-
mance comparable to that of modern GPUs, while offering
double-precision support and an extremely low power
consumption. The challenges of efficiently utilizing the
Clearspeed boards are similar to those of GPUs, requiring a
fine-grained parallel programming model with a large number
of lightweight threads. Thus, the algorithmic changes sug-
gested for their work and for ours have a common value
independent of the precise hardware used, which will of
course change with time.

In the current work, we introduce two new techniques with
general utility for the adoption of GPUs in quantum
chemistry. First, we propose a general approach for the
efficient GPU acceleration of matrix-matrix multiplications,
where the matrix size is too large for the whole computation
to be held in the GPU’s onboard memory, requiring the
division of the original matrices into smaller pieces. This is
a major issue in quantum chemical calculations where matrix
sizes can be very large.

Second, we describe how to improve the accuracy of
general matrix-matrix multiplications when using single-
precision GPUs, where the 6-7 significant figures are often
insufficient to achieve ‘chemical accuracy’ of 1 kcal mol-1.
To solve this problem, we have implemented a new algorithm
within a heterogeneous computing model, whereby the
numerically large contributions to the final result are
computed and accumulated on a double-precision device
(typically the CPU), and the remaining small contributions
are efficiently treated by the single-precision GPU device.

We have applied these ideas in an extension of our
previously published GPU-enabled implementation of resolu-
tion-of-the-identity second-order Møller-Plesset perturbation
theory (RI-MP2).17-20 Thus, the paper begins in Section 2
with an overview of the RI-MP2 method and our previous
GPU implementation. In Sections 3 and 4, we discuss our
new matrix-multiplication library and its performance. In
Section 5, we examine the accuracy and the speedups
achieved when applying the technology to RI-MP2 calcula-
tions on molecules with up to 168 atoms, and we end the
paper with some brief conclusions.

2. GPU Acceleration of RI-MP2

One of the most widely used and computationally least
expensive correlated treatments for electronic structure is the
second-order Møller-Plesset perturbation theory (MP2).
MP2 is known to produce equilibrium geometries of
comparable accuracy to density functional theory (DFT),21

but unlike many popular DFT functionals is able to capture
long-range correlation effects, such as the dispersion interac-
tion. For many weakly bound systems where DFT results
are often questionable, MP2 is essentially the least expensive
and most reliable alternative.22 The expression for computing
the MP2 correlation energy takes the form:

E(2) ) ∑
ijab

(ia|jb)2 + 1
2

[(ia|jb) - (ib|ja)]2

εi + εj - εa - εb
(1)

in terms of the {i, j} occupied and {a, b} virtual molecular
orbitals (MOs) that are eigenfunctions of the Fock operator
with eigenvalues {ε}. The MO integrals:

(ij|ab) ) ∑
µνλσ

CµiCνjCλaCσb(µν|λσ) (2)

are obtained by contracting two-electron integrals over the
(real) atomic orbital (AO) basis functions:

(µν|λσ) ) ∫ ∫ φµ(r1)φν(r1)φλ(r2)φσ(r2)dr1dr2 (3)

where C is the matrix of MO coefficients describing the
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expansion of each MO as a linear combination of the AOs.
One way to considerably reduce the computational cost
associated with traditional MP2 calculations (which formally
scales as O(N5) with the number of basis functions) is to
exploit the linear dependence inherent in the product space
of atomic orbitals. This allows one to expand products of
AOs as linear combinations of atom-centered auxiliary basis
functions, P:

Fµν(r) ) µ(r)ν(r) ≈ F̃µν(r) ) ∑
P

Cµν,PP(r) (4)

and to, therefore, approximate all the costly four-center, two-
electron integrals in terms of only two- and three-center
integrals:

(µν|λσ)̃ ) ∑
P,Q

(µν|P)(P|Q)-1(Q|λσ) (5)

where we have assumed that the expansion coefficients are
determined by minimizing the Coulomb self-repulsion of the
residual density. The result is equivalent to an approximate
insertion of the resolution-of-the-identity (RI).

All our work is implemented in a development version of
Q-Chem 3.1,23 where the RI-MP2 correlation energy is
evaluated in five steps, as described elsewhere.15 Previously
we showed that step 4, the formation of the approximate
MO integrals, was by far the most expensive operation for
medium- to large-sized systems and requires the matrix
multiplication:

(ia|jb)̃ ≈ ∑
Q

Bia,QBjb,Q (6)

where:

Bia,Q ) ∑
P

(ia|P)(P|Q)-1/2 (7)

The evaluation of eq 6 is typically an order of magnitude
more expensive than eq 7. We shall concentrate on these
two matrix multiplications in this work. Consistent with our
previous paper,15 we will repeatedly refer to these evaluations
as steps 3 (eq 7) and 4 (eq 6) as we investigate the accuracy
and the efficiency of our new GPU implementation.

Included in the CUDA software development toolkit is
an implementation of the BLAS linear algebra library, named
CUBLAS.24 As previously reported,15 we accelerated the
matrix multiplication in eq 6 by simply replacing the BLAS
*GEMM routines with corresponding calls to CUBLAS
SGEMM. This initial effort achieved an overall speedup of
4.3 times for the calculation of the correlation energy of the
68-atom doeicosane (C22H46) molecule with a cc-pVDZ basis
set using a single GPU. At this early stage in development,
we used the GPU purely as an accelerator for *GEMM and
made no effort to keep data resident on the device.

In the present work, we further explore the acceleration
of our RI-MP2 code through the application of CUBLAS
combined with two new techniques. These enable us to
perform more accurate calculations on larger molecules and
basis sets involving larger matrices, while also mitigating
the errors associated with single-precision GPUs. We discuss
both techniques in the following section.

3. GPU Acceleration of GEMM

In large-scale quantum chemistry calculations, the size of
the fundamental matrices typically grows as the square of
the number of atomic basis functions (even if the number of
non-negligible elements is much smaller). Moreover, inter-
mediate matrices are sometimes even larger, such as the B
matrices of eq 7.

A GPU can only accelerate a calculation that fits into its onboard
memory. While the most modern cards designed for research can
have up to 4 GiB of RAM, consumer level cards may have as
little as 256 MiB (with some portion possibly devoted to the
display). If we wish to run large calculations, but only have a small
GPU available, then some means of dividing the calculation up
and staging it through the GPU must be found.

Next, we consider the question of accuracy arising from
the use of single-precision GPU cards. It turns out, that many
operations do not require full double-precision support to
achieve acceptable accuracy for chemistry, but nevertheless,
single precision is not always sufficient.13 Double-precision
capable GPUs have only become available within the past
year and so are not yet widespread. Moreover, we cannot
rely on the support of double-precision cards by manufactur-
ers in the future, since the commercial driving force behind
such processors is the wealth of multimedia applications that
do not require high precision. We address this problem with
the introduction of a new way to balance the desire for GPU
acceleration with a need for high accuracy.

3.1. Cleaving GEMMs. Consider the matrix multiplication:

C ) A·B (8)

where A is a (m × k) matrix, and B is a (k × n) matrix,
making C an (m × n) matrix. We can divide A into a column
vector of r + 1 matrices:

A ) (A0

A1

l
Ar

) (9)

where each entry Ai is a (pi × k) matrix, and ∑i ) 0
r pi ) m.

In practice, all the pi will be the same, with the possible
exception of pr, which will be an edge case. In a similar
manner, we can divide B into a row vector of s + 1 matrices:

B ) (B0 B1 · · · Bs ) (10)

where each Bj is an (k × qj) matrix, and ∑j ) 0
s qj ) n. Again

all the qj will be the same, with the possible exception of qs.
We then form the outer product of these two vectors:

C ) (A0

A1

l
Ar

)·(B0 B1 · · · Bs ) (11)

)(A0·B0 A0·B1 · · · A0·Bs

A1·B0 A1·B1 A1·Bs

l ···
Ar·B0 Ar·Bs

) (12)

Each individual Cij ) AiBj is a (pi × qj) matrix and can be
computed independently of all the others. Generalizing this
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to a full *GEMM implementation, which includes the
possibility of transposes being taken, is tedious but
straightforward.

We have implemented this approach for the GPU, as a
complete replacement for *GEMM. The pi and qj values are
chosen such that each submultiplication fits within the
currently available GPU memory. Each multiplication is
staged through the GPU, and the results assembled on the
CPU. This process is hidden from the user code, which
simply sees a standard *GEMM call.

3.2. Heterogeneous Computing with MGEMM. With
the problem of limited memory solved, we will now
demonstrate how to overcome the lack of double precision
GPU hardware. Again, consider the matrix multiplication:

C ) A·B (13)

We can split each matrix element-wise into ‘large’ and
‘small’ components, giving:

C ) (Alarge + Asmall)(Blarge + Bsmall)
) A·Blarge + Alarge·Bsmall + Asmall·Bsmall

The AsmallBsmall term consists entirely of ‘small’ numbers
and can be run in single precision on the GPU (using the
cleaving approach described above, if needed). The other
two terms contain ‘large’ numbers and need to be run in
double precision. However, since each of the ‘large’ matrices
should be sparse, these terms each consist of a dense-sparse
multiplication. We only store the nonzero terms of the Alarge

and Blarge matrices, cutting the computational complexity
significantly. Consider:

C′ik ) AijBjk
large (14)

Only a few Bjk
large will be nonzero, and we consider each

in turn. For a particular scalar Bjk
large, only the kth column of

C′ will be nonzero and is equal to the product of Bjk
large and

the jth column vector of A. This nonzero column vector C′ik
can be added to the final result, C, and the next Bjk

large can be
considered. A similar process can be applied to the AlargeBsmall

term (producing row vectors of C). Again, this approach can
be generalized to a full *GEMM implementation, including
transposes.

The remaining question is that of splitting the matrices.
We have taken the simple approach of defining a cutoff
value, δ. If |Aij| > δ, that element is considered ‘large,’
otherwise it is considered to be ‘small.’

We have implemented our algorithm we have dubbed
MGEMM for mixed-precision general matrix multiply. It
operates similarly to the other *GEMM routines but takes
one extra argumentsthe value of δ.

4. MGEMM Benchmarks

We will now discuss some benchmarks for MGEMM. Our
aim is to assess the speed and accuracy of MGEMM for
various matrix structures and the choice of cutoff tolerance
compared to a DGEMM call on the CPU. In particular, it is
important to benchmark how much computational speed is
gained using the mixed-precision MGEMM with the GPU
as a function of the loss in accuracy compared to DGEMM.

Throughout this section, CPU calculations were made using
an Intel Xeon E5472 (Harpertown) processor clocked at 300
GHz attached to an NVIDIA Tesla C1060 (packaged into a
Tesla S1070). The GPU calls were limited to 256 MiB of
RAM to model a more restricted GPU in a typical BOINC
(Berkeley Open Infrastructure for Network Computing)
client.25,26

4.1. Using Model Matrices. In Figure 1 we show the
speedup for a variety of *GEMM calls using matrices of
increasing (square) size. Three different types of matrices
were considered, based on the number of randomly scattered
‘large’ elements. All the matrices were initialized with
random values in the range [-1, 1], forming the ‘back-
ground’ and ‘salted’ with a fraction fsalt of random larger
values in the range [90, 110]. The size of the MGEMM
cutoff parameter δ was chosen such that all the salted
elements were considered ‘large’.

There are three MGEMM curves plotted, for different
values of fsalt ) 10-2, 10-3, and 10-4. The SGEMM(cleaver)
curve corresponds to doing the full matrix multiplication on
the GPU using the GEMM(cleaver) and includes the time
taken to down convert the matrices to single precision on
the CPU. The DGEMM(cleaver) curve corresponds to a full
double-precision matrix multiplication on the GPU, which
is possible for modern cards, and we include it for complete-
ness. Square matrices were used in all cases, with no
transpositions in the *GEMM calls. All the runs were
performed 10 times, and speedups are obtained relative to
the time taken for the corresponding DGEMM call on the
CPU.

Examining the results, we see that SGEMM on the GPU
gives a speedup of 17.1 times over running DGEMM on
the CPU for a matrix of size 10 048 × 10 048 and is even
faster for larger matrices. This represents an upper bound
for the speedups we can hope to obtain with MGEMM for
such matrices. The speedups increase significantly as the
matrices become larger due to the masking of memory access
latencies and due to other overheads when employing the
GPU for more compute-intensive processes.

Figure 1. Speedup for various *GEMM calls as a function of
(square) matrix size (averaged over 10 runs). Most elements
were in the range [-1, 1], with the ‘salt’ values in the range
[90, 110]. Times are scaled relative to running DGEMM on
the CPU.
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Considering the MGEMM results, we see that the speedups
are strongly dependent on the number of large elements
which must be evaluated in double precision on the CPU.
For the relatively high value of fsalt ) 10-2, running MGEMM
was actually slower than running DGEMM on the CPU
alone. This is understandable when one considers the extra
steps in the MGEMM algorithm. In addition to down
converting the matrices to single precision, the CPU has to
perform cache-incoherent operations on the ‘large’ multi-
plications. We store our matrices column major, so the
operations performed in eq 14 are cache coherent. However,
it is easy to see that the corresponding operations for C′ )
AlargeBsmall will be cache incoherent for both C′ and Bsmall

(recall that Alarge will be stored as individual elements). This
brings a huge penalty over a standard *GEMM implementa-
tion, which is tiled for cache coherency.

In contrast, for fsalt ) 10-4, there is much less penalty to
running MGEMM over SGEMM on the GPU, due to the
small fraction of large elements computed on the CPU.
Speedups of approximately 10 times are observed for the
largest matrices. For fsalt ) 10-3, the performance is naturally
reduced, and speedups of approximately 2 times relative to
CPU DGEMM are obtained for the largest matrices. In this
case, MGEMM runs approximately 2.5 times slower than
full DGEMM on the GPU (available in the most modern
cards). We may also note that the thresholds for matrix
cleaving can be discerned. They start at matrix sizes of 3 344
for double precision and 4 729 for single precision. These
are detectable on the curves but do not alter the times
significantly.

In Figure 2, we examine the accuracy of MGEMM for
various matrix structures. Shown in the figure are the
maximum absolute errors of a single element (relative to the
CPU DGEMM result) plotted as a function of matrix size,
for different fractions fsalt and sizes of salted values. As
before, all the matrices were initialized with random values
in the range [-1, 1], but now the salting sizes were grouped
into two ranges: [90, 110] and [9 990, 10 010]. There is one
curve using SGEMM corresponding to a fraction of salted

values, fsalt ) 0.01, in the range [90, 110], and several
MGEMM curves.

Looking at the figure, we see that the salted SGEMM
calculation produces substantial errors for the largest matri-
ces, which are of the same order of magnitude as the
background elements themselves. In contrast, the errors are
significantly reduced when using MGEMM and are the same
regardless of the fraction or size of the salted elements. In
fact, these limiting MGEMM errors are the same as the errors
observed when using SGEMM on a pair of unsalted random
matrices. Essentially, MGEMM is limiting the maximum
error in any element to that of the ‘background’ matrix
computed in single precision, since the cutoff tolerance
guarantees that all the salted contributions will be computed
in double precision on the CPU.

The order of magnitude of the limiting error can be
rationalized from a consideration of the number of single-
precision contributions per output element (approximately
1 000-10 000 in this case) and the expected error in each
(approximately 10-6-10-7 for input matrices with a random
background on [-1, 1]). A consequence of this observation
is that an upper bound to the maximum error can be estimated
from a consideration of only the matrix size and the cutoff
parameter δ, although this estimate will be very conservative
in cases where there is no obvious ‘constant background’,
as we shall see in the following.

4.2. Using RI-MP2 Matrices. For a more realistic as-
sessment of MGEMM for quantum chemistry applications,
we also ran benchmarks on two pairs of matrices taken from
an RI-MP2 calculation on the taxol molecule in a cc-pVDZ
basis, as described below in Section 5. In this case, the
MGEMM cutoff parameter δ will no longer be dimensionless
but rather will take the same units as the input matrix
elements, which, for eqs 6 and 7, are all computed in atomic
units. For simplicity, we have dropped these units in the
following discussion and assumed their implicit understand-
ing based on the matrices that the δ-value is referring to.

As summarized in Section 2, our RI-MP2 implementation
has two steps involving significant matrix multiplications:
the evaluation of eqs 6 and 7. As described in the section
and as consistent with our previous work,15 we shall refer
to these two matrix multiplications as step 3 (eq 7) and step
4 (eq 6) throughout the following discussion. Although step
3 is typically an order of magnitude faster than step 4, we
need to take care to study it since we are interested not only
in speed but also error accumulation using MGEMM.

For the case of taxol in a cc-pVDZ basis, the full (P|Q)-1/2

matrix is of size 4 186 × 4 186. However, in the Q-Chem
implementation, the full (ia|P) and Bia, Q matrices do not need
to be explicitly constructed. Instead, it is sufficient to loop
over discrete batches of i, depending on available memory.
As seen above, larger matrices deliver a greater speedup
when multiplied on the GPU, thus, there is a motivation for
choosing as large a batch size (over i) as possible in our
GPU calculations. In these test benchmarks, we chose batch
sizes of one and seven based on the available CPU memory,
such that the (ia|P) and Bia, Q matrices have dimensions of
897 × 4 186 and 6 279 × 4 186, respectively. We do not
batch the step 3 matrices since there are only O(N)

Figure 2. Maximum absolute error in a single element for
various GEMM calls as a function of matrix (square) size. Most
elements were in the range [-1, 1], with the ‘salt’ values in
the range [90, 110] or [9 990, 10 010]. A CPU DGEMM call
was taken as the reference calculation.
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multiplications taking place, and the more computationally
intensive process is step 4, which has order O(N2) operations.

We note that the structure of these matrices was found to
be very different from the model matrices considered in the
previous subsection, Section 4.1. Specifically, the distribution
of large and small elements was structured, as described
below. In the case of the (P|Q)-1/2 matrix, involving only
the auxiliary basis set, the large elements were heavily
concentrated on the top left-hand corner in a diagonal fashion,
while the other matrices were observed to have a striped
vertical pattern of large elements. In the current implementa-
tion, the main issue affecting the efficiency of MGEMM is
the ratio of large to small elements in the input matrices,
but in general we can also expect the sparsity structure to
impact performance. In cases where the structure is known
in advance, a more specialized treatment could give worth-
while speedups, but this is beyond the scope of the current
work.

The precise fractions of large and small elements for the
taxol case are plotted in Figure 3 with varying cutoff
parameter δ for both step 3 and 4 matrices. We should note
that these curves are only for one particular i-batch, as
explained above, and not for the full matrices. However, to
ensure that the results are representative of the full matrix,
we checked the distributions from the other batches, and we
chose the most conservative matrices for our plots, which
had large elements across the broadest range of δ-values.

Looking at the curves, it is significant that the step 3
matrices have a greater fraction of large elements than the
step 4 matrices, and specifically, the (P|Q)-1/2 matrix has
the largest elements of all. This means that for a constant
δ-value, we can expect MGEMM to introduce larger errors
in the step 3 matrix multiplications than in step 4. In future
work, it could be advantageous to tailor the δ-value for
different steps in an algorithm, or even different input
matrices, but in this first study, we use a constant δ-value
throughout any given calculation.

In the model matrices of the previous subsection, Section
4.1, the distribution would have resembled a step function
around δ ) 1.0, rapidly dropping from 1.0 to the chosen

fraction of salted values for δ > 1.0 and rapidly stepping
again to 0 for δ-values beyond the salt size. In contrast, we
see a continuous decay of element values in the real matrices
across many orders of magnitude. In Figure 1, MGEMM
was seen to outperform DGEMM for a fraction of salts of
order 10-4. Comparing to Figure 3, this suggests that δ
should be greater than 0.01 to ensure significant MGEMM
speedups when considering the (ia|P) and Bia, Q matrices,
while the fraction of large elements in the (P|Q)-1/2 matrices
only becomes this small for δ-values of order 10.

Having analyzed the distributions, we can consider their
effect on the accuracy and the speedups compared to those
of the model benchmarks. On the top plots of Figures 4 and
5, we show how the speedup for various *GEMM calls
(compared to a CPU DGEMM call) varies with δ, averaged
over 10 calls. We see that the MGEMM performance varies

Figure 3. Fraction of ‘large’ elements as a function of the
cutoff parameter, δ, for the taxol RI-MP2 matrices in steps 3
(eq 7) and 4 (eq 6) of the algorithm outlined in Section 2.

Figure 4. Results from the step 3 (eq 7) matrix multiplication
in a taxol RI-MP2 calculation as a function of the cutoff
variable δ. Top: MGEMM speedups relative to a CPU DGEMM
calculation. Bottom: Maximum absolute error (Hartree1/2) in a
single element of the output matrix for MGEMM and SGEMM
runs.

Figure 5. Results from the step 4 (eq 6) matrix multiplication
in a taxol RI-MP2 calculation as a function of the cutoff
variable δ. Top: MGEMM speedups relative to a CPU DGEMM
calculation. Bottom: Maximum absolute error (Hartree) in a
single element of the output matrix for MGEMM and SGEMM
runs.
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continuously from being almost the same speed as CPU
DGEMM to reaching the GPU SGEMM limit for sufficiently
large cutoff values. As expected, for the step 4 matrices,
significant speedups are only observed for δ-values greater
than approximately 0.01. Similarly, for step 3, the greatest
speedups are only observed for much larger δ-values,
approximately 1 to 2 orders of magnitude greater than for
step 4. The limiting values for the speedups are ap-
proximately five and nine times for steps 3 and 4, respec-
tively. This difference is mainly due to the different sizes of
the matrices used in each benchmark, recognizing that the
smaller matrices used in step 3 will give smaller speedups
(cf. Figure 1).

Considering the MGEMM accuracy, the bottom plots in
Figures 4 and 5 show the maximum absolute errors of a
single element (relative to the CPU DGEMM result) plotted
as a function of δ. As δ increases, the MGEMM errors
steadily increase, as expected, with the single precision limit
being approached for sufficiently large δ. Again we see
significant differences between steps 3 and 4, as expected
from the element distributions. First, the errors in step 3 are
approximately 2 orders of magnitude greater than in step 4.
Moreover, in step 4, the errors reach the SGEMM limit for
δ ∼ 0.1, while the errors in step 3 continue to increase for
cutoff values an order of magnitude larger. Examining Figure
3, it is expected that the relatively large fraction of elements
greater than 1.0 in the (P|Q)-1/2 matrix are responsible for
these observations.

Unexpectedly, however, the errors are not seen to steadily
converge to the SGEMM limit for step 3 in the same way
as for step 4, with errors larger than SGEMM being observed
for δ > 2.5. We have performed additional tests to understand
why this may be happening, and our conclusion is that it
results from error cancellation effects. To verify this idea,
we repeated similar calculations replacing all matrix elements
with their absolute values, so that any error cancellation
would be essentially removed. The result was a monotonic
curve much more similar to that observed for step 4, showing
the same steady convergence to the SGEMM limit (not
shown).

We may now consider the advantages of using MGEMM
over SGEMM in terms of accuracy and speed. Comparing
the subplots in Figures 4 and 5, we can see that for a rather
modest performance decrease from approximately five to four
times and nine to seven times for steps 3 and 4, respectively,
an order of magnitude reduction in the errors can be obtained.
However, it might be noted that in all cases the maximum
errors are rather small in these tests, being only of order
10-6 in the worst case. Considering real RI-MP2 applications,
we might, therefore, expect the final errors in the molecular
energy to be almost negligible, using single precision only.
However, in Section 5, the benchmarks show that for larger
molecules, the errors propagate such that the resulting
correlation energy errors are too large to be acceptable.

Finally, from Figure 2, we can estimate an upper bound
on the maximum absolute error of each element for different
δ-values. Since the matrix dimension is approximately 4 000,
the choice δ ) 0.1 would give a conservative error bound
of approximately 4 000 × 10-6 × 0.1, which is of order 10-4.

However, because the matrices do not have a ‘constant
background’ of 0.1, this estimate is very conservative, and
the observed error in Figure 5 is much less.

5. RI-MP2 Acceleration Benchmarks

In this section, our intention is to perform full RI-MP2
quantum chemistry calculations on real molecules and to
benchmark the speedups and the accuracy in the resulting
molecular energy that can be obtained when using the GPU.
In this case, we include in the timings all steps required to
compute the RI-MP2 correlation energy (after the SCF cycle
has finished), while the GPU *GEMM libraries are used to
accelerate the matrix multiplications in steps 3 (eq 7) and 4
(eq 6), as described in the previous sections. As a result, the
observed speedups will be reduced compared to the previous
benchmarks, since not all steps are accelerated.

For all these benchmarks, we used an AMD Athlon 5600+
CPU clocked at 300 GHz, combined with an NVIDIA Tesla
C1060 GPU with 4 GiB of RAM. For some calculations,
the GPU was limited to 256 MiB of RAM, as described
below.

We emphasize that only the latest GPU cards have double-
precision support to enable CUBLAS DGEMM, while older
cards also have limited memory, which significantly con-
strains the size of even the CUBLAS SGEMM matrix
multiplications. Our previous attempts to use GPUs to
accelerate RI-MP2 calculations were limited to molecular
systems with less than 500 basis functions15 due to this
constraint. However, using the matrix cleaver in the
(MGEMM) library, we are now able to run calculations of
a size limited only by the CPU specification, independent
of the GPU memory.

For our test systems, we chose a set of linear alkanes
(C8H18, C16H34, C24H50, C32H66, and C40H82) as well as two
molecules of pharmaceutical interest, taxol (C47H51NO14) and
valinomycin (C54H90N6O18), and we considered the cc-pVDZ
and cc-pVTZ27 basis sets.

The matrix cleaver and MGEMM were implemented in a
modified version of the Q-Chem 3.1 RI-MP2 code previously
described.15 Concerning the batching over occupied orbitals,
as discussed in Section 4.2, only the step 4 matrices were
batched. For all molecules, the batch size was chosen
dynamically based on the matrix sizes and the available CPU
memory (for taxol, this results in a batch size of seven, as
used before). However, in these benchmarks the batching
issue is less important, since we were limited to only 256
MiB of GPU RAM, which means that large batches would
have to be cleaved by the MGEMM library in any case.

First, in Table 1, we benchmarked the reference case of
either CUBLAS SGEMM or DGEMM for each test molecule
using the double-� basis set. The table shows the speedup
in computing the RI-MP2 correlation energy and the error
relative to a standard CPU calculation (for SGEMM only).
The speedups and SGEMM errors are seen to be greater for
the larger molecules, as expected, with the largest speedups
observed for valinomycin at 13.8 and 7.8 times, using
SGEMM and DGEMM, respectively. However, while CU-
BLAS DGEMM gives essentially no loss of accuracy, the
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SGEMM error is approximately -10.0 kcal mol-1, which is
well beyond what is generally accepted as chemical accuracy.

The results from Table 1 highlight the need for MGEMM
to reduce the errors when double-precision GPUs are
unavailable. As an initial test of MGEMM for this purpose,
we repeated the calculation of the taxol molecule in the
double-� basis set (1 123 basis functions) for various choices
of cutoff value δ. Figure 6 shows the speedup relative to
CPU DGEMM as well as the absolute error in the energy.

As the cutoff increases, the MGEMM speedup increases
rapidly to the asymptotic limit of 10.6 times, which is slightly
less than the SGEMM limit of 11.3 times due to the
MGEMM overhead. In contrast, the energy error in this range
increases almost linearly toward the SGEMM limit. Recalling
Figures 4 and 5, it seems that the errors are dominated by
the step 3 operations, where we form the Bia, Q matrices, since
these errors are also seen to steadily increase over the range
of cutoff values considered in Figure 6. The overall speedups
are also seen to have a similar shape to the step 3 speedups
but are approximately twice as large. This reflects the greater
speedups in step 4, noting that step 4 on the CPU is the
most expensive step in the algorithm.

To achieve a target accuracy of 1.0 kcal mol-1, Figure
6 shows that a cutoff value of δ < 2.0 in the case of taxol

in a double-� basis is necessary. However, trading the
accuracy and the speedup, a good choice of cutoff would
be δ ) 1.0. This gives an error of 0.5 kcal mol-1, which
is an order of magnitude smaller than using SGEMM, with
a speedup very close to the MGEMM limit and with only
about 7% less than that of the SGEMM limit.

In Table 2, we explore the performance of MGEMM using
a constant cutoff value of δ ) 1.0. The table shows the
speedups and the total energy errors for each molecule in
both the double- and triple-� basis sets. In this particular
case, we have limited the GPU to use only 256 MiB of RAM
to mimic the capability of older cards and to emphasize the
use of the MGEMM cleaver. This will naturally result in a
loss of speedup compared to utilizing a larger GPU memory.
In the case of taxol, the reduction is approximately 20%,
but obviously still much faster than a calculation using only
the CPU.

Looking at Table 2, the trends are the same as in Table 1,
but the MGEMM errors are seen to be approximately an
order of magnitude less than the SGEMM errors (for the
larger molecules). For valinomycin in the cc-pVDZ basis,
the SGEMM speedup is reduced from 13.8 to 10.1 times
using MGEMM, but the error in the total energy is also
reduced from -10.0 to -1.2 kcal mol-1, which is now very
close to chemical accuracy. Moreover, while CUBLAS
DGEMM clearly has the advantage (when available) of not
introducing errors, if -1.2 kcal mol-1 is an acceptable
accuracy, MGEMM may even be favored, since the DGEMM
speedup is only 7.8 times compared to that of 10.1 times.
Moreover, since the error increases as δ is increased, there
will be a substantial error cancellation when obtaining energy
differences. Thus, the apparent error in MGEMM will
approach the DGEMM value.

It is unsurprising that the errors are larger when using the
triple-� basis. The manner in which the errors grow can be
anticipated using the arguments mentioned in Section 4,
where we estimate an upper bound on the maximum absolute
error from MGEMM by consideration of a constant back-
ground of elements no larger than the cutoff threshold and
the size of the input matrices. In practice, this upper bound
can be rather conservative. Moreover, if the quantity of
interest is the final energy, we must also take into account
how the matrices are used after the application of MGEMM
(e.g., if they are multiplied by large numbers). Nevertheless,
a topic of future study could be the search for a more

Table 1. Speedups using CUBLAS SGEMM and DGEMM
and Total Energy Errors Relative to CPU DGEMM for
Various Molecules in a cc-pVDZ Basis

speedup

molecule SGEMM DGEMM SGEMM energy error (kcal mol-1)

C8H18 2.1 1.9 -0.05616
C16H34 4.5 3.7 -0.12113
C24H50 6.9 5.2 -0.62661
C32H66 9.0 6.4 -0.75981
C40H82 11.1 7.2 -1.12150
taxol 11.3 7.1 -6.26276
valinomycin 13.8 7.8 -9.99340

Figure 6. Taxol MGEMM calculation using a double-� basis
set with respect to the double precision cutoff (δ). We plot
the MGEMM speedup relative to CPU DGEMM, and it shows
a rapid increase with δ toward an asymptotic value of 10.6
times. We also show the energy difference relative to CPU
DGEMM, which is seen to increase steadily over the range
of δ-values chosen but is significantly less than the previously
computed SGEMM error of 6.6276 kcal mol-1.

Table 2. MGEMM Speedups and Total Energy Errors with
Respect to CPU DGEMM for Various Molecules in a
cc-pVDZ and a cc-pVTZ Basis

speedup energy error (kcal mol-1)

molecule double-� triple-� double-� triple-�

C8H18 1.9 2.7 -0.01249 -0.03488
C16H34 3.8 5.6 -0.00704 -0.04209
C24H50 5.8 8.2 -0.14011 -0.33553
C32H66 7.9 9.2 -0.08111 -0.29447
C40H82 9.4 10.0 -0.13713 -0.51186
taxol 9.3 10.0 -0.50110 -1.80076
valinomycin 10.1 - -1.16363 -
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sophisticated method for determining a safe and optimal
δ-value for a given size of acceptable error in the final
energy.

6. Conclusion

We have developed and implemented two new tools for the
acceleration of computational chemistry codes using graphi-
cal processing units (GPUs). First, we proposed a general
black-box approach for the efficient GPU acceleration of
matrix-matrix multiplications, where the matrix size is too
large for the whole computation to be held in the GPU’s
onboard memory. Second, we have shown how to improve
the accuracy of matrix multiplications when using only
single-precision GPU devices by proposing a heterogeneous
computing model whereby both single- and double-precision
operations are evaluated in a mixed fashion on the GPU and
CPU, respectively.

This matrix cleaver and mixed-precision matrix multipli-
cation algorithm have been combined into a general library
named MGEMM,28 which may be called like a standard
SGEMM function call with only one extra argument, the
cutoff parameter δ, which describes the partitioning of single-
and double-precision work. Benchmarks of general interest
have been performed to document the library’s performance
in terms of accuracy and speed.

Compared to a CPU DGEMM implementation, MGEMM
is shown to give speedups approaching the CUBLAS
SGEMM case when very few operations require double
precision, corresponding to a large δ-value (which is
equivalent to having a large fraction of small elements in
the input matrices). However, when the fraction of large
elements approaches 0.1% or greater, much less benefit is
seen. Concerning accuracy, MGEMM restricts the maximum
error in an element of the output matrix to an upper bound,
based on the size of the matrix and the choice of δ-value. In
practice, this upper bound is usually conservative. In general,
the precise performance achieved with MGEMM is strongly
dependent on the distribution of large and small values in
the input matrices, as we have shown.

To illustrate the utility of MGEMM for quantum chem-
istry, we have implemented it into the Q-Chem program
package to accelerate RI-MP2 calculations. We have con-
sidered both the use of modern high-end GPU cards, with
up to 4 GiB of memory and with double-precision capability,
as well as legacy cards, with only single-precision capability
and with potentially only 256 MiB of RAM. Greater
speedups but also larger absolute errors in the correlation
energy were observed with the larger test molecules. In
particular, for the 168-atom valinomycin molecule in a cc-
pVDZ basis set, we observed speedups of 13.8, 10.1, and
7.8 times for SGEMM, MGEMM, and DGEMM, respec-
tively. The corresponding errors in the correlation energy
were -10.0, -1.2 kcal mol-1, and essentially zero, respec-
tively. The MGEMM δ-value was chosen as 1.0 for these
benchmarks.

We have also suggested ways in which the size of the
MGEMM error may be parametrized in terms of a conserva-
tive error bound. In addition, we have observed that the
correlation energy error grows approximately linearly with

the choice of δ-value, which may suggest a route to the a
priori determination of the δ for a given target accuracy.

As we submit this paper for publication, we have become
aware of the planned release of the next-generation GPU from
NVIDIA, currently code-named Fermi. This card will have
double-precision support with a peak performance only a factor
of 2 less than that of single-precision operations. However,
despite the emergence of double-precision GPU devices, it is
our hope that the current work will provide a framework for
thinking about other mixed-precision algorithms. Even with the
more widespread availability of double-precision cards in the
future, we have seen how MGEMM can run faster than
CUBLAS DGEMM, if a specified level of accuracy is tolerated.
Indeed, practical calculations on GPUs are very often bound
by memory bandwidth to/from the device, rather than raw
operation count. In these cases, the transfer and processing of
only single-precision data could effectively double the perfor-
mance compared to that of naive double-precision calculations.

Moreover, we are interested in the use of commodity GPUs
as part of a grid-computing environment, such as the BOINC
network. CUDA capable GPUs are extremely common in
legacy gaming devices, but most of the client machines will
not host the latest high-end hardware. We, therefore, see a
significant application for MGEMM in leveraging these large
numbers of legacy cards to overcome their lack of RAM
and double-precision arithmetic. We are, therefore, optimistic
overall about the role MGEMM can play in helping to
accelerate computations using GPUs in the near future.
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Abstract: The utility of the Fisher information measure is analyzed to detect the transition state,
the stationary points of a chemical reaction, and the bond breaking/forming regions of elementary
reactions such as the simplest hydrogen abstraction and the identity SN2 exchange ones. This
is performed by following the intrinsic reaction path calculated at the MP2 and QCISD(T) levels
of theory with a 6-311++G(3df, 2p) basis set. Selected descriptors of both position and
momentum space densities are utilized to support the observations, such as the molecular
electrostatic potential (MEP), the hardness, the dipole moment, along with geometrical
parameters. Our results support the concept of a continuum of transient of Zewail and Polanyi
for the transition state rather than a single state, which is also in agreement with reaction force
analyses.

Introduction

Notwithstanding that Fisher information of a probability
distribution was introduced in the 1920s,1 its utility for the
informational description of relevant physical and chemical
systems and/or processes, such as atoms,2,3 molecules,4

ionization,5 and reactions, among many others, has been
assessed until recently. Its appealing features differ ap-
preciably from other information measures because of its
“local” character,6 in contrast with the “global” nature of
several functionals, such as the variance or the Shannon,
Tsallis, and Renyi entropies.

The local character of Fisher information provokes an
enhanced sensitivity to strong changes, even over a very
small-sized region in the domain of definition, because of
its definition as a functional of the distribution gradient, as

will be described below. This is not the case for the global
information measures (e.g., Shannon entropy, disequilibrium,
variance),7 whose values are conditioned by the behavior of
the density over the whole domain and display much lower
variations as a consequence of the strongly localized changes
on its values.

Aside from the relevance of the Fisher information itself
for the interpretation of different physical and chemical
phenomena within an information-theoretical framework,
mainly for one-particle densities in conjugated spaces for
many-electron systems (e.g., atoms and molecules) and
processes (e.g., ionization dissociation or reactions), among
others, it is also a component of different complexity
measures,8 a concept that nowadays constitutes a hot topic
for study as a tool for the informational analysis of the
aforementioned systems and processes. Different complexi-
ties include in their definition the Fisher information as an
essential ingredient to quantify the level of localization or
organization for the considered distribution. Such is the case,
for instance, of the recently introduced “Fisher-Shannon”3

and “Cramer-Rao”8 complexities, where information on
randomness or uncertainty is provided, respectively, by the
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Shannon entropy and the variance. Exhaustive recent studies
of these complexities for atomic systems can be found in
ref 9.

Moreover, the concept of Fisher information for a given
distribution has given rise to the introduction of information
functionals with the aim of establishing a comparative
measure between two different densities retaining the
aforementioned local character of the quantifier for perform-
ing such a comparison. Such is the case of the initially
defined “relative Fisher information”,10 following a procedure
similar to that done in the Shannon case for defining the
so-called “Kullback-Leibler” relative entropy,11 and later
by symmetrizing the relative Fisher information, with the
aim of being interpreted as a distance between distributions,
resulting in a measure known as “Fisher Divergence”,12 in
a similar way as the “Jensen-Shannon Divergence”13 arises
from the Shannon entropy. Most applications of the Fisher
Divergence regard the comparison of a relevant density
describing a given system with an a priori one, usually chosen
according to a simplified model or by considering specifically
known properties of the system under study, by imposing
them on the reference or a priori one.

Theoretical chemistry has witnessed a great deal of
research to study the energetics of chemical reactions.14 For
instance, a variety of calculations of potential energy surfaces
have been performed at various levels of sophistication.15

Within the broad scope of these investigations, particular
interest has been focused on extracting information about
the stationary points of the energy surface. Despite the fact
that minima, maxima, and saddle points are useful math-
ematical features of the energy surface to reaction-path
following,16 it has been difficult to attribute too much
chemical or physical meaning to these critical points.17

Whereas the reaction rate and the reaction barrier are
chemical concepts, which have been rigorously defined and
experimentally studied since the early days of the transition
state (TS) theory,18 the structure of the TS remains as a quest
of physical organic chemistry. Understanding the TS is a
fundamental goal of chemical reactivity theories, which
implies the knowledge of the chemical events that take place
to better understand the kinetics and the dynamics of a
reaction. On the other hand, a variety of density descriptors
have been employed to study chemical reactions.18,19 Among
them, it is worthy to mention the reaction force studies on
the potential energy of reactions, which have been employed
to characterize changes in the structural and/or electronic
properties in chemical reactions.20,21 However, to the best
of our knowledge, none of them has been able to conceptu-
ally describe the reaction mechanism of elementary reactions
in a simple and direct fashion.

In past years, there has been an increasing interest to
analyze the electronic structure of atoms and molecules by
applying information theory (IT).22 These works have shown
that information-theoretic measures are capable of providing
simple pictorial chemical descriptions of atoms and mol-
ecules and the processes they exert through the localized/
delocalized behavior of the electron densities in position and
momentum spaces. In a recent study,23 we have provided
evidence that supports the utility of the information-theoretic

measures in position and momentum spaces to detect the
transition state and the stationary points of elementary
chemical reactions so as to reveal the bond breaking/forming
regions of the simplest hydrogen abstraction and the identity
of SN2 exchange chemical processes.

To the best of our knowledge, no studies have been
reported on the application of Fisher information on chemical
reactions. The goal of the present study is to follow the IRC
(internal reaction coordinate) path of some selected elemen-
tary chemical reactions to analyze the course of the reactions
by use of the Fisher information in position and momentum
spaces as well as other charge density descriptors such as
the molecular electrostatic potential (MEP) along with some
reactivity parameters of DFT, the hardness “η”, and softness
“S”, so as to witness the density changes exerted by the
molecular structures during the chemical process. Two
elemental reactions were chosen: the chemical probes under
study are the simplest hydrogen abstraction reaction H• +
H2 f H2 + H• and the identity SN2 reaction H- + CH4 f
CH4 + H-.

Theoretical Details

The central quantities under study are the Fisher information

in position space and

in momentum space, where F(rb) and γ(pb) denote the
normalize-to-unity electron density distributions in the posi-
tion and momentum spaces, respectively. The total electron
density of a molecule, in the independent particle approxima-
tion, consists of a sum of contributions from electrons in
occupied orbitals. Thus, in momentum space, the contribution
from an electron in a molecular orbital �i(pb) to the total
electron density is given by |�i(pb)|2. The orbitals �i(pb) are
then related by Fourier transforms to the corresponding
orbitals in position space φi(rb). Standard procedures for the
Fourier transformation of position space orbitals generated
by ab initio methods have been described.24 The orbitals
employed in ab initio methods are linear combinations of
atomic basis functions, and because analytic expressions are
known for the Fourier transforms of such basis fuctions,25

the transformations of the total molecular electronic wave
function from position to momentum space are computa-
tionally straightforward.26

The position Fisher information, which is closely con-
nected to the kinetic energy,27 is a spreading measure of the
electron density all over the space with a locality property
because it is a function of its gradient. In contrast with the
Shannon entropy (which is a global spreading measure), it
measures the spatial pointwise concentration of the electronic
probability cloud and quantifies the gradient content of the
electron distribution, so revealing the irregularities of the
density and providing a quantitative estimation of its (strong)
oscillatory character. Next, it is very sensitive to the

Ir ) ∫ |∇bF( rb)|2

F( rb)
d3r (1)

Ip ) ∫ |∇bγ(pb)|2

γ(pb)
d3p (2)
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electronic fluctuations so that it allows us to explore the
changes of the electronic distributions in an accurate manner.
A similar interpretation follows for the momentum Fisher
information. Moreover, the position and momentum Fisher
information are reciprocal measures that satisfy the uncer-
tainty relation IrIp g 4D2 for D-dimensional quantum
systems.28 So, for three-dimensional systems, they fulfill the
inequality IrIp g 36.

In recent studies, we have assessed the utility of employing
other chemical descriptors to interpret information-theoretic
measures. In this study, we find it interesting to use the MEP,
the hardness, geometrical parameters, dipole moment, and
vibrational frequencies.

The MEP represents the molecular potential energy of a
proton at a particular location near a molecule,29 say at
nucleus A. The electrostatic potential, VA, is then defined as

where F(rb) is the molecular electron density and ZA is the
charge on nucleus A, located at RA. Generally speaking,
negative electrostatic potential corresponds to an attraction
of the proton by the concentrated electron density in the
molecules from lone pairs, π-bonds, etc. (colored in shades
of red in contour diagrams). Positive electrostatic potential
corresponds to a repulsion of the proton by the atomic nuclei
in regions where low electron density exists and the nuclear
charge is incompletely shielded (colored in shades of blue
in contour diagrams).

We have also evaluated some reactivity parameters that
may be useful to analyze the chemical reactivity of the
processes. Parr and Pearson proposed a quantitative definition
of hardness (η) within conceptual DFT:30

is the electronic chemical potential of an N electron system
in the presence of an external potential V(rb), E is the total
energy, and “S” is called the softness. Using finite difference
approximation, eq 4 would be

where EN, EN-1, and EN+1 are the energies of the neutral,
cationic, and anionic systems; and I and A are the ionization
potential (IP) and electron affinity (EA), respectively. Ap-
plying Koopmans’ theorem,31 eq 4 can be written as:

where ε denotes the frontier molecular orbital energies. In
general terms, hardness and softness are good descriptors
of chemical reactivity; the former measures the global
stability of the molecule (larger values of η means less
reactive molecules), whereas the S index quantifies the
polarizability of the molecule.32 Thus, soft molecules are
more polarizable and possess predisposition to acquire

additional electronic charge.33 The chemical hardness “η”
is a central quantity for use in the study of reactivity and
stability, through the hard and soft acids and bases prin-
ciple.34

Results and Discussion

The electronic structure calculations performed in this study
were carried out with the Gaussian 03 suite of programs.35

Reported TS geometrical parameters for the abstraction,36

and the SN2 exchange,37 reactions were employed. Calcula-
tions for the IRC were performed at the MP2 (UMP2 for
the abstraction reaction) level of theory with at least 35 points
for each one of the directions (forward/reverse) of the IRC.
Next, a high level of theory and a well-balanced basis set
(diffuse and polarized orbitals) were chosen for determining
all of the properties for the chemical structures corresponding
to the IRC. Thus, the QCISD(T) method was employed in
addition to the 6-311++G** basis set, unless otherwise
stated. The hardness and softness chemical parameters were
calculated by use of eqs 5 and 6 and the standard hybrid
B3LYP (UB3LYP for the abstraction reaction) functional.35

Molecular frequencies corresponding to the normal modes
of vibration depend on the roots of the eigenvalues of the
Hessian (its matrix elements are associated with force
constants) at the nuclei positions of the stationary points.
We have found it illustrative to calculate these values for
the normal mode associated with the TS (possessing one
imaginary frequency or negative force constant), which were
determined analytically for all points of the IRC path at the
MP2 (UMP2 for the abstraction reaction) level of theory.35

The molecular Fisher information in position and momentum
spaces for the IRC was obtained in this study by employing
software developed in our laboratory along with 3D numer-
ical integration routines38 and the DGRID suite of pro-
grams.26 The bond breaking/forming regions along with
electrophilic/nucleophilic atomic regions were calculated
through the MEP by use of MOLDEN.39 Atomic units are
employed throughout the study except for the dipole moment
(debye), vibration frequencies (cm-1), and geometrical
parameters (angstroms).

Abstraction Reaction. The reaction Ha
• + H2f H2 + Hb

•

is the simplest radical abstraction reaction involving a free
radical (atomic hydrogen) as a reactive intermediate. This
kind of reaction involves at least two steps (SN1 reaction
type): in the first step, a new radical (atomic hydrogen in
this case) is created by homolysis, and in the second one
the new radical recombines with another radical species. Such
homolytic bond cleavage occurs when the bond involved is
not polar and there is no electrophile or nucleophile at hand
to promote heterolytic patterns. When the bond is made, the
product has a lower energy than the reactants, and it follows
that breaking the bond requires energy.

Our calculations for this reaction were performed at two
different levels: the IRC was obtained at the UMP2/6-311G
level, and all properties at the IRC were obtained at the
QCISD(T)/6-311++G** level of theory. As a result of the
IRC, 72 points evenly distributed between the forward and

VA ) (∂Emolecule

∂ZA
)

N,ZB*A

) ∑
B*A

ZB

|RB - RA|
- ∫ F( rb) d rb

| rb - RA|

(3)

η ) 1
2S

) 1
2(∂µ

∂N)V( rb)
where µ ) (∂E

∂N)V( rb)
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η ) 1
2S
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η ) 1
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≡
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reverse directions of the IRC were obtained. A relative
tolerance of 1.0 × 10-5 was set for the numerical integra-
tions.38

In Figure 1 is depicted the Fisher information in both
position and momentum spaces. At a first glance, we observe
that both quantities behave in a similar way toward the
reactive complexes (Ha

• · · ·H-H and H-H · · ·Hb
•) and tend

to decrease toward the TS region, but with a very important
difference that we analyze below. It is worth mentioning that,
according to a previous study,23 we have insight into the
structural features of the distributions in both spaces, that
is, concerning the spreading (localization/delocalization) of
the densities. However, the behavior of the densities about
their local changes (uniformity/irregularity) can only be
provided by a local measure such as the Fisher information.

Both position and momentum Fisher information measures
possess more structure at the vicinity of the TS as it may be
observed from Figure 1. It is worthy to remark that this
phenomenon is not present in the energy profile. By closer
inspection, we note that the Fisher information Ir possesses
a global minima at the TS, whereas the momentum one, Ip,
possesses a local maxima and two local minimum at the
vicinity of the TS (approximately RX = 0.9). This is
interesting on chemical grounds because the structure
observed for the Fisher information in momentum space at
the vicinity of the TS can be associated with a process of
bond breaking/forming (depending on the reaction direction)
followed by stabilization of the structure at the TS.23

The chemical picture proceeds in this way: as the
intermediate radical (Ha) approaches the molecule at the TS
region, the molecular density exerts important changes so
as to undergo the homolysis. This represents a physical
situation where the density in position space gets localized
in preparation for the bond rupture, which in turn results in
a local increase of the kinetic energy. This provides explana-
tion for the well-known fact that bond breaking requires
energy. Next, the bond is formed, and, as a consequence,
the TS structure shows lower kinetic energy than the reactant/
product complex (Ha or Hb). Interestingly, from an informa-
tion-theoretical point of view, all of the above happens: both
Ir and Ip decrease as the radical intermediate approaches the

molecule at the TS region, which means that the gradient of
the density distributions (in both spaces) becomes smaller;
that is, these densities are less irregular and more uniform.
For the position space the Fisher information reaches a
minimum at the TS; that is, at this point the position space
density is the most uniform and delocalized (structurally less
distorted with low kinetic energy and null dipole moment,
see below) among all other structures at the vicinity of the
TS. In momentum space, the Fisher information shows
minima at the vicinity of the TS (RX = |0.9|) corresponding
to a delocalized and uniform momentum density. It is worth
noting that it is at these minima where the processes of bond
breaking/forming occur.23 At the TS, the Fisher information,
Ip, is maximum corresponding with the least uniform and
the highest localized momentum density with respect to the
structures in its neighborhood. It is interesting to mention
that minima of the Fisher information in momentum space
coincide with the BCER (bond cleavage energy reservoir)
defined in ref 23, and hence they might be characterized by
the Fisher measure in momentum space.

To better understand the shape of the Fisher information,
in Figure 2 are plotted the bond distances between the
entering/leaving hydrogen radicals and the central hydrogen
atom. This clearly shows that in the vicinity of the TS a
bond breaking/forming chemical situation is occurring
because the Rb ≡ R(H-Hb) is elongating at the right side of
the TS and the Ra ≡ R(Ha-H) is stretching at the left side
of the TS. It is worth noting that the chemical process does
not happen in a synchronous manner; that is, the homolytic
bond breaking occurs first, and then the molecule stabilizes
by forming the TS structure, which is clearly observed in
Figure 2. As the incoming radical approaches the molecule,
the bond breaks. Because the Fisher information represents
the gradient of a probability distribution, it is natural to
associate this with the change in the corresponding density.
Therefore, from Figure 2, one can see that as the incoming
hydrogen approaches, the bond enlarges in the region where
the Fisher information in momentum space increases more
rapidly. In contrast, the Fisher information in position space
is not describing the bond breaking/forming process.

Figure 1. Fisher entropies in position (red line) and momen-
tum (blue line) spaces for the IRC of Ha

• + H2 f H2 + Hb
• .

Figure 2. Fisher information in momentum space (red line)
and the bond distances Ra ≡ R(Ha-H) (blue line for the
entering hydrogen) and Rb ≡ R(H-Hb) (green line for the
leaving hydrogen) for the IRC of Ha

• + H2 f H2 + Hb
• .
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Next, we would like to test the nonpolar bond pattern
characteristic of homolytic bond breaking reactions, which
should be reflected through the dipole moment of the
molecules at the IRC. This is indeed observed in Figure 3,
where these values along with the ones of the momentum
Fisher information are depicted for comparison purposes. At
the TS the dipole moment is zero, and the same behavior is
observed as the process tends to the reactants/products in
the IRC, reflecting the nonpolar behavior of the molecule in
these regions. However, it is also interesting to observe, from
this property, how the molecular densities get distorted,
reaching maximal values at the vicinity of the TS. In contrast,
the behavior of the momentum Fisher information is totally
opposite: this quantity decreases (increases) when the dipole
moment increases (decreases), being minimum (maximum)
approximately at the same points that the dipole moment
reaches its maximum (minimum) value. It means that in the
regions where the molecule has a nonpolar behavior, the
momentum electronic density has a higher gradient content
corresponding to a high irregular and localized density.

In Figure 4 are depicted the eigenvalues of the Hessian
for the normal mode associated with the TS along the IRC
of the reaction, along with the momentum Fisher information
values. The Hessian values represent the transition vector
“frequencies”, which show maxima at the vicinity of the TS
and a minimal value at the TS. Several features are worth
mentioning: the TS corresponds indeed to a saddle point,
and maxima at the Hessian correspond to high kinetic energy
values (largest “frequencies” for the energy cleavage reser-
voirs correspond to the BCER23). In contrast, at the TS, the
Hessian reaches a minimum value; this means that in this
point the kinetic energy is the lowest one (minimal molecular
frequency),23 and, as we can see, it corresponds to a maximal
Fisher information in momentum space. So it seems viable
that Ip resembles the behavior of the TS vector. In connection
with the Fisher information also depicted in Figure 4, it is
interesting to note that in the transition state region (where
the frequencies become imaginary23,40) the Fisher informa-
tion exerts its largest change as a gradient of the distribution
in momentum space.

There are several density descriptors used in chemistry to
determine the reactivity behavior such as the hardness and
softness (see the previous section). In Figure 5 we have
plotted the values for the hardness along with the Fisher
information in momentum space for comparison purposes.
From a DFT conceptual point of view, we may interpret
Figure 5 as that chemical structures at the maximal hardness
(minimal softness) values possess low polarizability and
hence are less prone to acquire additional charge (less
reactive). These regions correspond to minimal Fisher
information regions in momentum space associated with a
highly uniform momentum density. According to consider-
ations discussed above, these structures are found at the
defined (in a previous work23) BCER regions; that is, they
are maximally distorted, with highly delocalized momentum
densities (maximal dipole moment values; see Figure 3). In
contrast, hardness values are minimal at the reactant com-
plexes regions, which correspond with localized momentum
densities23 with null dipole moments, and hence they are

Figure 3. Fisher information in momentum space (red line)
and the dipole moment values (green line) for the IRC of Ha

•

+ H2 f H2 + Hb
• .

Figure 4. Fisher information in momentum space (red line)
and the eigenvalues of the Hessian (green line) for the IRC
of Ha

• + H2f H2 + Hb
• . It should be noted that negative values

actually correspond with imaginary numbers (roots of negative
force constants) so that the negative sign only represents a
flag.

Figure 5. Fisher information in momentum space (red line)
and the hardness values (green line) for the IRC of Ha

• + H2

f H2 + Hb
• .
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more prone to react (more reactive). At the TS, a local
minimum for the hardness may be observed; then it is locally
more reactive and leaning to acquire charge because its dipole
moment is null.

From the point of view of Fisher information, the TS
represents a more irregular distribution. It is interesting to
note that the Ir in Figure 1 can only be associated with the
hardness at the TS (Figure 5), in that more reactive structures
correspond to the most uniform density in position space.

Nucleophilic Substitution Reaction. In this part of the
work, we analyze a typical nucleophilic substitution (SN2)
reaction whose chemical process involves only one step in
contrast with the abstraction reaction studied before, which
involves two steps. In the anionic form, the SN2 mechanism
can be depicted as

which is characterized by being kinetically of second order
(first order in each of the reactants: the nucleophile Y- and
the substrate RX, where X- is the nucleofuge or leaving
atom). For identity SN2 reactions, X ) Y. It was postulated
that the observed second-order kinetics is the result of
passage through the well-known Walden inversion transition
state where the nucleophile displaces the nucleofuge (leaving
group) from the backside in a single concerted reaction step.

The Ha
- + CH4f CH4 + Hb

- represents the typical identity
SN2 reaction, and we proceed with the calculations as
follows: because diffuse functions are important to ad-
equately represent anionic species,20 we have performed
calculations for the IRC at the MP2/6-311++G** level of
theory, which generated 93 points evenly distributed between
the forward and reverse directions of the IRC. Next, Fisher
information in both position and momentum spaces and
geometrical parameters at the IRC were calculated at the
QCISD(T)/6-311++G** level of theory, which has been
reported to be adequate for this kind of reaction.41 A relative
tolerance of 1.0 × 10-5 was set for the numerical integra-
tions.38

If we represent both Fisher informations, Ir and Ip, in the
same picture, Figure 6, we can observe that they show a

similar structure, both possessing a maximum at the TS and
minimal regions at its vicinity. This behavior is significantly
different from the abstraction reaction analyzed before in
that the position Fisher information shows the opposite
behavior as compared to the momentum Fisher information
at the TS region.

From a previous study23 with Shannon entropies, we found
a delocalized position density and a localized momentum
density in the TS region, that is, corresponding with a
chemically relaxed structure (structurally less distorted with
low kinetic energy and null dipole moment, see below). In
contrast, the reactive complexes toward reactants/products
show more localized densities with less delocalized momen-
tum densities; that is, the chemical structures at these regions
are structurally distorted and possess more kinetic energy
as compared to the TS. In the vicinity of the TS, at around
RX = |1.7|, critical points for these measures are observed;
they correspond to ionic complexes that characterize position
densities, which are highly localized and with highly
delocalized momentum densities and high kinetic energies.
At a first glance, it seems likely that these regions correspond
with BCER23 where bond breaking may start occurring.

One of the principal differences between the SN2 reaction
with respect to the abstraction one is that for the former the
course of the reaction occurs by an heterolytic rupture with
an exchange of charge, whereas for the latter the mechanism
is homolytic; that is, a spin coupling process occurs. In this
reaction, as the incoming hydrogen approaches the molecule,
it transfers charge, through the carbon bonding, to the leaving
hydrogen so as to reach an equally charged distribution
among the incoming/leaving hydrogens. As this process
evolves, the gradient of the distribution involved in the
position Fisher information Ir increases so as to reach a
maximum at the TS.

To further support the charge transfer process mentioned
above, we can witness the heterolytic bond/breaking process
through the contour values of the MEP at several stages of
the SN2 reaction in the plane of the [Ha · · ·C · · ·Hb]- atoms.
We may observe from Figure 7a the initial step of the bond
breaking process for the leaving hydrogen (nucleofuge) at
RX ) -1.5 (forward direction), by noting that this particular
atom is losing bonding charge as it leaves (in the region
where the potential is positive). This is in contrast with the
entering hydrogen, which possesses the nucleophilic power
of an hydride ion (in the region where the potential is
negative). It is also interesting to note that the remaining
attached hydrogen atoms possess the expected electrophilic
nature of the molecular bonding environment, although its
“philic” nature barely changes. In Figure 7b at RX ) -0.9
in the forward direction of the reaction, the C-Hb bond
cleavage is about to complete as the Hb atom has lost bonding
charge (maximum electrophilic power) and the nucleophilic
hydrogen is about to form a new bond by losing charge
(nucleophilic power). In Figure 7c, we have depicted the
MEP at the TS where we can observe the point where the
gradient of the position density reaches its maximum due to
the charge becoming equalized according to Figure 6.

To analyze in detail this reaction, we find it instructive to
plot the distances between the nucleophilic hydrogen (Ha)

Figure 6. Fisher information in position (red line) and
momentum (blue line) spaces for the IRC of Ha

- + CH4 f
CH4 + Hb

-.

Y- + RX f RY + X- (7)
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and the leaving hydrogen (Hb) in Figure 8. Distances show
the stretching/elongating features associated with the bond
forming/breaking situation that we have anticipated before.
In contrast with the previous analyzed abstraction reaction,
the SN2 reaction occurs in a concerted and synchronous
manner; that is, the bond breaking/forming occurs at unison.
An interesting feature that might be observed from Figure 8
is that, whereas the elongation of the carbon-nucleofuge

bond (Rb) changes its curvature significantly at RX = -1.7
(forward direction of the reaction), the stretching of the
nucleophile-carbon bond does it in a smooth way, due to
the repulsive forces that the ionic molecule exerts as the
nucleophile approaches, which provokes the breaking of the
carbon-nucleofuge to happen as the molecule starts liberat-
ing its kinetic energy. In this sense is that the reaction occurs
in a concerted manner; that is, the bond breaking/dissipating
energy processes occur simultaneously. It is interesting to
note that minima for the momentum Fisher information
coincide with the bond breaking/forming regions and that
the change in the curvature of the bond distances marks the
region where the gradient of the density in momentum space
starts increasing.

In Figure 9, we have plotted the internal angle between
Ha

- · · ·C-H along with the Fisher information in momentum
space for comparison purposes. Thus, the internal angle
shows clearly that the molecule starts exerting the so-called

Figure 7. The MEP contour lines in the plane of
[Ha · · ·C · · ·Hb]- (Ha stands for the nucleophilic atom and Hb is
the nucleofuge, on bottom and top, respectively) showing
nucleophilic regions (blue contour lines) and electrophilic
regions (red contour lines) at several reaction coordinates for
the SN2 reaction at (a) RX ) -1.5, (b) RX ) -0.9, and (c) the
TS.

Figure 8. Fisher entropy in momentum space (red line) and
the bond distances Ra ≡ R(Ha-C) (green line, where Ha

stands for the nucleophile) and Rb ≡ R(C-Hb) (blue line,
where Hb stands for the nucleofuge) for the IRC of Ha

- + CH4

f CH4 + Hb
-.

Figure 9. Fisher information in momentum space (red line)
and the internal angle Ha

- · · ·C-H (green line, where Ha stands
for the nucleophile and H stands for any hydrogen attached
to the methyl molecule) in degrees for the IRC of Ha

- + CH4

f CH4 + Hb
-.
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“inversion of configuration” at around RX = -1.7, where
the nucleophile starts displacing the nucleofuge from the
backside of the molecule in a single concerted reaction step.
This starts occurring at the BCER regions.23 We may observe
from the figure that Ip possesses two minimum values that
coincide with the inflection points of the angle, so marking
the regions where the inversion of configuration occurs, that
is, the region where the gradient increases and the momentum
density distribution becomes less irregular.

The SN2 reaction is a good probe to test the polar bond
pattern characteristic of heterolytic bond breaking (with
residual ionic attraction because of the ionic nature of the
products), which should be reflected through the dipole
moment of the molecules at the IRC. This is indeed observed
in Figure 10, where these values along with the ones of the
Fisher momentum information are depicted for comparison
purposes. At the TS, the dipole moment is zero, showing
the nonpolar character of the TS structure with both
nucleophile/nucleofuge atoms repelling each other evenly
through its carbon bonding. As the ionic complexes approach
the reactants/products regions, the dipole moment increases
monotonically, reflecting the polar bonding character of these
ionic molecules with a significant change of curvature at the
TS vicinity at around RX = |1.0| (a change of curvature was
already noted for Fisher information in momentum space at
the same region). In going from reactants to products, it is
evident that the inversion of the dipole moment values
reflects clearly the inversion of configuration of the molecule
(this reaction starts and ends with a tetrahedral sp3 carbon
in the methyl molecule passing through a trigonal bipyramid
at the TS), which is an inherent feature of SN2 reactions. At
these regions, the gradient increases up to a maximum at
the TS.

We found it illustrative to include the hardness values of
the IRC in the analysis, which is depicted in Figure 11. We
can observe that the hardness shows largest values toward
the reactant/product regions and minima at the TS, where
the Fisher information in momentum space gets a maximum
value. The TS corresponds with a metastable structure with
a lowest hardness (largest softness); that is, it is the most
polarizable structure as compared to the rest at the IRC, and

hence it is the most reactive. Also, it may be observed that
the reactive complexes toward the reactant/product regions
possess the largest hardness (lowest softness), which corre-
sponds to highly stable molecules that are less prone to
acquire additional charge. In the vicinity of the TS, we find
“hardness bassins” at the BCER that we interpret to be
chemically metastable and energetically reactive regions. We
note from Figure 11 that the momentum Fisher information
reflects the behavior above-described as an increment of the
gradient.

The eigenvalues of the Hessian for the normal mode
associated with the TS along the IRC of the reaction are
depicted in Figure 12 along with the Fisher information
values in momentum space. As it may be observed from this
figure, the Hessian values show maxima at the BCER and
reach its minimal value at the TS. The former are associated
with high kinetic energy values (high vibrational frequen-
cies), which seem to coincide with the minimal values in
the momentum Fisher information profile. The TS at the
saddle point is associated with a low kinetic energy structure

Figure 10. Dipole moment for the IRC of Ha
- + CH4 f CH4

+ Hb
-.

Figure 11. Fisher information in momentum space (red line)
and the hardness values (green line) for the IRC of Ha

- + CH4

f CH4 + Hb
-.

Figure 12. Fisher entropy in momentum space (red line) and
the Hessian eigenvalues (green line) for the IRC of Ha

- + CH4

f CH4 + Hb
-. It should be noted that negative values actually

correspond with imaginary numbers (roots of negative force
constants) so that the negative sign only represents a flag.
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at the minimal molecular frequency value of the Hessian
profile and with a maximum value of the Fisher information
in momentum space, which corresponds to a density with
the highest gradient content (very irregular density). It is
important to mention that in the region where the frequencies
become imaginary a transient of continuum has been
established by Zewail and Polanyi42 for the transition region,
and this is clearly reflected by the zone where the gradient
increases in momentum space and, consequently, the associ-
ated Fisher information increases too.

Conclusions

In this work, we have shown the usefulness of the informa-
tion-theoretic measures of the Fisher type to characterize
elementary chemical reactions. In a previous work,23 the
Shannon entropy of elementary chemical reactions was
studied as a global measure that quantifies the localization/
delocalization of the density; however, the behavior of the
densities about their local changes (uniformity/irregularity)
can only be provided by a local measure such as the Fisher
information. In the previous sections, we have verified that
the local character of Fisher information indeed provokes
an enhanced sensitivity to changes on the position and
momentum densities along the chemical reaction paths. One
of the manifestations of the local changes excerted by the
densities is due to the charge transfer process, which is
directly reflected in the heterolitic behavior of the SN2
reaction in contrast with the abstraction reaction whose
mechanims are homolitic; that is, the Fisher information is
capable of differentiating between both types of mechanims
because of its local character.

The TS structure, at least for the studied reactions in this
work, was clearly predicted by Fisher information in both
spaces, whereas the stationary points that delimit the TS
region are predicted by the momentum Fisher information
solely. Besides, through the chemical probes we were capable
of observing the basic chemical phenomena of bond break-
ing/forming showing that the Fisher information measures
are highly sensitive in detecting these chemical events,
mainly in momentum space.

It is interesting to mention that the uncertainty relation
IrIp g 36, recently pointed out28 for three-dimensional
quantum systems, has been corroborated for the atomic and
molecular systems involved in this study, which is a further
check of our results.

According to Fisher information in position space, it is
possible to detect differences in the mechanism for both
reactions in that for the SN2 the measure is able to witness
the charge exchange process where the Fisher information
is maximum at the TS. It remains to be studied whether the
overall behavior of the abstraction reaction as compared to
the exchange SN2 reactions represents a manner of studying
reaction mechanisms for Fisher information measures. We
are aware of the fact that more chemical probes are necessary
to pose more general statements.
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(38) Pérez-Jordá, J. M.; San-Fabián, E. Comput. Phys. Commun.
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Abstract: Quantum and classical mechanics are combined in a hybrid many-body interaction
model to enable the computationally affordable study of systems containing many interacting
molecules. This model treats intramolecular and pairwise intermolecular interactions quantum
mechanically, while many-body electrostatic induction effects are approximated using a
polarizable force field. In this paper, we demonstrate that parametrizing the force field with
distributed multipoles and atom-centered polarizabilities obtained on-the-fly from ab initio quantum
mechanical monomer calculations makes the model very accurate and eliminates nearly all
empiricism. Test calculations on water, formamide, hydrogen fluoride, and glycine-water clusters,
all of which exhibit strong many-body interactions, are presented. The performance of the hybrid
model is competitive with related point-charge embedding models.

1. Introduction

Molecular clusters, liquids, and solids display complex and
interesting behaviors, many of which are not well understood.
Ab initio quantum chemistry would be an extremely helpful
tool for modeling such systems, but its high computational
expense and the difficulty in treating intermolecular interac-
tions accurately limits its applicability at present. Reliable,
inexpensive approximations to a full quantum mechanical
treatment of such systems are greatly needed.

One such approach lowers the computational cost in
systems of interacting molecules by using a truncated many-
body interaction (MBI) expansion to describe the total system
energy in terms of interacting molecules/fragments. This idea
is quite old, and many groups have studied it in recent years.
For example, symmetry-adapted perturbation theory tech-
niques,1,2 the fragment molecular orbital method,3-5 the
effective fragment potential,6,7 electrostatically embedded
many-body expansions,8-11 molecular mechanics for clus-
ters,12 accurate polarizable force fields,13-18 and other

studies19-26 all utilize MBI expansions. Notably, the im-
portance of including three-body and higher (“many-body”)
effects is a recurring theme in most of these works.

Many-body effects include contributions from exchange-
repulsion, electrostatic induction (also called polarization),
and dispersion forces. However, for systems of interacting
polar molecules, induction typically dominates the many-
body effects. Induction effects are particularly important
when strong electrostatic interactions or hydrogen-bond
cooperativity27 are present.

One of us recently investigated28 a hybrid quantum
mechanics/molecular mechanics (QM/MM) model for de-
scribing systems of interacting molecules. This hybrid many-
body interaction (HMBI) model partitions the system based
on the order of intermolecular interactions in the many-body
interaction series: the most important intermolecular interac-
tions are modeled quantum mechanically, while smaller,
computationally expensive contributions are approximated
classically. Specifically, the one- and two-body interactions
are computed quantum mechanically, while the three-body
and higher interactions are approximated with an inexpensive
classical polarizable force field that describes electrostatic
induction. Many-body dispersion and exchange-repulsion
effects are completely neglected in this model. Similar
partitioning is used very successfully in constructing spec-
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troscopically accurate polarizable force fields/potential energy
surface models, such as the TTM-xF models for water.13,14

The key difference here is that we perform all calculations
on-the-fly instead of fitting to a fixed classical functional
form.

Unfortunately, the incorporation of a force field into the
model raises the question of force-field parametrization.
Previously,28 we tested the Amoeba29 polarizable force field
for approximating the many-body induction effects. While
Amoeba works reasonably well, it can exhibit systematic
errors in predicting the many-body induction contributions
(as compared to quantum mechanical results). For example,
Amoeba systematically overestimated the many-body induc-
tion energies in a set of water clusters.28 In addition, like
most standard force fields, Amoeba has only been param-
etrized for a relatively small number of molecules, and its
existing parameters are not necessarily transferable to new
systems.

In this paper, we demonstrate that force-field parameters
needed for the HMBI model can be obtained on-the-fly in
an ab initio fashion, virtually eliminating the need for
empirical parameters in the model. At each given molecular
geometry of a system, the one- and two-body interactions
are computed quantum mechanically, and a force field is
parametrized to reproduce the many-body induction effects
for that specific geometry.

In general, ab initio force-field (AIFF) parametrization is
adifficultproblemthatmanyresearchgroupshavestudied.6,7,15,30-38

However, HMBI simplifies the task in two ways. First, the
HMBI model only uses the many-body electrostatic induction
effects from the force field. Intramolecular, two-body disper-
sion, two-body exchange-repulsion, and two-body electrostatic/
induction effects are all treated quantum mechanically. Many-
body dispersion and exchange-repulsion are neglected (at
least in the model’s current form). Thus, HMBI requires only
an AIFF model for self-consistent polarization. Second, while
many-body effects are frequently too large to neglect, their
energetic contribution remains relatively small. In water
clusters, which have significant many-body effects, these
effects account for only about 15% of the total interaction
energy39 (though in small clusters these effects can be much
larger40,41). In other words, HMBI requires a fairly simple
force field, and the relatively small size of its contribution
reduces the impact of inadequacies in the force field. As
explained in section 2.2, we use existing techniques to
determine the actual force-field parameters.

Polarizable force fields come in many forms.15,42-44 The
ones considered here are based on atom-centered distributed
multipole expansions and atomic polarizabilities, for which
we use ab initio parametrization methods developed in other
groups.34,45-47 In section 2, we discuss the HMBI model
and the techniques used for constructing the force fields from
first principles. After explaining the computational details
in section 3, we demonstrate the method on a series of test
clusters exhibiting large many-body effects in section 4.

2. Theory

2.1. The HMBI Model. The particular hybrid many-body
interaction (HMBI) expansion approach for modeling sys-
tems of interacting molecules used here has been presented
previously,28 so we only briefly review the formalism. The
total energy of a system of interacting molecules can be
viewed in terms of the energies of individual molecules, their
two-body (or pairwise) interactions, and the three-body and
higher (“many-body”) intermolecular interaction corrections,
according to the many-body interaction expansion:

Etotal ) ∑
i

Ei + ∑
ij

∆2Eij + ∑
ijk

∆3Eijk + ... (1)

where Ei is the energy of the ith molecule, ∆2Eij is the
pairwise-interaction energy between two molecules i and j
(∆2Eij ) Eij - Ei - Ej, where Eij is the total dimer energy),
∆3Eijk is the three-body interaction correction between
molecules i, j, and k (∆3Eijk ) Eijk - ∆2Eij - ∆2Eik - ∆2Ejk

- Ei - Ej - Ek, where Eijk is the total trimer energy), etc.
Though they typically contribute less than the one- and

two-body terms, the many-body interactions are often non-
negligible. In systems containing polar molecules, these
many-body terms are typically dominated by induction,
which can be approximated relatively easily.8,26,28 In par-
ticular, a classical polarizable force field can approximate
these terms at very low computational cost. With this
approximation and some straightforward rearrangement, we
obtain:28

Etotal
HMBI ) Etotal

MM + ∑
i

(Ei
QM - Ei

MM) +

∑
ij

(∆2Eij
QM - ∆2Eij

MM) (2)

We emphasize that this HMBI model differs from con-
ventional QM/MM models in that it partitions the system
based on the type of interaction rather than by using a spatial
criterion. HMBI’s spatially homogeneous treatment of the
entire system makes it ideal for treating molecular condensed-
phase systems in which the important chemistry arises
through intermolecular interactions dispersed over a large
spatial area.

In addition HMBI sums many-body terms through all
orders. Subsequent higher-order terms in the MBI expansion
often alternate in sign. Truncating the series at a given order
can introduce surprisingly large errors due to the absence of
cancelation from higher-order terms.28 By summing through
all orders, HMBI avoids this pitfall.

2.2. Ab Initio Force Field (AIFF) Parameterization.
The accuracy of an HMBI model depends critically on the
polarizable force field used to approximate the many-body
induction effects. The Amoeba force field tested previously
performed moderately well, but evidence suggests it could
be improved.28 In this article, we demonstrate that an AIFF
for many-body induction, in which the parameters are
obtained directly from quantum mechanical monomer cal-
culations, significantly improves results while simultaneously
reducing the need for user-intervention during the force-field
parametrization.
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Specifically, we use a force field based on an atom-
centered distributed-multipole representation48-50 of the
electron density and atom-centered local polarizabilities. To
compute the polarizabilities, the molecular static polariz-
ability is calculated using Kohn-Sham linear-response
theory. The molecular polarizability is then distributed and
localized to individual atoms according to the Williams-
Stone-Misquitta procedure.34,46,47 No intramolecular or two-
body intermolecular force-field terms are required, because
these are treated at the QM level.

The use of such procedures to parametrize a force field is
not unique to our work. These particular procedures have
been used to parametrize successful force fields for predicting
the structures of molecular crystals,51 for example. More
generally, distributed multipoles (and sometimes polariz-
abilities) are widely used in force fields today (see, for
example, refs 6, 7, 15, 34-38). However, these properties
are rarely recomputed at every new geometry or point of
interest on a potential energy surface to obtain a geometry-
specific force field for many-body induction. In a purely
classical model, doing such calculations would computa-
tionally overwhelm the relatively small effort required to
evaluate the force field. Compared to the cost of evaluating
the two-body quantum mechanical interactions in eq 2,
however, the evaluation of these force-field parameters is
reasonable. This means that the many-body induction force-
field parameters can be recomputed as needed in HMBI. The
repeated QM calculations (both one- and two-body energies
and parametrizing the AIFF) obviously make HMBI much
much more expensive than a simple force-field evaluation,
but it is also widely applicable without requiring substantial
hand reparameterization from the user.

Several important technical issues arise in constructing the
force field. First, the distributed multipoles and local polar-
izabilities can be computed to different ranks. Previous
studies have found that up to rank 4 (hexadecapole) multipole
moments on non-hydrogen atoms and rank 1 moments
(dipole) on hydrogen atoms, along with up to rank 2
(quadrupole) polarizabilities, perform well for general-
purpose force fields,34,47 so we use these same ranks here.
In other words, the polarization model includes up to induced
quadrupole effects.

Second, approximating electrostatic interactions with mul-
tipole interactions is only rigorously valid at long ranges.
Therefore, it is necessary to introduce a damping function
to attenuate the induction energy at short-range and to avoid
the “polarization catastrophe.” Numerous approaches to damp
these interactions exist.52-57 We apply the commonly used
damping function proposed by Tang and Toennies,58

fn(R) ) 1 - ∑
k)0

n ((�R)k

k! )e-�R (3)

to damp a R-n term in the multipolar interaction. This
damping function requires a (usually empirical) damping
factor �. Misquitta and co-workers have analyzed these issues
in some detail,47 and they proposed a simple model for
predicting the damping factor � single-molecule-containing
system based on the ionization potential I,

�pred ) 2(2I)1/2 (4)

They also proposed a related expression for systems
containing multiple species. We will test this damping factor
in our systems, and we will also explore treating this damping
factor as an empirical parameter. Though the latter option is
contrary to the spirit of the AIFF, we find it is unfortunately
necessary in most of the cases examined here.

Third, one would ideally compute the multipoles and
polarizabilities separately for each molecule in the cluster
(and at each step in a molecular dynamics simulation or
geometry optimization). However, the calculation of the
polarizabilities in particular can be time-consuming. In
practice, the polarizabilities of a water molecule, for example,
will need to be computed repeatedly at slightly varying
geometries. The polarizabilities do not change substantially
with moderate changes in the molecular geometry, suggesting
that computational savings might be obtained by approximat-
ing the polarizabilities by using the values obtained at similar
geometries. In contrast, we find the multipole moments to
be more sensitive to geometry. Computation of the multipole
moments, however, requires much less computational effort
than the polarizabilities. The effect of approximating these
quantities with their equilibrium geometry values will be
investigated below.

Fourth, here we only consider systems in which each
molecule is completely contained within a given “monomer”
(as in a set of small, interacting molecules). Monomer
boundaries never cross a covalent bond. If instead the
monomers were composed of molecular fragments, the
“many-body” effects will include intramolecular interactions.
These interactions are much stronger and harder to ap-
proximate with simple classical electrostatics/induction than
intermolecular many-body effects. On the other hand,
methods such as the fragment molecular orbital method4,5

have been adapted to such cases with good results, so such
partitioning merits future investigation.

3. Computational Details

The HMBI model requires the specification of both the
quantum mechanical method and the polarizable force field.
Unless otherwise specified, we use resolution-of-the-identity
second-order Møller-Plesset (RI-MP2)59-61 theory with the
Dunning aug-cc-pVTZ basis set62 and its corresponding
auxiliary set63 in the frozen core approximation for the QM
calculations in eq 2. The aug-cc-pVTZ basis provides a
reasonable balance between basis-set completeness and
computational affordability. Dual-basis Hartree-Fock (HF)/
MP2algorithmsacceleratetheRI-MP2calculationsfurther.64-66

These approximations make the benchmark MP2 calculations
on the full clusters considered here affordable while intro-
ducing insignificant errors in relative energies. MP2 cannot
describe all intermolecular interactions,67-69 but more ac-
curate methods would make the benchmark calculations
unfeasible. MP2 serves as a compromise between accuracy
and computational affordability here. Integral thresholds and
HF energy convergence criteria were set to 10-14 and 10-8

a.u., respectively, to minimize numerical noise issues in
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computing the many-body energies. These calculations were
performed using a development version of Q-Chem, version
3.1.70

We compare six different approximations for the many-
body (MM) terms in eq 2. In the first approximation, we
neglect the many-body terms, which corresponds to setting
all MM terms in eq 2 to zero. This approximation is labeled
as “no MB” in the tables and figures below, and it serves as
a measure of the importance of many-body effects. The
second approximation uses supermolecular HF calculations
to approximate the many-body induction effects quantum
mechanically. This is equivalent to models explored by
several other groups.23,25,26,71 HF can describe many-body
induction very accurately, and it serves as a target for the
other five methods. Unfortunately, it is very expensive to
perform the supermolecular HF calculation on the entire
system. Using fast modern MP2 algorithms, the HF step is
often the computational bottleneck in a large MP2 calcula-
tion.72 The models that approximate many-body induction
classically are much less expensive. In the third approxima-
tion, many-body induction is treated using the standard
Amoeba polarizable force field,29 as implemented in the
Tinker73 software package, just as was done in ref 28.

In the fourth approximation, we construct and use the AIFF
described in section 2.2. The CamCasp74 software package,
which invokes the Dalton75 quantum chemistry package, is
used to construct the AIFF by predicting the distributed
multipoles and polarizabilities from quantum mechanical
calculations on each monomer in the system. Multipole
moments are computed to rank 4 (hexadecapole) on heavy
atoms and rank 1 (dipole) on hydrogen atoms.

The polarizabilities are computed to rank 2 (rank 1 on
hydrogen atoms) using the Coupled Kohn-Sham (CKS)
propagator. These ranks have been shown to reproduce DFT-
based symmetry-adapted perturbation theory induction ener-
gies well.47 Unless otherwise specified, the underlying Dalton
calculations use the aug-cc-pVTZ basis and the hybrid
PBE076 exchange and correlation functional. Our procedure
uses two calculations per monomer: one to determine the
RI-MP2 energy and another to find the force-field parameters
with DFT. This is done to allow the use of pre-existing
CamCasp software routines when determining the force-field
parameters. The cost of performing an extra single-point
energy calculation for each monomer is negligible compared
to the other parts of the calculations. Ionization potentials
of 0.4638 (water),77 0.3720 (formamide),78 0.5896 (hydrogen
fluoride),79 0.3595 (glycine neutral), and 0.3042 au (glycine
zwitterion) are employed in an asymptotic correction80,81 for
the PBE0 calculations. The two glycine vertical ionization
potentials were calculated at the B3LYP/6-311++G(3df,2pd)
level by taking the difference in energies between each
molecule and its singly ionized cation. The Orient82 software
package is used to calculate self-consistent induction energies
for the clusters based on the CamCasp multipole moments
and polarizabilities.

Two different damping factors were considered for
truncating short-range multipolar interactions for most
systems. First, we used the damping factor predicted by eq
4 and the ionization potentials listed above. Second, we

treated the damping factor as an adjustable parameter and
loosely optimized it to obtain both a small mean error and a
narrow error distribution across the different clusters in each
test set. Having a small mean error is required for accurate
binding energies, while having a narrow range of errors is
critical for accurate relative energies.

The fifth model examined is the electrostatically embedded
pairwise-additivity (EE-PA) model of Dahlke and Truhlar.8

Like the “no MB” case, EE-PA neglects many-body terms;
rather, it uses an alternative approach for capturing many-
body induction effects. The monomers and dimers are
polarized by embedding them in a field of B3LYP/6-31G*
Mulliken point charges centered at the nuclear positions of
all other monomers. A more accurate variation on EE-PA
also includes three-body effects, but that model is substan-
tially more expensive than either EE-PA or the HMBI model
discussed here, so we do not consider it. See ref 8 for further
details on EE-PA.

The sixth and final model we consider is the self-consistent
charge (or charge + dipole) embedded binary interaction
scheme of Kamiya and co-workers.11 In accord with ref 11,
we refer to these methods as “binary+ESP” and “binary+ESP-
dipole”, respectively. Binary+ESP is essentially the same
as EE-PA, except that the embedding charges are determined
self-consistently by fitting to the electrostatic potential.
Binary+ESP-dipole also includes some explicit dipole fitting.
Both methods include counterpoise (CP) corrections83 for
basis set superposition error (BSSE). See the original work
for more details. The self-consistent treatment of point
charges helps capture induction effects through all orders.
Because we do not have our own implementation of this
method, we present binary+ESP-type results only for two
test systems (water hexamers and glycine-water clusters)
for which published data is already available.

These approximations are compared to the full RI-MP2
results on water clusters (Test Sets A-D), formamide clusters
(Test Sets E and F), hydrogen fluoride clusters (Test Set G),
and glycine-water clusters (Test Set H). All of these clusters
exhibit strong many-body effects and therefore represent
challenging test cases for HMBI models. To facilitate
comparisons between the various systems, we report size-
intensive energies obtained by dividing the resulting energies
by the number of monomers.

Structures for the test clusters in Test Sets B, C, F, and G
are provided as Supporting Information. The geometries used
in Test Sets A, D, E, and H come from the literature, as
discussed below. Tables containing all raw data used to
generate the statistical results presented below are also
available as Supporting Information.

4. Results and Discussion

4.1. Water Clusters. Water clusters have been inves-
tigated extensively in the last two decades because of
both their general interest and strong many-body
effects,8,10,11,19,23,40,71,84-91 which means that they provide
a challenging test case for approximate MBI expansion
methods. We first consider the ability of the approximate
methods to reproduce the binding energies of a series of
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small- and medium-sized water clusters. Then we inves-
tigate how well these methods can reproduce potential
energy surface (PES) energetics away from the minimum
energy structures. Finally, we examine the ability of these
methods to discriminate between a series of low-lying
water hexamer isomers.

4.1.1. Performance on Optimized Water Clusters: Test
Set A. We begin by computing the binding energies of 16
clusters containing 5 to 20 water molecules (Test Set A) with
RI-MP2 and the various approximate many-body models,
using optimized structures obtained from the Cambridge
Cluster Database.92,93 These particular clusters have been
examined in similar studies previously8,28 and therefore
provide a useful comparison.

Summary statistics comparing HMBI and various treat-
ments of many-body induction interactions with benchmark
full-cluster RI-MP2 energies are presented in Table 1. Figure
1 shows the error distributions for each many-body induction
approximation as obtained by combining the results from
this test set and those from Test Sets B and C. As can be
seen in the table, simply neglecting the many-body terms
introduces both a large mean error (with error defined as
Eapprox - EMP2) and a wide range of errors (defined as the
difference between the two most extreme errors in the
distribution). In contrast, the HF approximation for many-
body induction is extremely accurate, giving a narrow error
distribution peaked near zero. Its mean signed error is -0.03

kJ/mol per monomer, and the range of errors is 0.19 kJ/mol
per monomer. As noted previously,28 approximating the
HMBI many-body induction terms with Amoeba is much
better than simply neglecting them, but Amoeba significantly
overestimates the many-body contribution in these water
clusters, with a mean error of -0.86 kJ/mol per monomer

Table 1. Mean Signed Errors, Standard Deviations, and Total Error Ranges (in kJ/mol per molecule) for Various HMBI
Many-Body Approximations Relative to RI-MP2a

errors due to approximate many-body treatment

HFb AIFF/�pred
b AIFF/�opt

b Amoebab EE-PAc no MBd

Test Set A: 16 (H2O)n Clusters, n ) 5-20
mean -0.03 -1.53 -0.04 -0.86 0.11 5.47
std dev 0.05 0.23 0.10 0.17 0.15 0.62
range 0.19 0.73 0.34 0.57 0.53 2.09

Test Set B: 50 (H2O)8 Configurations
mean -0.02 -1.17 -0.01 -0.65 0.04 4.32
std dev 0.07 0.38 0.17 0.21 0.08 0.61
range 0.35 1.99 0.82 0.90 0.41 2.93

Test Set C: 36 (H2O)10 Rotation PES Points
mean -0.06 -0.66 -0.24 -0.67 -0.43 1.54
std dev 0.09 0.58 0.12 0.54 0.13 1.91
range 0.27 1.86 0.48 1.78 0.59 6.55

Test Set D: 8 (H2O)6 Configurations
(see Table 2)

Test Set E: 51 (HCONH2)8 Configurations
mean 0.04 -0.30 -0.04 1.20 0.32 3.06
std dev 0.10 0.19 0.17 0.32 0.18 0.83
range 0.43 0.97 0.71 1.50 0.79 4.00

Test Set F: 50 Additional (HCONH2)8 Configurations
mean 0.00 -0.37 -0.07 1.02 0.34 3.15
std dev 0.07 0.16 0.12 0.25 0.12 0.69
range 0.37 0.67 0.52 1.18 0.51 2.54

Test Set G: 8 Cyclic (HF)n Clusters, n ) 3-10
mean 0.16 0.69 e f 1.46 13.42
std dev 0.02 0.10 e f 0.33 3.90
range 0.08 0.33 e f 0.93 11.18

Test Set H: Glycine · (HO2)7 Clusters
(see Table 4)

a For the AIFF, two different damping factors are considered. �pred is the factor computed from eq 4 and �opt is the value that
approximately minimizes the mean error and range of errors. The actual � values are given in the text. b Technique used to approximate
many-body terms in HMBI. c The EE-PA method from ref 8. d Many-body effects are neglected entirely in eq 2. e �opt ) �pred, so the results
are identical. f The Amoeba force field has not been parametrized for the HF molecule.

Figure 1. Error distributions for approximate many-body
HMBI treatments relative to RI-MP2/aug-cc-pVTZ in 102 water
clusters (Test Sets A-C combined).
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and a range three times wider than that of the HMBI/HF
many-body approximation.

Next we consider the HMBI/AIFF results using two
different damping factors. The first, �pred ) 1.93, is obtained
using eq 4 and 0.4638 au for the ionization potential of water.
For these water clusters, this damping factor appears to be
a poor choice for the HMBI model, and the HMBI/AIFF/
�pred errors (mean error of -1.53 kJ/mol per monomer) are
notably worse than those of the Amoeba.

If we loosely optimize � to minimize the mean error and
error range for HMBI/AIFF, we find �opt ) 1.45. With this
damping factor, the AIFF substantially out-performs the
Amoeba force field for describing many-body induction.
Though they are not as accurate as the HMBI/HF many-
body results, the HMBI/AIFF/�opt results exhibit a mean error
and range of only -0.04 and 0.34 kJ/mol per monomer,
respectively, and the cost of HMBI/AIFF is orders of
magnitude cheaper than HMBI/HF for systems containing
many monomers. The EE-PA point-charge embedding
method8 gives a larger mean error and range of errors (-0.11
and 0.53 kJ/mol per monomer, respectively).

One might be concerned that fitting � to these optimized
water structures could bias the many-body force field toward
these particular structures. However, this � value also
performs well for the other water test sets examined below,
which were not used in fitting �opt. Therefore, �opt ) 1.45
appears to be a “universal” value for damping water-water
interactions in this AIFF.

4.1.2. Performance across the Potential Energy
Surface: Test Sets B and C. To examine the performance of
the model away from equilibrium, we consider two different
test sets. The first, Test Set B, consists of 50 (H2O)8 cluster
geometries sampled at uniform intervals from a classical
molecular dynamics simulation, which is representative of
the potential energy surface sampling that occurs in typical
condensed-phase studies. The second, Test Set C, consists
of a series of points along a one-dimensional potential energy
surface (PES) coordinate that disrupts the hydrogen bonding
networks. Test Set C demands that the approximate method
is able to describe widely varying intermolecular interactions
accurately. As mentioned above, we continue to use �opt )
1.45 for these test sets. Statistical results for both test sets
are summarized in Table 1. See also Figure 1.

Optimized water clusters (e.g., Test Set A) often achieve
enhanced stability through strong hydrogen bond cooperat-
ivity effects. In contrast, clusters sampled along a dynamics
trajectory (Test Set B) will frequently exhibit a weaker and
less homogeneous distribution of many-body effects. On the
basis of the errors in the “no MB” column of Table 1, we
observe that the mean many-body effects are smaller for Test
Set B (-4.3 kJ/mol per monomer) than for Set A (-5.5 kJ/
mol per monomer), and the distribution of many-body effects
spans a broader range in Set B (2.9 vs 2.1 kJ/mol per
monomer), as expected. The ability to reproduce this broad
range of interactions is just as important as reproducing
equilibrium structures.

The HMBI/AIFF/�opt mean error for Test Set B is similar
to the one for Test Set A. The range of errors is quite a bit
larger in this set, but a significant increase in the range of

errors is observed for the other HMBI models as well. This
observation suggests that the varied many-body effects are
indeed harder to approximate in these nonequilibrium
structures. Nevertheless, the HMBI/AIFF model still provides
good accuracy. EE-PA performs particularly well for this
test set, exhibiting a range of errors similar to HMBI/HF
and much smaller than HMBI/AIFF.

Next we examine the performance of these models along
a challenging coordinate of the potential energy surface, Test
Set C. Starting with the (H2O)10 structure from Test Set A,
we generate a PES slice by simultaneously rotating each
water molecule in place about the global coordinate x-axis
passing through its center of mass (the geometries are
available as Supporting Information). Energies were evalu-
ated at 10° intervals in the range 0-360°. This rotation
completely disrupts the hydrogen bonding network and the
corresponding hydrogen-bond cooperativity effects. In fact,
the rotation reduces the many-body contribution from -6
kJ/mol per monomer at 0° to +0.5 kJ/mol per monomer
(anticooperative effects) at 180°, as reflected by the “no MB”
line in Figure 2. The binding energy of this cluster ranges
from roughly -40 kJ/mol per monomer (at 0°) to +10 kJ/
mol per monomer (at 180°).

As always, HF approximates the many-body induction
effects well, and the mean error and standard deviation along
the PES slice are quite small. Both the HMBI/AIFF/�opt and
EE-PA many-body induction approximations perform well,
too. While HMBI/AIFF is slightly more faithful to the RI-
MP2 PES than EE-PA across much of the surface (as
exhibited by its smaller mean error), the maximum HMBI/
AIFF errors are similar to those of EE-PA (as exhibited by
their similar standard deviations and error ranges). In either
case, the errors are small relative to the overall binding
energies. In addition, this system further demonstrates the
superiority of the AIFF over an off-the-shelf force field such
as Amoeba for our purpose. Amoeba has particular difficul-
ties describing the wide range of interactions present along
this PES slice. Together, the results from Test Sets B and C
demonstrate that HMBI/AIFF performs well across the PES

Figure 2. Errors (in kJ/mol per monomer) in binding energies
for (H2O)10 relative to RI-MP2/aug-cc-pVTZ as each water
molecule is rotated in place, disrupting the hydrogen bonding
network (Test Set C).
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and that the optimized damping factor �opt works for
water-water interactions well-away from equilibrium
structures.

4.1.3. Ability To Differentiate between Low-Lying
Isomers of (H2O)6: Test Set D. Finally, we examine a set of
low-lying water hexamer isomers (Test Set D) that were used
to benchmark the self-consistent charge-embedding binary
interaction method of Kamiya and co-workers.11 The ge-
ometries for these clusters originate from ref 94. The small
relative energy differences in these clusters make their
accurate prediction difficult. For these particular cluster
geometries and MP2 energy calculations, the Cage isomer
is the most stable. However, many possible isomers exist
even within a single structural motif (such as a prism), and
these isomers can differ substantially in energy. In contrast
to the results for these particular isomers, recent accurate
calculations predict that a Prism isomer, rather than a Cage
isomer, is the most stable.95,96 Nevertheless, our purpose is
simply to compare the degree to which the various ap-
proximate many-body interaction models can reproduce the
MP2 energies for these specific isomers, rather than to try
to identify the globally optimal water hexamer structure.

To match the results from ref 11, we use canonical MP2/
aug-cc-pVDZ (with Cartesian basis functions and no dual-
basis approximation), and we found it necessary to correlate
all electrons. Because ref 11 focuses on counterpoise-
corrected results, we also apply a standard BSSE CP
correction when evaluating each two-body HMBI interaction
here. Table 2 presents the errors in binding energies predicted
by HMBI, EE-PA, and two binary-interaction methods from
ref 11.

Initially we computed the AIFF parameters in the aug-
cc-pVDZ basis. However, this basis is too small to predict
reliable polarizabilities, and the HMBI/AIFF model with aug-
cc-pVDZ AIFF parameters performs much worse than if the
compact Sadlej triple-� basis set98,99 is used for parametrizing
the AIFF. The Sadlej basis set predicts these polarizabilities
with nearly aug-cc-pVTZ quality using roughly half the basis
functions. The deficiencies in the aug-cc-pVDZ polarizabili-
ties are not overcome by reoptimizing the damping factor �
(rather, we continue to use the same �opt ) 1.45 parameter
for all water clusters). Using the aug-cc-pVDZ basis for the
MP2 one- and two-body calculations and the Sadlej basis

for predicting the AIFF parameters, we obtain a mean error
of 0.40 and an error range of 0.15 kJ/mol per monomer
relative to the CP-corrected MP2 binding energies. Both EE-
PA and the binary-interaction models predict notably larger
mean errors and error ranges than the AIFF(Sadlej) model,
though they perform similar to or better than the AIFF(aug-
cc-pVDZ) many-body induction model. Unfortunately, using
a triple-� basis to compute the monomer polarizabilities
substantially increases the cost of the double-� quality HMBI
calculation, particularly in such small clusters. On the other
hand, triple-� or larger basis sets are frequently important
when describing intermolecular interaction without excessive
BSSE.

If we consider relative energies instead of binding energies,
the mean errors decrease substantially for all models. The
HMBI/AIFF mean relative error is slightly larger than those
for EE-PA and the binary interaction models, but it still
performs very well. However, while several of the methods
incorrectly order one of more isomers relative to the MP2
results, HMBI/AIFF(Sadlej) alone fails to predict the Cage
structure as the most stable. It places the C8 isomer 0.06
kJ/mol per monomer below the Cage isomer. While the
ordering is incorrect, the energy gap between them is very
small and well within there margin of errors for the method.
Furthermore, the ordering is corrected if the one- and two-
body energies are computed in the aug-cc-pVTZ basis.
Furthermore, the AIFF correctly predicts the prism as being
more stable than the cage in the two water hexamer
geometries considered in Test Set A, in agreement with both
our own RI-MP2 calculations and highly accurate calcula-
tions.95,96

Overall, HMBI with the AIFF represents a good ap-
proximation for both single point energies of equilibrium
structures (Test Sets A and D) and across the potential energy
surface (Test Sets B and C) for small- and medium-sized
water clusters. The combined results from Test Sets A-C
in Figure 1 demonstrate the importance of using the proper
damping factor (�opt ) 1.45 here), and the improvement of
the AIFF over the Amoeba force field for describing many-
body induction is clear. EE-PA performs similarly to the
HMBI/AIFF model here, though it does exhibit slightly
broader error distributions. Next, we evaluate the perfor-

Table 2. Errors (in kJ/mol per monomer) in Predicted Counterpoise-Corrected MP2/aug-cc-pVDZ(Cartesian functions)
Binding Energies for Low-Lying (H2O)6 Isomers (Test Set D)a

binding energy errors due to approximate many-body treatment

isomer MP2b aug-cc-pVDZ AIFFc Sadlej AIFFc binary+ESPd binary+ESP-dipoled EE-PA

Book2 -28.88 0.54 0.32 -0.58 -0.69 0.80
C8 -29.01 0.67 0.33 -0.52 -0.64 0.83
C4 -27.53 0.68 0.42 -0.71 -0.79 0.73
C6 -28.59 0.77 0.45 -0.59 -0.70 0.92
Prism3 -28.07 0.55 0.35 -0.70 -0.85 0.79
Cage -29.09 0.64 0.47 -0.58 -0.71 0.85
Chair -28.71 0.98 0.43 -0.36 -0.50 1.02
C -27.90 1.00 0.46 -0.40 -0.51 0.93
mean error 0.73 0.40 -0.55 -0.67 0.86
mean rel errore 0.08 -0.07 0.03 0.04 0.01
range 0.46 0.15 0.36 0.36 0.29

a Aug-cc-pVDZ and Sadlej in the column headings refer to the basis sets used to compute the AIFF parameters only. b Valiron-Mayer97

counterpoise-corrected result, from ref 11. c Using �opt ) 1.45, as determined in section 4.1. d From ref 11. e Errors in energies relative to
the Cage isomer.
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mance of these models on formamide clusters, which also
exhibit strong many-body effects.

4.2. (HCONH2)8 Clusters: Test Sets E and F. Forma-
mide clusters are also noted for their strong many-body
effects, and they have been studied by many groups.100-107

We revisit the 51 formamide octamer geometries (Test Set
E) considered in ref 28 with the AIFF. Once again, the two
different damping factors are considered. Equation 4 predicts
�pred ) 1.73, while optimization gives �opt ) 1.40. The error
distributions relative to RI-MP2 for both Test Sets E and F
are plotted in Figure 3, and statistical summaries are
presented in Table 1.

As before, the AIFF/�opt substantially out-performs Amoeba
for approximating the RI-MP2 many-body induction. It also
provides a significant improvement over neglecting many-
body induction entirely. The mean HMBI/AIFF/�opt error is
only -0.04 kJ/mol per monomer (compared to the HMBI/
HF error of 0.04 kJ/mol per monomer and an HMBI/Amoeba
error of 1.20 kJ/mol per monomer). The HMBI/AIFF/�opt

error range of 0.71 kJ/mol per monomer is similar to what
was observed for water/Test Set B. Again, this error
distribution is broader than that of HMBI/HF, but the AIFF
still does a remarkable job of approximating many-body
induction effects. The range of the EE-PA error distribution
(0.79 kJ/mol per monomer) is slightly broader than for
HMBI/AIFF/�opt, and the relatively large EE-PA mean error
(0.32 kJ/mol per monomer) reflects a somewhat systematic
underestimation of many-body effects.

We test the optimized �opt value for transferability on 50
new (HCONH2)8 configurations (Test Set F). As listed in
Table 1, the AIFF performs very well on this set too. The
many-body effects are more uniform in size across the
configurations sampled in the second set (compare the error
ranges in the “no MB” columns for both Test Sets E and F),
and the error ranges for the approximate models are
commensurately smaller. Again, HMBI/AIFF/�opt out-
performs EE-PA by more than 0.3 kJ/mol per monomer in
the mean error, while the error ranges are fairly similar.
Overall, HMBI/AIFF/�opt reproduces the total binding ener-
gies of these (HCONH2)8 clusters with a mean absolute
percent error of 0.66%, compared to 1.70% for EE-PA and

5.59% for HMBI/Amoeba. The vastly more expensive
HMBI/HF approximation reduces the mean absolute percent
error in binding energies to 0.35%.

We also investigate the use of the compact Sadlej triple-�
basis set for computing the AIFF parameters for formamide
clusters. As mentioned above, water polarizabilities were
poorly reproduced in the aug-cc-pVDZ basis, but they can
be predicted accurately with the Sadlej basis set, which is
about half the size of the aug-cc-pVTZ basis set. The HMBI/
AIFF/�opt mean error, standard deviation, and range of errors
for Test Set E with Sadlej-based AIFF are -0.05, 0.16, and
0.70 kJ/mol per monomer, which are essentially identical to
the aug-cc-pVTZ results. Predicted many-body contributions
for individual cluster geometries differ by only a few
hundredths of a kJ/mol per monomer between the two basis
sets. As recognized previously,47 the Sadlej basis set provides
a useful compromise between basis set size and accuracy in
parametrizing the AIFF.

4.3. Cyclic (HF)n (n ) 3-10) Clusters: Test Set G.
Next, we consider a series of increasingly large cyclic
hydrogen fluoride clusters (Test Set G). Hydrogen fluoride
clusters are noted for their extraordinarily strong many-body
effects, making them an extremely challenging test case.
Many experimental108-110 and theoretical111-121 studies on
HF clusters have been performed to understand their cluster
and condensed-phase behavior.

Table 1 (statistical summary) and Table 3 (detailed results)
demonstrate the performance of HMBI on these cyclic
hydrogen fluoride clusters. The Amoeba force field has not
been parametrized for the HF molecule, so we do not report
HMBI/Amoeba results for these clusters. The large many-
body hydrogen-bond cooperativity effects are clearly evident
in Table 3, and we observe (as has been reported previ-
ously111) that they saturate at almost 16 kJ/mol per monomer
for clusters of eight monomers or more.

As always, Hartree-Fock theory reproduces the many-
body induction effects very well, though the mean error of
0.16 kJ/mol per monomer is significantly larger than for any
of the other systems examined here. HMBI/AIFF/�pred ) 2.17
also performs rather well, but the mean error (0.69 kJ/mol
per monomer) is again much larger than for formamide or
water. On the other hand, the width of the error distribution

Figure 3. Error distributions for approximate many-body
HMBI treatments relative to RI-MP2/aug-cc-pVTZ for 101
formamide clusters (Test Sets E and F combined).

Table 3. Binding Energies and Errors Arising from the
Approximate Treatment of Many-Body Interactions (in
kJ/mol per monomer) As Compared To Full RI-MP2
Binding Energies for a Series of Cyclic Hydrogen Fluoride
Clusters, (HF)n (Test Set G)

binding energy errors due to approximate many-body treatment

n RI-MP2a HFa AIFF/�pred
a EE-PAb no MBc

3 -21.67 0.12 0.81 0.73 4.64
4 -30.24 0.18 0.71 1.19 10.90
5 -33.20 0.14 0.48 1.52 14.24
6 -33.96 0.16 0.64 1.65 15.17
7 -34.17 0.16 0.68 1.65 15.39
8 -34.34 0.16 0.71 1.64 15.63
9 -34.38 0.15 0.70 1.64 15.60
10 -34.66 0.20 0.82 1.65 15.82

a Technique used to approximate many-body terms in HMBI.
b The EE-PA method from ref 8. c Many-body effects are
neglected entirely in eq 2.
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is only 0.33 kJ/mol per monomer. Thus, the AIFF systemati-
cally underestimates the many-body effects by about 5% in
the larger clusters, which amounts to an average 2.3% error
in the total binding energies. Unlike the water and formamide
test cases above, no improvement is found by optimizing �.
Increasing � decreases the mean error further but at the
expense of increasing the error range. For this particular test
set, eq 4 provides a useful prediction for �.

Although the HMBI/AIFF errors are more pronounced in
these hydrogen fluoride clusters than in the water or
formamide clusters examined above, they are substantially
smaller than the EE-PA errors. The mean EE-PA error is
nearly 1.5 kJ/mol per monomer (nearly 4.5% in the total
binding energy), more than twice that of HMBI/AIFF.
Likewise, the EE-PA error range is almost three times as
wide as that of HMBI/AIFF.

Reference 11 presents results on a similar set of cyclic
HF clusters containing 4-9 molecules. They find that
binary+ESP gives a mean error and error range of 1.04 and
0.33 kJ/mol per monomer, respectively, while the binary+ESP-
dipole model gives a mean error and error range of 0.32
and 0.08 kJ/mol per monomer. These numbers cannot be
compared directly to our own because they use slightly
different clusters/geometries, smaller basis sets, and include
CP corrections. Nevertheless, a loose comparison suggests
that HMBI/AIFF is probably performing with accuracy
intermediate between binary+ESP and binary+ESP-dipole
here.

4.4. Glycine in Water: Test Set H. As a final test, Table
4 presents the energy difference, ∆E ) Eneutral - Ezwitterion,
between the neutral and zwitterionic forms of glycine
microsolvated with seven water molecules (Test Set H)10,11

using CP-corrected, frozen-core canonical MP2/aug-cc-
pVDZ(Cartesian). These conditions were chosen to enable
direct comparison with ref 11. As observed previously, BSSE
effects are substantial in this system and basis set, and CP-
correction reduces the energy gap by almost a factor of 2.11

The microsolvated zwitterion is more stable than its neutral
counterpart before and after the CP correction. Unsurpris-
ingly, HMBI/HF faithfully reproduces the energy gap to
within 0.5 kJ/mol with or without the CP correction. Note
that we did not counterpoise-correct the HF many-body
contribution. Valiron-Mayer CP corrections for many-body
effects become prohibitively expensive for large clusters and
cannot be used in practice for most systems. BSSE effects
in the many-body terms tend to be less significant than in
the two-body terms.21

The presence of two different species (or even three if
the neutral and zwitterionic forms of glycine are considered
distinct) raises the question of how best to treat the damping

in the AIFF. Various approaches for handling damping in
mixed systems have been proposed and tested in the literature
(see, for example, refs 47, 55, 56). Here, we compare two
different damping models on a training set of MP2 results
from 18 glycine-(H2O)2 clusters (nine with neutral and nine
with zwitterionic glycine), using the Sadlej basis set for the
AIFF. The first model uses a single, system-wide empirical
damping factor, just as in the examples described previously.
We find that � ) 1.5 is approximately optimal here, which
is similar to the value obtained for pure water.

The second model uses three separate damping factors:
one to describe water-water interactions (which we set to
� ) 1.45, as before) and additional parameters to describe
water-neutral glycine and water-zwitterionic glycine in-
teractions (which we optimized). We find �neutral-H2O ) 1.51
and �zwitterion-H2O ) 1.44.

Both damping models reproduce the counterpoise-cor-
rected binding energy gap to within 3-3.5 kJ/mol. The three-
parameter model performs 0.4 kJ/mol better, albeit at the
undesirable expense of additional parameters. Once again,
the AIFF parametrized in the aug-cc-pVDZ basis set
performs slightly worse, predicting an energy gap that is 1.5
kJ/mol larger than the Sadlej AIFF gap. In this difficult
system, counterpoise-corrected HMBI/AIFF, EE-PA, and
binary+ESP all produce the correct qualitative trend, but they
each predict an energy gap that is several kJ/mol to large.
In contrast, the HMBI/HF predicted gap differs from the full
MP2 one by only 0.5 kJ/mol. This discrepancy may stem
from limitations in describing higher-order multipole induc-
tion effects in the simple classical models.

4.5. Approximating the AIFF Parameters. Finally, we
briefly examine the possibility that the AIFF parameters can
be approximated using the distributed multipoles and polar-
izabilities computed at the equilibrium geometry of a species.
This would eliminate the need to compute these properties
repeatedly for each monomer structure.

For the water clusters in Test Set A, using the multipoles
and polarizabilities for water determined at its equilibrium
geometry moderately degrades the results. It produces a mean
error, standard deviation, and a range of errors of 0.18, 0.09,
and 0.36, respectively. The geometries of individual water
molecules do not differ too much in these clusters, so this
result is unsurprising.

Formamide molecules, on the other hand, exhibit greater
flexibility in our test sets. As can be seen for Test Set E in
Table 5 and Figure 4, approximating the moments/polariz-
abilities with their equilibrium geometry values severely
degrades the quality of the HMBI/AIFF approximation. The
mean errors increase from -0.04 to 0.12 kJ/mol per
monomer, while the range of errors more than doubles, from

Table 4. Predicted Energy Difference (∆E ) Eneut - Ezwit in kJ/mol) between Neutral and Zwitterionic Glycine-(H2O)7

Clusters (Test Set H) Using Frozen-Core MP2/aug-cc-pVDZ(Cartesian functions) with and without Counterpoise Correction

full HMBI approximate many-body treatment

isomer MP2a HF AIFF, single �b AIFF, three �sc binary+ESPd EE-PA no MB

∆E 29.0 28.8 32.8 32.4 n/a 35.4 47.1
CP-∆E 15.5 15.0 19.0 18.6 20.5 19.1 33.3

a Valiron-Mayer97 counterpoise-corrected result, from ref 11. b AIFF determined with Sadlej basis, using �opt ) 1.5. c AIFF determined
with Sadlej basis, using �H2O-H2O ) 1.45, �neut-H2O ) 1.51, and �zwit-H2O ) 1.44. d From ref 11.
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0.71 to 1.97 kJ/mol per monomer. In contrast, using the
equilibrium polarizabilities with the true distributed multipole
moments is a much better approximation, with the mean error
and range increasing to only 0.06 and 1.12 kJ/mol per
monomer, respectively.

Physically, the polarizabilities are essentially an atomic
property, even if the specific localization procedure is
geometry dependent. So one expects that they will not vary
too much with moderate conformational changes in the
molecule. On the other hand, the density will likely be more
sensitive to the details of the geometry and orbital overlap
between atoms. This approximation is also computationally
beneficial: calculating polarizabilities by solving the coupled
Kohn-Sham equations requires substantially more effort
than fitting distributed multipoles to the electron density. Of
course, in systems containing many monomers, the QM
calculation of the two-body effects will still be the compu-
tationally dominant step. In any case, these results make it
clear that one should compute both the polarizabilities and
multipoles for each molecule if very accurate results are
needed. Similar results have been observed in developing
more general force fields for flexible molecules.122

5. Conclusions

HMBI approximations represent interesting QM/MM models
for studying large systems of interacting molecules at very
low computational cost. It combines a quantum mechanical
treatment of monomers and their pairwise interactions with

a classical polarizable force-field approximation for many-
body induction effects. Key advantages of HMBI include
its quantum/classical partitioning based on the type of
intermolecular interaction, its approximate inclusion of all
orders in the many-body interaction expansion, and its ability
to reproduce full quantum mechanical calculations accurately
at much lower computational cost. The biggest weakness of
an HMBI-type model has been its need for a parametrized
polarizable force field. In this paper, we largely eliminate
this weakness and demonstrate that very good HMBI results
can be obtained when the force field is constructed on-the-
fly from first-principles quantum mechanical calculations on
the monomers.

We tested the model on water, formamide, hydrogen
fluoride, and mixed glycine-water clusters, all of which
exhibit strong many-body effects and test it strenuously. In
each case, HMBI with the ab initio polarizable force field
performed well. We also demonstrated that one can tolerably
approximate the atomic polarizabilities by computing them
at a single (or perhaps a few) representative geometries.

The performance of the HMBI/AIFF model demonstrated
here is competitive with the related EE-PA and self-
consistently embedded binary interaction methods. Using a
supermolecular HF calculation to approximate the many-
body effects23,25,71 is significantly more accurate than any
of the other approximations considered here, but it becomes
cost-prohibitive for larger systems. The HMBI/AIFF for-
mulation exhibits advantages and disadvantages compared
to these other methods. The expense of computing distributed
polarizabilities is probably similar to the cost of determining
self-consistent embedding charges for the binary interaction
method, for example. Both of those methods are more
expensive than EE-PA, which uses simple fixed B3LYP/6-
31G* point charges. While the cost of computing the
distributed polarizabilities to evaluate the force field is
nontrivial, there are only a linear number of monomers,
versus a locally quadratic number of two-body interactions
(assuming local truncations are applied, though that is not
done here). Therefore, the cost of evaluating the QM two-
body interactions will dominate in larger systems.

Implementing software routines to parametrize the AIFF
requires more effort than does the implementation of the
other methods. Nuclear gradients of the AIFF require
derivatives of the multipole moments and polarizabilities,
which are also more complicated to implement. On the other
hand, the use of point charges in EE-PA and the self-
consistent binary interaction method introduces additional
computational complexity. The point charges cause the
gradient of each one-body and two-body term to depend on
all three Natoms coordinates of the entire system, instead of
depending only on the coordinates of the atoms of a particular
monomer or dimer. The implementation and efficiency of
HMBI/AIFF nuclear gradients will be addressed in a future
study. All of the methods examined here are very promising,
and further investigation is needed to understand their
strengths and weaknesses better.

The errors in HMBI can be attributed primarily to (1) the
limitations of the classical multipolar description of induction
effects and (2) the neglect of many-body dispersion and

Figure 4. Distribution of errors relative to RI-MP2/aug-cc-
pVTZ results as a function of the multipole moments and
polarizabilities used in the AIFF/�opt force field for the binding
energies in 51 formamide octamer clusters (Test Set E).

Table 5. The Effect of Replacing the True Distributed
Multipoles and Polarizabilities in the AIFF/�opt with Those
Computed at the Equilibrium Structure of an Isolated
Formamide Molecule Using 51 (HCONH2)8 Configurations
(Test Set E)a

true moments and
polarizabilities

true moments and
equilib. polarizabilities

equilib. moments
and polarizabilities

mean -0.04 0.06 0.12
std dev 0.17 0.23 0.38
range 0.71 1.12 1.97

a Errors are given in kJ/mol per monomer.
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exchange-repulsion effects. Describing these latter effects
accurately and inexpensively remains a challenge. The largest
outstanding difficulty in the former is the need to dampen
short-range multipolar interactions. In our tests, we found it
necessary to treat this damping factor as an empirical
adjustable parameter. On the other hand, optimizing this
parameter is relatively straightforward compared to the more
general problem of force-field parametrization, and it can in
principle be done by running several small cluster benchmark
calculations to optimize the damping factor(s) before pro-
ceeding with more elaborate studies, just as we did in the
glycine-water cluster example.

The procedure used here to compute the distributed
polarizabilities can be extended readily to monomers con-
taining a few dozen atoms. Furthermore, the computational
cost of evaluating the multitude of quantum mechanical two-
body interaction energies will typically dominate over the
cost of constructing the force field, at least for systems
containing many interacting molecules. Given its low cost
and good accuracy, HMBI holds much promise for studying
a wide range of interesting condensed-phase chemical
systems, and we plan to report on such applications in the
near future.
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Abstract: A new method is presented that improves the supermolecular second-order
Møller-Plesset (MP2) method for dimer systems with strong dispersion interactions while
preserving the generally good performance of MP2 for other types of intermolecular interactions,
e.g., hydrogen-bonded systems. This is achieved by adding a correction term to the supermo-
lecular MP2 energy that is determined using time-dependent density functional (TDDFT) response
theory and that accounts for the error of the dispersion energy contained in the supermolecular
MP2 method. It is shown for the S22 database set of noncovalent complexes and some potential
energy curves of noncovalent bound aromatic dimers that the approach gives strong improve-
ments over MP2 if compared to coupled-cluster singles, doubles, and perturbative triples
(CCSD(T)) reference energies. An efficient computer implementation of the method is presented
that is shown to scale only with the fourth power of the system size and thus leads only to a
slightly higher computational cost than that of the supermolecular MP2 itself.

1. Introduction

Highly accurate interaction energies of noncovalent bound
molecular complexes and clusters are of high interest in the
wide community of both computational chemists and ex-
perimentalists. However, to achieve the desired, so-called
chemical accuracy (∼1 kcal/mol) with present wave-function
theory (WFT) computational methods is often a very
demanding task. For notoriously known problematic interac-
tion types, such as π-π stacking, highly sophisticated
theories such as CCSD(T) have to be applied to achieve such
an accuracy. But even with ever improving computer
technologies and algorithms (as implemented in various
computer programs such as MOLCAS,1 PSQ,2 GAMESS,3

ACES3,4 etc.), an N 7 scaling of the CCSD(T) method with

the system size allows the applicability of this method to be
widened very slowly. According to a recently published
series of benchmark calculations of noncovalent complexes,5–8

CCSD(T) interaction energies close to the complete basis
set (CBS) limit can nowadays be obtained for systems with
about 30-50 second row atoms and hydrogen. Though this
was just a dream a few years ago, such complexes are still
too small to serve even as reliable models in biochemistry,
nanoclusters, etc. To extend the investigated systems size
beyond models to a “real-life” dimension is clearly impos-
sible. Approximations of the CCSD(T) method within the
strict WFT formalism for the calculation of noncovalent
interactions is hardly possible. Following the series of
increasing order of perturbation theory, i.e., second (MP2),
third (MP3, MP4(SD), MP4(SDQ), CCSD), and fourth (MP4,
CCSD(T)), none of these methods lower than fourth order
is reliable enough.9 For the problematic types of noncovalent
interactions, this series often converges in an oscillatory way,
third-order “overcorrecting” errors of the second order, etc.
According to this, one could conclude that the proper
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description of noncovalent interactions in WFT theory
necessarily requires at least an N 7 scaling algorithm. This
is clearly unpractical for several reasons, one of which is
the long-range nature of the intermolecular dispersion
contribution that asymptotically decays as R-6 with the
distance (R) of the interacting fragments.

A possible conceptual remedy lies in the (fourth and higher
order) approaches based on the idea of locality of the
electron-correlation, which are, however, still not accurate,
robust, or “black-box” enough. A major problem in the
application of these methods on noncovalent interaction is
that certain parts of the interaction energy, mainly the
dispersion, is certainly not short-ranged nor can be ap-
proximated accurately enough by lower-order scaling meth-
ods, as already mentioned. Currently more practical, but
computationally still quite expensive, options seem to be the
empirical, N 6 scaling MP2.59 and SCS-CCSD methods.10

Though being quite accurate, as demonstrated in several
benchmark calculations,8–11 chemical accuracy is certainly
not guaranteed, and error propagation with increasing mo-
lecular complex size is, especially for the latter one, SCS-
CCSD, not known yet. Empirical N 5 scaling methods,
mostly based on the idea of SCS-MP2,12 such as SCSN-
MP2,13 SCS(MI)-MP2,14 or JMP2,15 are surprisingly ac-
curate and have a much lower cost than the methods
mentioned above, but as they are parametrized for only
certain interaction types and molecular complex dimensions,
their performance outside their training sets can be quite
unpredictable.

A different approach would be to leave the WFT concept
and follow the, in general computationally much more
economic, route of density functional theory (DFT). Con-
ventional DFT based on the local density approximation
(LDA) or the generalized gradient approximation (GGA)
does not account, however, for the important long-range
correlation or dispersion contribution to the intermolecular
interaction energy. The reason for this is that these density
functionals are only locally dependent on the density and
its gradients and therefore are not able to describe electron
correlations between remote parts of the molecular complex.
As this failure of standard DFT is widely known, a number
of possible extensions have been developed in the past few
years.16–21

A deeper investigation of the reasons of failure of the
otherwise often quite accurate MP2 method for π-π stacked
complexes was done by Cybulski and Lytle22 and Hessel-
mann.23 The source of error was identified to be the 10-20%
overestimated uncoupled Hartree-Fock (UCHF) dispersion
energy component of the supermolecular MP2 interaction
energy. In both works the same idea of substituting the
inaccurate UCHF dispersion energy by the more accurate
dispersion energy obtained from either scaled time-dependent
Hartree-Fock (TDHF)22 or time-dependent DFT (TDDFT)23

has been proposed. Note that this approach is related to recent
developments of new types of exchange-correlation func-
tionals that are based on the random phase approximation
(RPA),24–26 because the RPA method itself is known to
account for long-range correlation energies on a coupled
Hartree-Fock level.27 Both the approach from ref 23 and

from ref 22 seems to alleviate the problem of the overestima-
tion of the dispersion contribution in the problematic
complexes. It was found that the TDDFT-based approach is
most accurate if an exchange-only potential from the
localized Hartree-Fock method28 combined with an exchange-
only adiabatic local density approximation (ALDA) kernel
is employed. In both works, results for several test cases,
such as rare-gas dimers, hydrogen-bonded (H-bonded)
complexes of small diatomic molecules, and DNA base pairs,
were presented, strongly validating this approach. Similar
to this approach, Tkatchenko et al.29,30 recently proposed
the so-called MP2+∆vdW method. The main idea is to
improve the long-range interaction MP2 potential by using
the series of ∆CnR-n (∆C6, ∆C8, ..., being differences
between the MP2 and the “accurate” dispersion coefficient
for n ) 6, 8, ...; R being the distance between the interacting
molecules) in combination with a proper damping function
for short distances. This approach was shown also to be also
quite accurate and can, in contrast to the method presented
in this work, also be applied to study intramolecular
dispersion effects if the scheme presented in refs 29 and 30
is extended by deriving intermolecular dispersion coefficients
from atomic contributions. However, as with corresponding
DFT+dispersion methods, it relies on an empirically deter-
mined damping function which has to reduce the double
counting of correlation effects for short intermonomer
distances. Moreover, in the MP2+∆vdW method, the mul-
tipolar expansion of the long-range dispersion energy is
restricted to the C6 and C8 terms and will therefore not be
accurate for short intermonomer distances.

The main goal of this work is to extend the tests of the
new MP2 “coupled” (MP2C) approach from ref 23 to the
systematic S22 database of noncovalent complexes of Hobza
et al.,31 as well as to several challenging noncovalent
complexes, such as the benzene dimer in several conforma-
tions, the H-bonded and stacked uracil dimer, and the methyl-
adenine · · ·methyl-thymine dimer (mAmT), for which highly
accurate CCSD(T) benchmark interaction energies were
published.5–8 Because the balanced performance, not only
of the equilibrium geometries but over a wide area of the
potential energy surface (PES), is important, we selected a
few cuts through the PES, i.e., potential energy curves (PEC),
of the benzene dimer and nitrogen-substituted heterocyclic
derivatives of the benzene dimer as well. Finally, we will
also present an efficient implementation of the correction
scheme, due to which the overall MP2C method is compu-
tationally by 1 order of magnitude less demanding than the
supermolecular MP2 itself.

2. Method

The supermolecular MP2 interaction energy can be obtained
from the energy difference:

where EAB
MP2 is the total energy of the dimer and EA, B

MP2 are the
monomer energies of the two systems A and B. Note that
the use of eq 1 introduces the so-called basis set superposition
error (BSSE) if finite basis sets are used. An effective

Eint
MP2 ) EAB

MP2 - EA
MP2 - EB

MP2 (1)
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elimination of this error can however be achieved by using
the Boys-Bernardi counterpoise correction32 in which all
individual energy calculations are done using the same (dimer
centered) basis set.

Using intermolecular perturbation theory, it was observed
a while ago27,33,34 that the supermolecular MP2 interaction
energy of eq 1 contains certain correlation terms that are of
second order in the intermolecular interaction, namely the
uncoupled Hartree-Fock (UCHF) dispersion energy, the
corresponding Hartree-Fock exchange-dispersion energy,
and a deformation-correlation term. The exchange-dispersion
contribution stems from exchange interactions between the
monomers when the monomer distance decreases and
vanishes for larger distances while the deformation correla-
tion term includes exchange-penetration, induction, and
charge-transfer interactions. The uncoupled Hartree-Fock
dispersion energy can exactly be written in terms of the
monomer Hartree-Fock orbitals and orbital energies:

where A, B label monomer A or B, indices i, j denote
occupied orbitals, a,b denote unoccupied orbitals, (ia|jb) is
a two-electron repulsion integral in chemist’s notation and
εi is the orbital energy of orbital i. Note that closed-shell
formalism will be used throughout. Using the Casimir-Polder
integral transform, it can easily be seen that eq 2 can be
rewritten as:

where the ω-integral runs over imaginary frequencies ω and
�0

A and �0
B are the uncoupled Hartree-Fock response func-

tions of monomers A and B given by:

with the occupied-virtual orbital products φia(r) ) φi(r)φa(r)
and εia ) εa - εi. It is well-known that the dispersion energy
on the UCHF level (eq 2) often poorly describes the
dispersion energy, e.g., in case of stacked π-π interactions
the uncoupled HF dispersion energy can overestimate the
dispersion energy by 15% and more.22,35,36 Because of this,
in refs 22 and 23 a correction was introduced to the
supermolecular MP2 interaction energy that replaces
the implicitly included UCHF dispersion contribution with
the coupled dispersion energy on the time-dependent
Hartree-Fock (TDHF) or time-dependent density-functional
(TDDFT) level. Using coupled TDDFT dispersion energies,
the corrected MP2 interaction energies are thus obtained with:

with the acronym MP2C denoting MP2 ‘coupled’. The
decomposition of the supermolecular MP2 energy into the

uncoupled HF dispersion energy and a remainder term is
based on an explicit decomposition of the total system into
two subsystems. Because of this, the approach described in
this work is not capable to improve the MP2 method also
for intramolecular dispersion effects. The dispersion energies
from the TDDFT method can be obtained from:

where �coup
A, B denote the coupled response functions of

monomers A and B which can be obtained from the Dyson-
type equation:

with W denoting the interelectronic interaction operator
comprising Coulomb, exchange, and correlation effects:

where 1/r12 is the Coulomb-operator and fxc is the exchange-
correlation (xc) kernel that in general is nonlocal and
frequency-dependent. In the framework of TDDFT the xc-
kernel almost always is approximated by the adiabatic local
density approximation (ALDA) kernel:

that is the frequency-independent second derivative of the
LDA xc-functional. Note that in order to obtain the coupled
response functions via eq 7 an iterative procedure has to be
used, as �coup appears on both sides of the equation.

It has to be noted here that the MP2C approach (eq 5)
does not account for also correcting the corresponding
exchange-dispersion energy term (Eexch-disp

(2) ) that is also
described on an uncoupled Hartree-Fock level only in the
supermolecular MP2 method. The calculation of Eexch-disp

(2) is
much more computationally demanding than the calculation
of the dispersion energy and would therefore lead to a much
more expensive method if explicitly corrected in addition.
However, the exchange-dispersion energy is generally much
smaller than the dispersion energy itself and decreases
exponentially for larger intermonomer distances. It has been
found that in the intermediate distance range the ratio
between coupled and uncoupled exchange-dispersion ener-
gies is about the same as with the corresponding dispersion
energies. Because, in contrast to the dispersion energy, the
Eexch-disp

(2) contribution is always positive, it is found that in
most cases the uncoupled exchange-dispersion energy over-
estimates the coupled one and leads to slightly higher total
intermolecular interaction energies. This may be the reason
why it has been found that the correction scheme of eq 5
works best if the TDDFT dispersion energy is calculated with
an exchange-only approach and not by using more accurate
exchange-correlation (xc) potentials and kernels for the
calculation of the coupled response functions of eq 7.23 The

Edisp
(2) (UCHF) ) -4 ∑

ia,jb

|(iAaA|jBbB)|2

εa
A - εi

A + εb
B - εj

B
(2)

Edisp
(2) (UCHF) )

- 1
2π ∫0

∞
dω∫ dr1dr2dr3dr4�0

A(r1, r3, ω)�0
B(r2, r4, ω)

1
r12

1
r34

(3)

�0(r1, r2, ω) ) 4 ∑
ia

εia

εia
2 + ω2

φia(r1)φia(r2) (4)

Eint
MP2C ) Eint

MP2 - Edisp
UCHF + Edisp

TDDFT (5)

Edisp
(2) (TDDFT) )

- 1
2π ∫0

∞
dω∫ dr1dr2dr3dr4�coup

A (r1, r3, ω)�coup
B (r2, r4, ω)

1
r12

1
r34

(6)

�coup(r1, r2, ω) ) �0(r1, r2, ω) +

∫ dr3dr4�0(r1, r3, ω)W(r3, r4, ω)�coup(r4, r2, ω) (7)

W(r1, r2, ω) ) 1
r12

+ fxc(r1, r2, ω) (8)

fxc(r1, r2, ω) ≈ fxc
ALDA(r1)δ(r1 - r2) (9)
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TDDFT dispersion energies on the exchange-only level
usually are only slightly less negative than the uncoupled
HF dispersion energies, while the corresponding dispersion
energies from more accurate xc potentials deviate more from
the uncoupled HF dispersion energies; see ref 23. Thus the
error from the coupled exchange-only approximation in the
dispersion energy is reduced by accounting for the exchange-
dispersion contribution on an uncoupled Hartree-Fock level.

In the following, a density-fitting implementation for
the calculation of uncoupled and coupled dispersion
energies will be described that scales only with N 3 -
N 4 with the molecular size N if local xc-kernels are used,
and that therefore can be used for relatively large
molecular systems. We start by transforming the un-
coupled response function of eq 4 in a local auxiliary basis
set gP:

where λia ) 4εia/(εia
2 + ω2) and (P|η|ia) is a three-index

integral over an auxiliary basis function gP (indices
P, Q, R, ... are labeling auxiliary basis functions) and the
occupied-virtual orbital product φia. The operator η
conventionally is chosen as the Coulomb-operator: η )
1/r12. The idea is now that the number of auxiliary basis
functions Naux that are used to span the occupied-virtual
space is much smaller than the product of occupied times
virtual orbitals: Naux , Nocc × Nvirt. As the number of
auxiliary functions only increases linearly with the system
size, it can be shown that the computation of the matrix
�0 scales only as N 4. Using eq 10, the uncoupled
dispersion energy of eq 3 can be written as:

where SP, Q ) (P|η|Q) is the metric matrix in the auxiliary
basis set and JPQ ) (P|1/r12|Q) is a two-indexed Coulomb
matrix in the auxiliary basis. It can readily be seen that
the computation of the dispersion energy using eq 11
scales only with N 3.

In order to obtain the coupled response functions in the
auxiliary basis set, the Dyson eq 7 is expanded in this basis
and one obtains:

where �0 is defined in eq 10 and

is the interaction operator in the auxiliary basis set. The
solution to eq 12 can easily be calculated:

requiring only an inversion of a matrix of the dimension Naux.
The dispersion energy can then be obtained analogous to eq
11 by:

Edisp
TDDFT ) - 1

2π ∫0

∞
dω(S-1�coup

A S-1)J(S-1�coup
B S-1)J

(15)

It has been found that the computation of the two-indexed
xc-kernel integrals (P|fxc|Q) turns out to be the computational
bottleneck in the calculation of the dispersion energy. As
this contribution usually is determined using numerical
quadrature, the total cost of its computation is Ngrid × Naux

2

where Ngrid is the number of grid points. Though the scaling
is only of the order N 3, the prefactor is rather high because
Ngrid usually has values of 105 to 106 for larger molecular
systems. Therefore, here an alternative way to compute the
xc-kernel integrals is presented that reduces the computa-
tional cost of numerical quadratures by introducing a
gridfree-based algorithm identical to gridfree DFT methods
introduced by Almlöf and others:37–39 we start by determin-
ing the matrix (P|F|Q) where F is the electron density and
P, Q are auxiliary basis functions by:

with (PQ|R) being a three-index overlap integral over three
auxiliary functions, S-1 is the inverse of the metric, (S|η|µν)
is a three-index integral over one auxiliary function and two
atomic-orbital (AO) basis functions, and γµν is the density-
matrix in the AO basis. The matrix M is then transformed
into a new matrix M̃ using an orthonormal basis set:

with VTSV ) 1 (note that here SPQ )(P|δ(r - r′)|Q)) and
diagonalization of M̃ gives M̃ ) UΛUT where U contains
the eigenvectors and Λ is a diagonal matrix containing the
eigenvalues of M̃. One can then write any matrix (P̃|f(F)|Q̃)
of the orthogonal auxiliary basis and functions f(F) as
follows:

where the matrix f(Λ) is a diagonal matrix containing the
function values f(Λi) for each eigenvalue Λi in its diagonal.
In case of f ) f xc

ALDAx (exchange-only ALDA kernel) the
function f is given by f xc

ALDAx(F) ) -CxF-2/3 and Cx is the
Slater-Dirac constant. Finally the matrix M̃[f(F)] has to be
backtransformed to the original nonorthogonal auxiliary basis
set using:

It can be seen that the computational cost of the gridfree-
based algorithm is only Naux

3 and Naux × Norb
2 (Norb: number

of AO basis functions) with both Naux , Ngrid and Norb ,
Ngrid.

3. Computational Details

Geometries of complexes from the S22 database31 as well
as the geometries of all conformers of the benzene dimer5

(“TT”,“T”,“PD”, and “S”), the uracil dimer7 (“HB” and “S”),
and the stacked methyl-adenine · · ·methyl-thymine dimer8

(“mAmT”) were taken from respective original references.

(�0)PQ ) ∑
ia

(P|η|ia)λia(ia|η|Q) (10)

Edisp
UCHF ) - 1

2π ∫0

∞
dω(S-1�0

AS-1)J(S-1�0
BS-1)J

(11)

�coup ) �0 + �0W�coup (12)

WPQ ) (P| 1
r12

|Q) + (P|fxc|Q) (13)

�coup ) �0S
-1W(S - �0S

-1W)-1�0 (14)

MPQ ) (P|F|Q) ) (PQ|R)[S-1]RS(S|η|µν)γµν (16)

M̃[F] ) VTM[F]V (17)

M̃[f(F)] ) Uf(Λ)UT (18)

M[f(F)] ) SVUf(Λ)UTVTS (19)
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PES studies were based on geometries taken from the work
of Grimme et al.40 (“PD-to-IP” and “T-to-S”) and on
geometries taken from the work of Wang and Hobza,41 with
modified intermonomer distances as explained in detail in
section 4.3.

All MP2, MP2C, and CCSD(T) calculations were done
in the frozen-core approximation and using the (aug-)cc-
pVXZ basis sets ((a)XZ) of Dunning and co-workers.42 MP2
and MP2C results were obtained with MOLPRO43 using
corresponding JKfit density-fitting basis sets of Weigend44

for the Hartree-Fock and Localized Hartree-Fock calcula-
tions and the MP2fit basis sets from Weigend et al.45 for
the MP2 and TDDFT calculations. For the LHF calculations,
the computational-efficient scheme described in ref 46 was
used.

CCSD(T) calculations were carried out with the MOLCAS
71 package using a Cholesky decomposition of two-electron
integrals with a threshold of 10-6 Hartree on both SCF and
the CCSD(T) levels. This calculation setup was previously
validated to be in agreement with the exact two-electron
integral-based calculations beyond 0.01 kcal/mol in interac-
tion energies.

4. Results and Discussion

4.1. S22 Test Set. Tables 1-3 show results obtained for
the S22 data set in two different ways. In Table 1 total MP2
and MP2C interaction energies with the respective aTZfaQZ
extrapolations according to Helgaker et al.47 are presented
along with the estimated CCSD(T)/CBS reference values
from ref 31. In Table 2 the total MP2 interaction energies
are displayed along with the “ ∆MP2C” and “ ∆CCSD(T)”

energies, defined as ∆X ) X-MP2, where X stands for
MP2C or CCSD(T). The last table on the S22 results, Table
3, shows a statistical evaluation of errors of estimated MP2/
CBS and MP2C/CBS results with respect to the estimated
CCSD(T)/CBS for each type of interactions separately as
well as for the whole test set.

Let us first analyze the performance of the MP2C method
on total interaction energies shown in Table 1. MP2 and
MP2C values obtained in the series of aXZ (X ) D, T, and
Q) basis sets are presented to demonstrate the similar rate
of convergence of these methods toward the CBS. Two
different numbers appear in the CBS column for MP2, one
being obtained by us from the extrapolation from aTZ and
aQZ basis sets, another one in parentheses from the original
S22 paper.31 These numbers differ slightly, typically a few
hundreds of kcal/mol, at most by 0.1 kcal/mol for the stacked
adenine · · · thymine complex, which is because mostly un-
augmented, but of one order of cardinality higher, cc-pVXZ
basis sets were used. Another, but less important, deviation
could also arise from using different density-fitting basis sets.
The performance of MP2C for H-bonded complexes is
excellent, just like the performance of uncorrected MP2 itself,
with an average error of ∼0.2 kcal/mol. The only exception
is the 2-pyridoxine-2-aminopyridine, for which the error of
MP2 and MP2C is 0.66 and 0.58 kcal/mol, respectively. The
performance of MP2 and MP2C is, however, dramatically
different for dispersion-dominated complexes, as expected.
Here the maximum error of MP2C is obtained for the
adenine · · · thymine stacked complex, being -0.73 kcal/mol.
Note that the actual error is probably by ∼0.1 kcal/mol less
negative, due to the inconsistency with the MP2/CBS value

Table 1. Total MP2, MP2C, and CCSD(T) Interaction Energies (in kcal/mol) for the S22 Complexes. MP2/“CBS S22” and
CCSD(T)/CBS Values Were Taken from Ref 31a

MP2 MP2C CCSD(T)

structure aDZ aTZ aQZ CBS (CBS S22) aDZ aTZ aQZ CBS CBS

(NH3)2 -2.68 -2.99 -3.09 -3.16(-3.20) -2.73 -3.11 -3.23 -3.32 -3.17
(H2O)2 -4.37 -4.69 -4.86 -4.98(-5.03) -4.38 -4.77 -4.96 -5.10 -5.02
(formic acid)2 -15.99 -17.55 -18.14 -18.57(-18.60) -15.90 -17.62 -18.28 -18.76 -18.61
(formamide)2 -13.95 -15.03 -15.50 -15.84(-15.86) -13.97 -15.20 -15.72 -16.10 -15.96
(uracil)2 HBb -18.41 -19.60 -20.07 -20.41(-20.43) -18.22 -19.55 -20.06 -20.43 -20.47
2-PO-2-APc -15.55 -16.64 -17.06 -17.37(-17.37) -15.25 -16.48 -16.95 -17.29 -16.71
A · · ·Td HB -14.70 -15.80 -16.23 -16.54(-16.54) -14.52 -15.76 -16.24 -16.59 -16.46e

(CH4)2 -0.39 -0.46 -0.48 -0.49(-0.51) -0.44 -0.52 -0.55 -0.57 -0.53
(ethene)2 -1.17 -1.46 -1.53 -1.58(-1.62) -1.18 -1.50 -1.58 -1.64 -1.51
benzene · · ·CH4 -1.47 -1.71 -1.77 -1.81(-1.86) -1.17 -1.44 -1.51 -1.56 -1.50
(benzene)2 PDf -4.25 -4.70 -4.85 -4.96(-4.95) -1.93 -2.48 -2.65 -2.77 -2.73
(pyrazine)2 -6.00 -6.56 -6.76 -6.91(-6.90) -3.46 -4.04 -4.28 -4.46 -4.42
(uracil)2 Sg -9.81 -10.63 -10.90 -11.10(-11.15) -8.10 -8.99 -9.32 -9.56 -9.88
indole · · ·benzene S -7.14 -7.74 -7.94 -8.09(-8.12) -3.56 -4.27 -4.51 -4.69 -4.66e

A · · ·T S -13.24 -14.26 -14.59 -14.83(-14.93) -9.71 -10.81 -11.21 -11.50 -12.23
ethene · · ·ethine -1.39 -1.58 -1.63 -1.67(-1.69) -1.31 -1.52 -1.57 -1.61 -1.53
benzene · · ·H2O -2.98 -3.35 -3.46 -3.54(-3.61) -2.69 -3.12 -3.24 -3.33 -3.28
benzene · · ·NH3 -2.21 -2.52 -2.60 -2.66(-2.72) -1.87 -2.21 -2.30 -2.37 -2.35
benzene · · ·HCN -4.38 -4.92 -5.06 -5.16(-5.16) -3.85 -4.44 -4.59 -4.70 -4.46
(benzene)2 Th -3.10 -3.46 -3.56 -3.63(-3.62) -2.32 -2.72 -2.82 -2.89 -2.74
indole · · ·benzene T -6.10 -6.71 -6.86 -6.97(-7.03) -5.00 -5.67 -5.84 -5.96 -5.73
(phenol)2 -6.79 -7.36 -7.59 -7.76(-7.76) -6.19 -6.85 -7.11 -7.30 -7.05

a aXZ stands for Dunning’s42 aug-cc-pVXZ basis sets, X ) D, T, Q. MP2/CBS and MP2C/CBS values correspond to Helgaker’s47

extrapolations from the aTZ and aQZ basis sets. b HB ) hydrogen-bonded. c 2-PO-2-AP ) 2-pyridoxine-2-aminopyridine. d A · · ·T )
adenine · · · thymine. e In ref 31 for A · · ·T HB and indole · · ·benzene S complexes, -16.37 and -5.22 kcal/mol estimated CCSD(T)/CBS
results were calculated as MP2/CBS + ∆CCSD(T)/dz. Because the ∆CCSD(T)/dz values, 0.21 and 2.90 kcal/mol, are significantly
underestimated for these systems, more accurate ∆CCSD(T)/aDZ values, of 0.08 and 3.46 kcal/mol, are used instead. f PD ) parallel
displaced. g S ) stacked. h T ) “T”-shaped -16.37.
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from S22, as mentioned above. The second largest deviation
with respect to the S22 CCSD(T)/CBS was found for the
stacked complex of indole · · ·benzene, being -0.53 kcal/mol,
which almost completely diminishes (to -0.03 kcal/mol)
after improving the quality of the estimated CCSD(T)/CBS
benchmark, from -5.22 to -4.66 kcal/mol, by calculating
∆CCSD(T) in the aDZ instead of the DZ basis set. The
description of “mixed” type complexes by MP2C is the most
balanced with average errors of ∼0.15 kcal/mol and the
largest error occurring for the phenol dimer, with only 0.25
kcal/mol (the error of MP2 is ∼0.7 kcal/mol for this system).

A deeper insight into the magnitude and the basis set
dependence of the TDDFT dispersion contribution can be
acquired from Table 2. Because the MP2C and the CCSD(T)
method can both be viewed as “corrections” to MP2, we
can formally separate the respective correction term, as
already mentioned. For MP2C it would be more method-
ologically correct to show the subtracted UCHF and the
added TDDFT dispersion energy, but this would not serve
the assessment we would like to address. The separation of
the ∆CCSD(T) correction was shown to be extremely helpful

especially in benchmark calculations,48 because it was
observed that the ∆CCSD(T) converges typically much faster
with the basis set size than the MP2 interaction energy itself,
thus making it sufficient to be calculated in small- to
medium-sized diffuse basis sets. It would also be advanta-
geous to observe a similar feature in MP2C, so we could
avoid TDDFT calculations (though not more expensive than
the supermolecular MP2 itself) in large basis sets.

Generally, the ∆CCSD(T) correction for typical H-bonded
complexes (e.g., the first four complexes in Table 2) is small
and clustered around zero kcal/mol (see the results in Table
2), and this trend is slightly underestimated on the MP2C/
CBS level. The last three H-bonded complexes have a
significantly larger contribution from the dispersion energy,
from which the uracil dimer and the adenine · · · thymine
complexes are described fairly accurately, errors being -0.04
and 0.13 kcal/mol, respectively, after recalculating the
∆CCSD(T) for the adenine · · · thymine complex in the aDZ
basis set (the error with respect to the original S22 CCSD(T)/
CBS value is also acceptable with a value of 0.23 kcal/mol).
The most problematic H-bonded complex, with an error of
0.58 kcal/mol, is the already mentioned 2-pyridoxine-2-
aminopyridine. So far we do not have an explanation or
numerical evidence for such a deviation of the MP2C method
for this complex. Perhaps the intermolecular correlation
beyond the second order is important for electrostatics,
exchange, and deformation contributions. The basis set
convergence of ∆MP2C for these complexes in percentile
scale is rather slow; changes of ∆MP2C from the aTZ to
the aQZ basis set account for 20 to 125%. These large
numbers might be a bit misleading, because the ∆MP2C
correction changes in absolute values only by -0.04 kcal/
mol on average.

Table 2. Total MP2 and ∆MP2C and ∆CCSD(T) Corrections to the MP2 Interaction Energies (in kcal/mol) for the S22
Complexesa

MP2 ∆MP2C ∆CCSD(T)

structure aDZ aTZ aQZ aDZ aTZ aQZ S22b aDZ S22b

(NH3)2 -2.68 -2.99 -3.09 -0.06 -0.12 -0.14 -0.04 (qz) 0.06 0.03
(H2O)2 -4.37 -4.69 -4.86 -0.02 -0.09 -0.11 -0.01 (qz) 0.03 0.00
(formic acid)2 -15.99 -17.55 -18.14 0.09 -0.07 -0.14 0.09 (tz) 0.03 -0.02
(formamide)2 -13.95 -15.03 -15.50 -0.02 -0.17 -0.22 -0.02 (tz) -0.02 -0.11
(uracil)2 HBc -18.41 -19.60 -20.07 0.19 0.05 0.00 0.22 (tz-fd) -0.06 -0.03
2-PO-2-APd -15.55 -16.64 -17.06 0.31 0.16 0.11 0.34 (tz-fd) 0.63 0.66
A · · ·Te HB -14.70 -15.80 -16.23 0.18 0.04 -0.01 0.18 (dz) 0.08 0.21
(CH4)2 -0.39 -0.46 -0.48 -0.05 -0.06 -0.07 -0.01 (qz) -0.03 -0.02
(ethene)2 -1.17 -1.46 -1.53 -0.00 -0.04 -0.05 0.05 (qz) 0.10 0.11
benzene · · ·CH4 -1.47 -1.71 -1.77 0.30 0.27 0.26 0.35 (tz-fd) 0.35 0.36
(benzene)2 PDf -4.25 -4.70 -4.85 2.32 2.23 2.20 2.32 (adz) 2.22 2.22
(pyrazine)2 -6.00 -6.56 -6.76 2.54 2.52 2.48 2.52 (tz-fd) 2.57 2.48
(uracil)2 Sg -9.81 -10.63 -10.90 1.71 1.63 1.58 1.69 (tz-fd) 1.26 1.28
indole · · ·benzene S -7.13 -7.74 -7.94 3.57 3.47 3.42 3.08 (dz) 3.46 2.90
A · · ·T S -13.24 -14.26 -14.59 3.54 3.45 3.38 2.91 (dz) 2.76 2.70
ethene · · ·Ethine -1.39 -1.58 -1.63 0.08 0.06 0.05 0.10 (tz) 0.16 0.18
benzene · · ·H2O -2.98 -3.35 -3.46 0.29 0.23 0.22 0.30 (tz-fd) 0.28 0.33
benzene · · ·NH3 -2.21 -2.52 -2.60 0.35 0.31 0.30 0.37 (tz-fd) 0.33 0.37
benzene · · ·HCN -4.38 -4.92 -5.06 0.53 0.49 0.47 0.56 (tz-fd) 0.64 0.70
(benzene)2 Th -3.10 -3.46 -3.56 0.78 0.74 0.73 0.78 (adz) 0.88 0.88
indole · · ·benzene T -6.10 -6.71 -6.86 1.10 1.05 1.02 0.93 (dz) 1.34 1.30
(phenol)2 -6.79 -7.36 -7.59 0.60 0.51 0.48 0.61 (tz-fd) 0.69 0.71

a ∆CCSD(T)/S22 values were taken from the ref 31. b Basis sets used in ref 31 for calculation of ∆CCSD(T), i.e., (a)XZ ) (aug-)cc-pVXZ;
tz-fd ) cc-pVTZ with less diffuse d- and all f-functions removed. c HB ) hydrogen-bonded. d 2-PO-2-AP ) 2-pyridoxine-2-aminopyridine.
e A · · ·T ) adenine · · · thymine. f PD ) parallel displaced. g S ) stacked. h T ) “T”-shaped.

Table 3. Root Mean Squared Errors (RMS), Mean
Absolute Deviations (MAD), Mean Signed Deviations
(MSD), and Maximum Absolute Errors (MAX) (in kcal/mol)
to the Estimated CCSD(T) Interaction Energies of the S22
Complexes from Table 1a

H-bonded dispersion mixed all

rms 0.26/0.25 1.86/0.34 0.71/0.17 1.20/0.24
MAD 0.16/0.18 1.48/0.24 0.61/0.15 0.78/0.17
MSD 0.08/0.17 1.47/-0.16 0.61/0.15 0.75/0.07
MAX 0.66/0.58 2.87/0.73 1.24/0.25 2.87/0.73

a MP2 values are the first and the MP2C errors are the second
number in each column.
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Trends in the basis set convergence of the ∆MP2C term
can be better observed for the dispersion-dominated com-
plexes, because of much larger absolute values of the
interaction energies, especially for the π-π stacked com-
plexes. First of all, in all π-π stacked complexes investigated
by us5–8 or other authors (for instance see ref 49), the
∆CCSD(T) (thus ∆MP2C as well) values are repulsive. What
is different is that the ∆CCSD(T), unlike the ∆MP2C,
converges with the basis set from below, i.e., the repulsion
is increasing with the basis set size. Surprisingly (see, for
instance, results for the stacked uracil dimer in Table 2), the
∆MP2C correction decreases when going from the aDZ to
the aQZ basis set. This means that for these kinds of
complexes the total MP2C interaction energy (in attractive
equilibrium complex geometries) is increasing with the basis
set size, unlike the total CCSD(T) interaction energy, which
is decreasing. Because we do not have systematic CCSD(T)
results for the whole S22 set, few selected complexes, shown
in Table 4, will be analyzed separately in section 4.2. The
∆MP2C values for dispersion-dominated complexes con-
verge rather fast, both in percentile and absolute scale. The
average change of ∆MP2C for the dispersion-bound com-
plexes (methane and ethene dimers, benzene · · ·methane
complex) from the aDZ to the aTZ basis set is -0.03 kcal/
mol (∼15%), while from the aTZ to the aQZ basis set it is
only -0.01 kcal/mol (∼13%). For the stacked complexes
(benzene, pyrazine, and uracil dimers and adenine · · · thymine
complex), the average change of the ∆MP2C from aDZ to
aTZ basis set is only 0.08 kcal/mol (∼3%), while from aTZ
to aQZ it is even less, 0.05 kcal/mol (∼2%). This is similar
to the rate of convergence of the ∆CCSD(T) term, as
discussed further. The largest error from the dispersion
dominated complexes as well as for the whole S22 set is
obtained for the adenine · · · thymine stacked complex, esti-
mated to be about 0.6 kcal/mol. As in case of 2-pyridoxine-
2-aminopyridine, we have no clear explanation where this
discrepancy stems from. We can only hypothesize that here
maybe contributions to the intermolecular interaction other
than the dispersion energy are approximated poorly on the
intra- and/or intermolecular MP2 level. The convergence of
∆MP2C for the “mixed” complexes is also monotonous and
“from above” (the repulsion due to the corrected dispersion
energy decreases with the basis set size). Changes of ∆MP2C
from aDZ to aTZ are on average 0.05 kcal/mol (∼9%), while

from the aTZ to aQZ basis sets, the average change decreases
to only 0.02 kcal/mol (∼4%).

A statistical evaluation of errors via rms (root-mean-
squared deviation), MAD (mean absolute deviation), MSD
(mean signed deviation), and MAX (maximum absolute
error) is summarized in Table 3. It is found that errors similar
to those of the SCS(MI)-MP214 or the MP2.59 are obtained.
However, both of these two methods contain empirical
parameters, and furthermore the spin energy component
scaling parameters utilized in the SCS(MI)-MP2 method
were optimized exactly for the S22 data set. The performance
of the first of these methods on complexes outside its training
set is clearly deteriorating, as shown in the footnote of Table
4. Results for several systems from the S22 can also be
compared with those used for the testing of the MP2+∆vdW
method in ref 29. For water and ammonia H-bonded dimers
errors of the best and the worst performing damping functions
are 0.09-0.21 kcal/mol and 0.09-0.23 kcal/mol, respec-
tively. For “mixed” and dispersion bound complexes such
as “T”-shaped benzene dimer and parallel-displaced (PD)
conformations,errorsof-0.09-0.35kcal/moland-0.05-0.60
kcal/mol were obtained.

4.2. Other Benchmarks. The growing number of highly
accurate, systematically calculated CCSD(T)/CBS bench-
marks for medium-sized (according to the applicability of
the coupled-cluster theory) noncovalent complexes allows
us to assess the accuracy of the MP2C approach even more
critically. Table 4 shows the comparison of MP2C with the
CCSD(T)/CBS results gathered from a few publications.5,7,8

The first four lines show the performance of the MP2C
method on various conformers of the benzene dimer. The
rates of convergence of the ∆MP2C and ∆CCSD(T) terms
are very similar, values being practically converged toward
the CBS already in the aTZ basis set. A further increase of
the basis set size amounts to changes of only 0.01-0.03 kcal/
mol. Comparing the MP2C and the CCSD(T) values in the
CBS limit, an almost uniform overestimation of 0.15-0.20
kcal/mol by the MP2C method is observed. When ∆MP2C
and ∆CCSD(T) values are compared, for instance, in the
aQZ basis set, a similar underestimation of the ∆CCSD(T)
by 0.09-0.17 kcal/mol is found. What is, however, of key
importance is that the CCSD(T)/CBS relative stability of
different structures is well reproduced by the MP2C method.
PD and T, almost isoenergetic structures according to the

Table 4. Total MP2C and CCSD(T) Interaction Energies and Respective ∆MP2C and ∆CCSD(T) Energy Corrections (in
kcal/mol) for a Few Selected Benchmark Complexes

MP2C CCSD(T) ∆MP2C ∆CCSD(T)

structure aDZ aTZ aQZ CBS aDZ aTZ aQZ CBS aDZ aTZ aQZ aDZ aTZ aQZ

B2
a TT -2.53 -2.81 -2.90 -2.97 -2.44 -2.66 -2.75 -2.78 ( 0.03 0.68 0.65 0.63 0.75 0.80 0.79

B2 T -2.37 -2.72 -2.82 -2.89 -2.28 -2.57 -2.65 -2.69 ( 0.02 0.72 0.69 0.68 0.82 0.85 0.85
B2 PD -2.06 -2.58 -2.74 -2.85 -2.15 -2.49 -2.63 -2.70 ( 0.04 2.20 2.11 2.09 2.11 2.20 2.19
B2 S -1.19 -1.58 -1.70 -1.79 -1.27 -1.51 -1.61 -1.64 ( 0.04 1.70 1.61 1.58 1.62 1.68 1.67
U2

b HB -18.22 -19.55 -20.06 -20.41 -18.43 -19.81 - -20.50 ( 0.14 0.19 0.05 0.00 -0.02 -0.21 -
U2 S -8.10 -8.99 -9.32 -9.55 -8.54 -9.33 - -9.68 ( 0.11 1.71 1.63 1.58 1.26 1.29 -
mAmTc -11.07 -12.74 - -13.45 -11.61 -13.06 - -13.70 ( 0.04 4.71 4.57 - 4.16 4.25d -

a B2 ) benzene dimer, TT ) “T”-shaped tilted, T ) “T”-shaped, PD ) parallel displaced, S ) sandwich. For details on structures, see ref
5. b U2 ) uracil dimer, HB ) hydrogen-bonded, S ) stacked. For details on structures, see ref 7. c mAmT )
methyl-adenine · · ·methyl-thymine. For details on structure, see ref 8. d ∆SCS(MI)-MP2/cc-pV(DT)Z and ∆SCS(MI)-MP2/cc-pVQZ values are
2.87 and 2.65 kcal/mol, respectively.
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CCSD(T)/CBS results, differ only by 0.04 kcal/mol with
MP2C/CBS. The energetic separation of the TT structure
from both PD and T, being ∼0.1 kcal/mol on the CCSD(T)/
CBS level, is well reproduced on the MP2C/CBS level, with
values of 0.08-0.12 kcal/mol.

An excellent agreement of the MP2C/CBS and the
CCSD(T)/CBS within ∼0.1 kcal/mol is achieved also for
the H-bonded and stacked uracil dimers. For these complexes
the CCSD(T)/aQZ results are not available because of the
enormous computational requirements. At least for the
stacked structure, judged according to the convergence of
the ∆CCSD(T) correction in aDZ and aTZ basis sets, the
estimated CCSD(T)/CBS value is supposed to be very close
to its exact basis set limit. The accuracy of the CCSD(T)/
CBS value for the H-bonded dimer is, however, a bit more
uncertain.

The last of the complexes in Table 4, the stacked methyl-
adenine · · ·methyl-thymine dimer, was thoroughly investi-
gated in ref 8, motivated by its previously estimated31 large
repulsive higher-order correlation contribution to the interac-
tion energy. The difference between ∆CCSD(T) and ∆MP2C
is decreasing from -0.55 kcal/mol in the aDZ to -0.32 kcal/
mol in the aTZ basis set. Just like for the rest of the
complexes in Table 4, the same inverse slope of convergence
of ∆MP2C compared to ∆CCSD(T), as for the S22 data set,
is observed. The total MP2C/CBS interaction energy is finally
only slightly underestimated by ∼0.25 kcal/mol (∼2%)
compared to the CCSD(T)/CBS value. This is an excellent
result, especially taking into consideration that the total
MP2C/aTZ calculation of the BSSE corrected interaction
energy was done in 12 h on a single Intel Core2 Quad 2.40
GHz processor, while only the (T) part of the coupled-cluster
calculation of this complex in the aTZ basis set took almost
7 days on 80 four-core Xeon E5430 2.66 GHz processors.

4.3. PEC for Dimers of Aromatic Systems. Generally
applicable methods for calculating noncovalent interactions
should deliver accurate results not only for the minima but
also over the wide region of the PES. This is a strong
requirement for applications, for instance in biology, where
the interacting fragments of protein, DNA, etc., often appear
in distorted geometries or where a superposition of weak
but numerous middle- to long-range interactions occurs. The
first three figures show the “dissociation” of the parallel-
displaced conformation of the benzene dimer (Figure 1),
benzene · · ·pyrimidine (Figure 2), and benzene · · ·1,2,4,5-
pentazine (Figure 3) calculated with MP2C/CBS (aTZfaQZ
extrapolation) and estimated with CCSD(T)/CBS (MP2 from
aTZfaQZ extrapolation, ∆CCSD(T) calculated in the aDZ
basis set). For a more refined view, ∆MP2C and ∆CCSD(T)
curves are plotted along the curves of total interaction
energies. These systems were selected for known strong π-π
interactions41 which increase with the number of nitrogen
heteroatoms. The increase of polarity from benzene to
1,2,4,5-pentazine results in a decrease of the optimal vertical
displacement of the rings in the complex and consequently
an increase of the interaction energy from -2.32 through
-3.50 to -5.13 kcal/mol. Starting from the optimized
structures of Wang and Hobza41 (the acronyms “B0P”,
“B2P”, and “B5P” were used in this publication), the distance

between the centers of mass of the stacked rings was sampled
by 0.2 Å to cover both repulsive and attractive regions around
∼1.2 R0 (R0 being the equilibrium distance) in both direc-
tions. As can be clearly seen from Figures 1-3, MP2C well
reproduces the CCSD(T) curve. Some deviations can be seen,
for instance, in the strongly repulsive region for benzene · · ·
pyrimidine (more clearly visible on the ∆MP2C and ∆CCS-
D(T) curves) or as a small constant shift of ∼0.2 kcal/mol
along the whole PEC for benzene · · · 1,2,4,5-pentazine.
Deviations in the repulsive region probably originate from

Figure 1. Vertical stretch of stacked benzene rings calculated
on MP2C/CBS and estimated CCSD(T)/CBS levels.

Figure 2. Vertical stretch of stacked benzene and pyrimidine
rings calculated on MP2C/CBS and estimated CCSD(T)/CBS
levels.

Figure 3. Vertical stretch of stacked benzene and 1,2,4,5-
pentazine rings calculated on MP2C/CBS and estimated
CCSD(T)/CBS levels.
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the intrinsic error of the MP2C method, while the constant
shift on the curve for benzene · · ·1,2,4,5-pentazine could be
caused by a deficiency of the aDZ basis set used in the
calculation of the estimated CCSD(T)/CBS reference.

The last two examples are PECs of the T-shaped benzene
dimer conversion to the sandwich (S) structure, Figure 4 and
Figure 5, and the parallel displaced (PD) benzene dimer
conversion to the in-plane (IP) arrangement, Figure 6 and
Figure 7. Geometries for all structures on these PECs were
taken from the work of Grimme et al.40 On both Figure 5
and Figure 7, MP2 and MP2C total interaction energies in
the aDZ to aQZ basis sets are shown, along with the
corresponding ∆MP2C correction. As references, CCSD(T)
and ∆CCSD(T) in the aDZ basis set (unlike the estimated
CCSD(T)/CBS used in previous figures, i.e., Figure 1-3)
are plotted as well. A common feature in Figures 5 and 7 is
the trend of convergence of the MP2 and the ∆MP2C
energies with an increase of the basis set size. For the total
MP2 interaction energy, a convergence toward a stronger
stabilization is observed and in the case of MP2C a decrease
of the “destabilization” due to a decrescent value of ∆MP2C
occurs. As analyzed by Grimme et al.,40 the contribution from
the intermolecular interaction of π-π orbitals is doubled
(from 17% to 36% of the MP2/aDZ level) going from the T
to the S structure. This can be tracked by more than a doubled
rise of the ∆CCSD(T) (and ∆MP2C as well) in Figure 5.

The error of the MP2C is also following this trend, being
the largest for the sandwich structure, 0.12 kcal/mol in the
aDZ basis set. On the basis of the trends of convergence of
the ∆CCSD(T) and ∆MP2C correction terms (see Table 4),
this discrepancy has a tendency to further increase upon an
improvement of the basis set quality, because they converge
in opposite directions. The overall quality of the total MP2C
interaction energy is still excellent, with an error compared
to the CCSD(T)/aDZ being smaller than 6% along the whole
PEC.

The character of interaction is also significantly changing
along the PD-to-IP PEC: the PD structure (A) has a strong
σ-π (49%) and π-π (34%) character,40 while for the IP
structure (D) the importance of the intermolecular π-π
interaction decreases only to 9% (σ-π decreases only
slightly to 36%). This change of interaction character can
be tracked in Figure 7 by a decrease of the ∆CCSD(T) and
the ∆MP2C term from 1.84 and 1.87 kcal/mol for PD to
almost zero for the IP structure. However, at the same time
the total CCSD(T) and MP2C interaction energies decrease
by ∼2 kcal/mol, because the repulsive ∆CCSD(T) and
∆MP2C terms correct the overestimation of the interaction
energy on the MP2 level occurring only for structures with
significant overlap of the stacked rings. MP2C/aDZ ac-
curately reproduces the CCSD(T)/aDZ values along the
whole PEC within 0.04 kcal/mol, leading to percentile errors
of at most 8% (obtained for the IP structure).

5. Conclusions

The recently developed23 dispersion correction scheme
(termed MP2C, i.e., MP2 ‘coupled’, in this work) for the
supermolecular MP2 method has been extensively tested for
different types of dimer systems containing both strong
electrostatic and/or strong dispersion interaction energy
contributions. While it is well-known that the supermolecular
MP2 method is for some types of noncovalent interactions
(such as hydrogen-bonding, etc.) capable of accurately
reproducing CCSD(T) interaction energies, it has been shown
in this work that the correction used in the MP2C approach
does not worsen this performance. In fact it has been found
that for the set of seven hydrogen-bonded complexes
contained in the S22 benchmark set (see Table 1) the root

Figure 4. Structures on the “T-to-S” benzene dimer conver-
sion potential energy curve.

Figure 5. “T-to-S” benzene dimer conversion potential energy
curve calculated on CCSD(T)/aug-cc-pVDZ and MP2C/aug-
cc-pVXZ, X ) 2, 3, 4, levels.

Figure 6. A few selected structures on the “PD-to-IP”
benzene dimer conversion potential energy curve.

Figure 7. “PD-to-IP” benzene dimer conversion potential
energy curve calculated on CCSD(T)/aug-cc-pVDZ and MP2C/
aug-cc-pVXZ, X ) 2, 3, 4, levels.
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mean squared errors to the estimated CCSD(T)/CBS results
for MP2 and MP2C are of about the same magnitude and
amount to 0.25 kcal/mol.

In contrast to this, a clear difference between the MP2
and MP2C method is observed for the π-π stacked
complexes where the intermolecular dispersion interactions
are dominant. Here the MP2 method does not give reliable
estimates of the interaction energy because of large overes-
timations of the dispersion interaction component contained
in the supermolecular MP2 energy. This stems from the fact
that the MP2 method accounts for dispersion interactions
only on an uncoupled Hartree-Fock level, and this can
typically lead to errors of 15% and more in this interaction
energy component. In the MP2C method the uncoupled
Hartree-Fock dispersion energy contribution is replaced by
the coupled dispersion energy calculated using the exchange-
only time-dependent density functional theory employing
local Hartree-Fock (LHF) orbitals and eigenvalues and the
exchange-only adiabatic local density approximation kernel
(ALDAx). It has been shown that this approach leads to
strong improvements over the MP2 method for the disper-
sion-dominated and mixed complexes of the S22 dimer set.
Root mean square errors of MP2 to the CCSD(T) interaction
energies are reduced from 1.86 to 0.36 kcal/mol for the
dispersion-dominated complexes and from 0.71 to 0.17 kcal/
mol for the mixed type complexes. Therefore, in contrast to
the supermolecular MP2 method, the MP2C approach yields
accurate and balanced estimates of the intermolecular
interaction energy for all diverse types of interactions.

While the S22 benchmark data set contains only complexes
in their equilibrium geometries, we have extended the testing
of the MP2C method on several cuts through the potential
energy surface of the benzene dimer and benzene · · ·pyrimidine
and benzene · · ·1,2,4,5-pentazine dimers. In all three cases
the MP2C curves do not only agree well with the CCSD(T)
reference curves in the region of the minimum of the
potential, but they also nicely reproduce the CCSD(T) curves
for repulsive and stretched dimer distances. Another chal-
lenging test presented here are the potential energy curves
corresponding to the transition of the benzene dimer from
“T”-shaped to sandwich arrangement and from the parallel-
displaced to the in-plane arrangement. CCSD(T) reference
curves are reproduced within ∼0.1 kcal/mol accuracy, despite
the fact that the character of interaction, especially for the
latter one, is changing from strong π-π to σ-σ dominated.
These examples strongly support the validity of the MP2C
approach even for the prediction of wide areas of potential
energy surfaces of noncovalent complexes with a good
accuracy.

A computer implementation of the correction term used
in the MP2C method is presented that scales only as N 4

with the system size and is therefore 1 order of magnitude
lower than that of conventional density-fitting MP2 imple-
mentations. As an example, the additional computational cost
over the standard supermolecular MP2 in the calculation of
one of the largest dimers studied in this work, namely the
adenine · · · thymine base pair, amounts to only ∼27% of the
total CPU time. Moreover, it was found that the basis set
dependence of the ∆MP2C correction is less dependent on

the basis set size than the total interaction energy (compare
Table 1 and Table 2) and therefore can be, if needed,
accurately approximated using smaller basis sets.
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Abstract: We study the Diels-Alder reaction between cyclopentadiene and acrolein in a model
room-temperature ionic liquid ([mmim][PF6]) as a solvent. The calculations have been performed
with the KS-DFT/3D-RISM-SCF theory, where the reactants and transition state (TS) have been
represented at a QM level, while the solvent is represented by a 3D distribution of classical
(charge + LJ) sites obtained by solving the 3D-RISM integral equation. We show that this method,
being computationally efficient, is able to reproduce the main experimental features displayed
by the experiments, concerning the reaction rate enhancement and augmentation of the endo/
exo ratio in ionic liquids (ILs). We find that the IL distorts noticeably the transition state geometry,
inverting the order of the frontier orbitals and leading to an enhancement of the asynchronicity
of the reaction. Finally, we find, in agreement with recent work, that formation of the hydrogen
bond between the unique C2 hydrogen of the imidazolium ring is not essential to explain the
peculiar features of these reactions in ILs.

Introduction

Ionic liquids (ILs) are salts generally constituted by a bulky
organic cation and a polyatomic anion, liquid at or near room
temperature, whose popularity has expanded dramatically in
the last 10 years due to their recognition as new green
chemicals with unique and highly tunable physicochemical
properties.1 They are now being explored in virtually all areas
of chemistry as process chemicals (solvents, separation
media, etc.), performance chemicals (lubrificants, electrolytes,
etc.), and materials. Studies of organic reactions and cata-
lyzed processes performed in ILs suggest that for many
reactions ILs give improved results in terms of yields,
selectivity, and rate. Constituted exclusively by ions, ILs
represent a reaction environment completely different from
molecular solvents.2 The strong ion-ion interactions present
in ILs lead to highly structured materials, three-dimensional
supermolecular polymeric networks of anions and cations
linked by H bonds and/or Coulombic interactions, often
permeated by nonpolar regions due to the presence of
sufficiently long alkyl chains on cation.3 Like many other
organized systems, the ILs environment can display not only

dynamic but also local heterogeneity; molecules are trapped
for a relatively long period in a quasistatic local solvent
cage.4 However, despite this complexity, reactivity and
selectivity in ILs are generally explained considering the
ability of the constituting cations and anions to act as
hydrogen-bond donors/acceptors and the degree of charge
delocalization in the anion.5,6 In other words, they are
normally rationalized on the basis of microscopic properties
of these media, neglecting the solvent effects that can arise
from the bulk and its supermolecular organization.

Generally, solvent effects on chemical reactions may be
considered at the theoretical level; however, whereas for
molecular solvents a continuum method7 can be used with
good results, the nature of ILs requires the definition of a
more appropriate computational model. Recently, we have
shown the possibility to adopt the KS-DFT/3D-RISM-KH
method to study the solvation ability of ILs.8 The method
predicts the IL properties in remarkable agreement with
conclusions drawn from MD simulations: the three-dimen-
sional solvation structure is reproduced well, and the solvent
environment effect of the constituents of the IL is described
correctly.* Corresponding author e-mail: marco@dcci.unipi.it.
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The study described herein aims to apply this approach
to the treatment of organic reactions in ILs. In particular,
we report here data on the Diels-Alder reaction of cyclo-
pentadiene with acrolein in dimethylimidazolium hexafluo-
rophosphate, [mmim][PF6].

Diels-Alder reaction has been widely investigated also
in ILs.9 Recently, in collaboration with the group of Welton,
we evidenced10 that the stereochemical and kinetic behavior
of reaction of cyclopentadiene with three different dieno-
philes (including acrolein) in ILs is a function of both the
solvent and the solute. Using multiparameter linear solvation
energy relationships, the primary role of the solvent hydrogen-
bond donation ability (R) has been evidenced in the reactions
of acrolein and methyl acrylate but not of acrylonitrile. An
attempt to study the same reaction at the DFT level using a
supermolecular approach, i.e., considering a three molecule
system constituted by diene, dienophile, and IL cation, has
shown11 that the IL cation coordination affects the equilib-
rium geometries and electronic structures of the reacting
species throughout the reaction pathway, leading to changes
in reactivity and selectivity. On the other hand, this approach
did not allow the evaluation of more concerted interactions.
The “clamp” effect, arising from the ability of the cation to
interact with the dienophile and from the fact that in the IL
the freedom of motion of the cation is strongly limited by
the Coulombic interactions with the solvent bulk, could be
only hypothesized using this approach.11

In the present work, we focused on understanding the role
of the electronic and solvation energies on the catalytic and
selectivity effects displayed by ionic liquids in Diels-Alder
reactions by a multicomponent QM/classical method relying
on 3D-RISM/SCF theory developed12 in recent years and
recently applied by some of us to ionic liquids.8

It is however noteworthy that during the writing of this
paper a communication on the Diels-Alder reaction of
cyclopentadiene with methyl acrylate in dimethylimidazolium
chloride, [mmim]Cl, using the multicomponent reference
interaction site model (RISM) has been published.13 There-
fore, results obtained adopting KS-DFT/3D-RISM-KH will
be discussed in light of the experimental results taking into
account the recently published data.

Computational Method

In this study, we chose 1,3-dimethylimidazolium hexafluo-
rophosphide ([mmim][PF6]), which we consider a reasonable
approximation to 1-butyl-3-methylimidazolium hexafluoro-
phosphide ([bmim][PF6]), one of the most popular ILs on
which experimental results for Diels-Alder reactions are
available.10

The KS-DFT/3D-RISM-SCF procedure has been described
in detail in previous work; here, we summarize only the main
outline of the procedure.

The presence of the solvent is accounted for by a 3D
distribution of solvent sites (described as rigid molecules)
around the solute molecule, which is obtained12 by the
standard 3D-RISM integral equation ([3D-RISM]); the solute
is described by its electron density distribution in space plus
the nuclei charge (which describe the Coulomb interaction),
while the dispersion interaction is described by Lennard-

Jones sites centered on each nucleus. The electronic structure
of the solute (reagents, TS, products) and the 3D solvent
structure are then obtained self-consistently.

The KS-DFT/3D-RISM-SCF were performed on a grid
of 32 × 32 × 32 points spaced by 0.5 Å. The RISM
equations were solved together with the partially linearized
hypernetted chain (PLHNC) closure, which has been shown
to give the most reliable results for ionic liquids.14

The geometries of the reactants, transition states, and
products were optimized both in the gas phase and in the
solvent at the DFT level with the TZ2P basis set and the
OLYP XC functional. The vibrational frequencies were
calculated on each final geometry at the same level. Since
in the Diels-Alder reaction the π-π interaction plays a
crucial role, the final electronic energy changes on optimized
structures were calculated with the M06-2X functional,
which is to date most accurate in predicting the π-π
dispersion interaction.15

The frequency calculations in the IL solvent gave some
spurious imaginary frequencies at very low wavenumbers
in addition to the imaginary frequency relative to the reaction
coordinate; this effect has been ascribed to the presence of
the solvent, whose 3D distribution remains frozen during the
frequency run. To evaluate the thermal contribution, the
frequencies were then recalculated on the TS geometries fully
optimized in IL but in a subsequent run without the solvent.

The correct finding of transition states and of the reaction
coordinate was confirmed by performing an IRC run on each
TS16 in order to verify that the actual products (in the forward
direction) and reagents (in the backward direction) were
obtained.

All computations were performed with a development
version of the ADF code.17

Results and Discussion

We start our analysis by examining the different reactions
that can take place in both the gas phase and IL solution. In
Table 1 the relative activation free energies ∆G‡ are reported
for transition state (TS) barriers.

The first thing that we note is that the reaction pathways
to be considered change when switching from the gas phase
to the IL solvent. The dienophile can be found in two
different conformations, which are usually referred to as “cis”
or “trans” according to the position that the double bonds
can take with respect to the single C-C bond. Furthermore,
dienophile can interact with cyclopentadiene following the
endo or exo approach to give the corresponding adducts;

Table 1. Free Energy of the Reagents (in kcal/mol) in the
Gas Phase (gas) and in the Ionic Liquids Solution (IL)
Together with Electronic (∆Eel), Solvation (µ), and Thermal
Correction (kinetic contribution + zero-point energy)

∆Eel ∆Gtherm ∆µ ∆Gtotal

cis-acrolein (gas) -1618.40 12.45 -1605.95
trans-acrolein (gas) -1627.95 13.08 -1614.87
cyclopentadiene (gas) -2207.97 32.00 -2175.97
cis-acrolein (IL) -1626.91 13.36 22.63 -1590.92
trans-acrolein (IL) -1627.38 13.14 24.38 -1589.86
cyclopentadiene (IL) -2207.33 31.82 25.51 -2150.00
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therefore, four possible structures for the TSs (endocis(N-C),
endotrans(N-T), exocis(X-C), and exotrans(X-T)) must
be considered.

In the void, the dienophile can be found only as a trans
conformer due to the large energy difference (∆G ) 8.92
kcal/mol, see Table 1) between the two isomers; thus, the
reaction in the gas phase can take place only through the
exotrans and endotrans TSs. This is the first difference with
the work by Sato and co-workers,13 where only the cis
structure was considered due to their lower TS energies. In
solution (see Table 1) both conformers are present, with a
cis:trans ratio of about 75:25; in addition, the reaction free
energy barrier height is lower (about 2 kcal/mol, see Table
2) for the endocis TS with respect to both TSs with the trans
isomer. Thus, the cis route is actually the more important
pathway to products, but the presence of the trans isomer in
solution is not negligible.

The presence of the ionic liquid solvent implies changes
at an electronic and a structural level on the transition state;
on the other side, the thermal contribution to free energy
was found to change negligibly (at most by 0.2 kcal/mol)
when passing from the optimized structure in the gas phase
to the optimized structure in the IL. To such effects, the
solvation free energy contribution ∆µ must be added to
understand the effect of the solvent on the reaction.

Interaction with the Solvent. The interaction of the
transition state with the solvent can be analyzed on the basis

of the 3D distribution functions of the anion and cation
around the transition state, presented in Figures 1-3. The
cation density around the transition states has its peaks
mainly at the carbonyl oxygen and in two regions above and
below the TS, parallel to the diene and the dienophile planes.
Thus, the interaction is driven by oxygen-hydrogen cou-
pling, but also stacking interactions between the TS and the
cation can be detected. The anion is located on the imaginary
plane which is about perpendicular to the reaction coordinate,
less close than the cation to the TS. It appears then that the
first solvation shell of the TS could be described by three
cations (one coordinated with the carbonyl and two stacked
above and below the TS) and three anions.

This can be confirmed by inspection of the 1D averaged
pair distribution functions (Figure 2), where the TS-cation
has two peaks at short distance: the first is given by the cation
directly interacting with the carbonyl while the second by

Table 2. Activation Free Energy ∆Gq (in kcal/mol) in the
Gas Phase (gas) and in the Ionic Liquids solution (IL)
Together with Electronic (∆Eel), Solvation (µ), and Thermal
Correction (kinetic contribution + zero-point energy)
Contributions, and Numerical Value of the Imaginary
Frequency of the Normal Mode Corresponding to the
Reaction Coordinate

∆Eel ∆µ ∆Gtherm ω(cm-1) ∆Gq

X-T(gas) 12.86 19.29 378.20 32.15
N-T(gas) 12.29 19.05 376.40 31.84
X-T(IL) 16.73 -10.05 19.82 359.78 26.50
N-T(IL) 15.88 -10.15 19.70 358.98 25.43
X-C(IL) 12.38 -6.47 19.48 338.57 25.39
N-C(IL) 10.74 -6.69 19.31 339.22 23.36

Figure 1. 3D distribution function of the anion (yellow) and
cation (N site, light blue) around the transition state optimized
in the IL solvent.

Figure 2. Radial distribution function of cation sites with
respect to the distance r from the transition state geometric
center.

Figure 3. Radial distribution function of cation sites as a
function of distance r with respect to the carbonyl oxygen of
the TS.
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the stacked ones. It is noteworthy that the interaction of the
carbonyl oxygen is stronger with the methyl groups and the
twin CW sites than with the single CR group; thus, in
agreement with precedent findings by Jorgensen,18 this
suggests that the hydrogen bond with the single hydrogen
posed on CR is not a key factor and that interactions with
other hydrogen sites are more important in driving the
reaction.

Structural Level. The ionic liquid changes the geometry
of the TS for all four pathways considered, deforming the
diene-dienophile stacking geometry and enhancing the
asynchronicity of the reaction when performed in these
solvents. This aspect has been evidenced in previous
theoretical studies19 in which a single cation was allowed to
interact with the TS, forming a hydrogen bond with the
carbonyl oxygen; this aspect was not considered in the work
of Sato,13 where the geometries considered were those
obtained in the gas phase. Also, the subsequent reduction of
the imaginary frequency for the solvated TS when compared
to the gas phase one, found in previous studies,14 has been
reproduced by us without the need for a specific quantum-
mechanical interaction between the IL cation and the
substrate. Then, even if it appears consolidated that the
asynchronicity of the reaction is enhanced in ILs, it appears
from our calculations that this aspect is not necessarily related
to the presence of strong hydrogen bonding between the
unique ring hydrogen and the dienophile (this aspect was
first suggested by Acevedo and Jorgensen18).

Electronic Level. The presence of the ionic liquid raises
the electronic energy of the TS by about 2-5 kcal/mol; this
rise is accompanied by a switching of the order of the two
frontier orbitals HOMO and HOMO-1. The combined effect
of geometry distortion and electronic modification of the TSs
leads to a large modification of the dipole moment of the
TS, passing from 4.11 to 6.09 D for the exocis form and
from 4.24 to 5.97 D for the endotrans form. The energy of
these levels is slightly lower in the endo-TS with respect to
the exo-TS; nevertheless, the electronic energy of the endocis
transition state is lower than the exocis by 1.64 kcal/mol
(see Table 2). This will play a key role in selectivity, as will
be shown in the following discussion.

Solvation Free Energy. The most important effect on
the reaction rate is given by the solvation free energy. The
difference in ∆µ between the isolated reagents and the
transition state amounts to 8-10 kcal/mol, giving a sub-
stantial contribution to the barrier lowering in ILs, very
similar to what happens in water.20 This conclusion, already
evidenced in the very recent paper by Sato and co-workers,13

can be further investigated by inspecting the contribution of
electronic and solvation contributions to free energy, which
are reported in Figure 4; here, it can be appreciated that there
is a minimum in solvation energy in correspondence of the
TS geometry. The presence of a generalized solvophobic
effect on neutral solutes in ILs with features very similar to
that of water has been recently pointed out;21 at present, it
is believed that the (generally positive) solvation free energy
of a neutral solute in a ionic liquid is dominated by the
unfavorable process of creating a cavity of suitable size to
accommodate the solute, which for an ionic liquid requires

a considerable amount of work due to the lowering of the
Coulombic interactions, which cannot be recovered by
dipole-ion (or even less efficient) interaction.22

For this reason, the aggregation of the organic moieties
in ILs is strongly favorable, and this aspect drives the reaction
rate in ionic liquids. A more detailed discussion of this aspect
will be presented in the following discussion.

Endo/Exo Ratio. The endo/exo ratio has been studied and
found, on the basis of M06-2X results, to be consistent with
experiments and previous calculations; the difference in
energy between the endocis-TS and the exocis-TS is found
to be 2.03 kcal/mol, while the one between endotrans and
the exotrans is 1.07 kcal/mol. Taking into account the relative
equilibrium amount of cis- and trans-acrolein, an endo/exo
ratio of 88:12 was found, while the corresponding ratio in
the void was found to be about 70:30. The ionic liquid thus
enhances the endo selectivity of the reaction, in agreement
with experiments.10 By inspection of Table 2, it can be
readily seen that the origin of this enhancement is due to
the electronic contribution to the free energy, which is lower
in the endocis structure; conversely, the excess solvation free
energy, which enhances the importance of the trans reaction
route, appears to play a negligible role on the selectivity rise.
This appears to go in the opposite direction with respect to
water, in which the endo selectivity enhancement was found
to be due to excess free energy of solvation, as already
shown;13 nevertheless, the electronic origin of the enhanced
selectivity was not investigated in detail.

This favorable electronic reorganization energy in the endo
TS conformer has been suggested by some of us to be due
to the relative orientation of the π system of the diene with
respect to the activated dienophile.11 To confirm this, the
obtained structures have been analyzed by taking into account
the energies obtained at the OLYP level, which is not as
good as M06-2X, to take into account the π-π interaction.15

At the OLYP level, the obtained endo/exo ratio was 1.40 in
the IL, while in the void the exo product was slightly more
probable than the endo product.

The ionic liquid can be probably thought to enhance the
π-π dispersion interaction between the reactants: from
comparison of the two different functionals, it is nevertheless

Figure 4. Contribution of electronic energy (black circles) and
solvation energy (red squares) to reaction free energy (green
triangles) as a function of reaction coordinate. The thermal
and zero-point correction to free energy are not reported here.
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evident that a proper description of π-π interaction is
mandatory to obtain reliable results about the endo selectivity.

Conclusions

In this work, we applied KS-DFT/3D-RISM-SCF to the
Diels-Alder reaction in room-temperature ionic liquids. This
method is able to obtain results in general agreement with
experiment and proposes itself as a very powerful analysis
method for processes in ionic liquids. Our results are in
general agreement with results displayed by Sato and co-
workers, which for the first time applied a mixed QM/RISM
approach to this reaction in a ionic liquid. We go further on
the direction pointed by this last work by analyzing the effect
of the IL on the electronic and geometric structure of adducts.

The structure of the TS is deformed by the presence of
the IL, and the asynchronicity of the reaction is augmented;
the frequency of the barrier passing is nevertheless slightly
lowered in ILs.

The importance of the hydrogen bonding between unique
CR and carbonyl oxygen has been revised and found to be
not of capital importance for the reaction. Both aspects were
already noticed by Jorgensen with much more sophisticated
calculations.

The rate acceleration observed in ILs is given by the free
energy of solvation, which promotes aggregation of nonionic
molecules in ILs solutions. On the other side, the endo
selectivity enhancement in ILs is driven by electronic energy,
which comes probably from the most favorable π-π
interaction between the reactants, which is enhanced in IL.
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Abstract: Deamidation of asparagine residues represents one of the main routes for the post-
translational modification of protein sequences. We computed the estimates of the free energy
barriers for three stages of the deamidation process, deprotonation, cyclization, and deamination,
of the conversion of asparagine to the succinimide intermediate within the fully solvated model
with explicit water molecules. The Born-Oppenheimer molecular dynamics in the Gaussian
and Plane Wave (GPW) approximation as implemented in the CP2K quantum chemistry package
was utilized to sample the configurational space. By applying the metadynamics technique, the
estimates of the free energy barriers were obtained for three separated stages of the reaction.
In agreement with the experimental kinetic measurements, the estimated activation barriers do
not exceed 21 kcal/mol. We demonstrate that the use of fully solvated models is the critical
issue in theoretical studies of these reactions. We also conclude that more extensive sampling
is necessary to obtain full free energy profiles and accurate barriers for the reaction stages.

Introduction

Spontaneous deamidation of asparagine residues leading to
aspartic acid residues presents one of the pathways of protein
degradation that affects structure and function of proteins.1

The immense importance of this process is due to its
relevance to the development of Alzheimer’s disease.2 The
instability of glutaminyl and asparaginyl residues in proteins
has been suggested to play a central biological role, and it
is proposed that these residues serve as some sort of
biological “clocks” for the regulation of processes in cells.3

It was also proposed that accumulation of protein defects
resulting from these processes may be one of the root causes
of human aging.4 The isomerization and racemization
processes are known to play an important role not only in
vivo but also during purification, storage and, transformation
of proteins and polypeptides.5

The process of isomerization proceeds through formation
of a cyclic imide intermediate.1,6 This succinimide can be
later hydrolyzed leading to aspartate and isoaspartate in the
proportion 1:3.7 A competent summary of what is known
about the asparagine deamidation mechanism from the
experimental side is presented in the paper of Peters and
Trout,8 and there is no need to retell it in full. For the goals
of the present work, it is essential to underline the following:
(i) the deamidation mechanism in a protein is the same as
in a model peptide;9 (ii) the conversion of asparagine to
succinimide is the rate limiting step;10 (iii) the rates of
deamidation of model peptides obey the Arrhenius equations
with the activation energies near 22 kcal/mol at pH 5-7.5.11

The tentative mechanism of succinimide ring formation
proposed by Capasso et al.12 can be illustrated in Scheme 1.
In the first stage, the deprotonation of a peptide group occurs
which may be stimulated either by basic pH or by presence
of a nearby molecular group that plays the role of a base.
Therefore, such a reaction route can be substantiated in
proteins. Next, the cyclization to the tetrahedral intermediate
takes place as a result of nucleophilic attack of nitrogen from
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the peptide group on the carbonyl C atom. Finally, leaving
of the NH2 group occurs (the deamination stage) resulting
in a cyclic imide product. This stage may be facilitated by
general base catalysis.

Beyond experimental investigations, the asparagine isomer-
ization was also studied by the methods of quantum
chemistry. The reaction mechanisms for the molecular
rearrangements shown in Scheme 1 were modeled by using
density functional theory (DFT) calculations corrected by
the polarized continuum model (PCM).13-15 The results
qualitatively agree with the mechanism proposed by Capasso
et al.12 Related theoretical studies16,17 have been performed
to rationalize the observation that aspartyl and asparagine
residues racemize rapidly compared to other amino acid
residues in proteins and peptides. This effect has been
attributed to the increased acidity of the R-carbon atoms of
succinimide residues. In a series of papers by Catak et
al.,18-20 it is shown that inclusion of an explicit aqueous
environment in modeling these reactions is a very important
issue. With the help of DFT-based calculations, the authors
studied the water-assisted mechanisms of succinimide forma-
tion with different amounts of explicit water molecules. They
concluded that the most favorable reaction mechanism
corresponded to the formation of a succinimide intermediate
and involved tautomerization of the asparagine amide to the
corresponding imidic acid in the initial reaction step. Peters
and Trout8 simulated a network of elementary reactions for
asparagine deamidation also by using the DFT-based quan-
tum chemistry methods corrected for the effects of aqueous
environment in the continuum solvent model.

Significantly, all the quantum chemical calcula-
tions8,13-15,18-20 resulted in activation barriers that grossly
overestimated, by at least 10 kcal/mol, the experimental
value of 22 kcal/mol.11 Substantial lowering of energy
barriers from around 50 kcal/mol was achieved when
explicit water molecules were added to the model system.
It was suggested18 that molecular dynamics simulations
within the fully solvated model that also accounts for water
assistance should be necessary to accurately simulate these
processes. In this work, we describe the application of a
quantum molecular dynamics procedure within the fully
solvated model for estimates of free energy reaction

profiles for the stages illustrated in Scheme 1. This
approach allows us to obtain the results for the water-
assisted mechanism quantitatively consistent with the
experimental data. As a model system, we consider the
peptide shown in Scheme 1, which was also used in earlier
works.13-15

Methods and Computational Details

All simulations were performed by using the CP2K program
(http://cp2k.berlios.de). The Quickstep module21 of the CP2K
program was utilized for electronic structure calculations.
This approach provides the O(n) implementation of the
density functional theory calculations allowing simulations
for hundreds of atoms. It relies on the pseudopotential and
plane wave methodology in addition to the conventional
Gaussian basis set approximations (the Gaussian and Plane
Wave method, GPW)22 to make practical calculations for
extended systems.

The method of metadynamics23,24 was used to obtain free
energy profiles for the reaction stages. At present, the
available computational resources do not allow observation
of such rare events as chemical reactions in model systems
by using equilibrium methods of molecular dynamics due
to the prohibitively large volume of the configurational space
to be explored. The method of metadynamics is one of
nonequilibrium-based approaches that allows one to perform
simulation of chemical reactions in feasible time.25 This
method was recently used for studies of bacterial chloride
channels,26 deprotonation of formic acid,27 flexible ligand
docking,28 and a study of decarboxylation mechanism in
orotidine-5′-monophosphate decarboxylase.29

The method of metadynamics assumes that a small set si(n)
of relevant collective variables (CVs) can be selected
allowing one to construct projections of the free energy
surface F(s) on these collective variables. The CVs may be
specific functions of atomic coordinates including distances,
angles, coordination numbers, dihedral angles, and so forth.
The history-dependent Gaussian hills are added to the biasing
potential during the simulation (eq 1). This potential builds
up until it counterbalances the underlying free energy well,
allowing the system to escape via a saddle point to a nearby
local minimum, where the procedure is repeated. When all
minima are “filled” with Gaussian potential hills, the system
moves barrier-free among the different states. The free energy
is obtained as a negative sum of added Gaussian hills
(eq 2).30

In the limit of the infinitely long trajectory, the biasing
potential exactly cancels the underlying free energy surface
along the collective variable.

Our model system was composed of 333 atoms including
the peptide and 104 water molecules. The periodic boundary
conditions were imposed to simulate the bulk. The dimen-
sions of the model cell were 15 × 15 × 15 Å3 (Figure 1).

Scheme 1. Stages of the Succinimide Ring Formation from
Asparagine

Vbias(s, t) ) ∑
ti

H exp(- |s - s(ti)|
2

2ω2 ) (1)

F(s) ) -Vbias(s, t) (2)
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We used the largest possible cell that allowed us to complete
simulations in feasible time. However, the size of this cell
does not allow us to pretend for description of such
macroscopic properties as pH or concentration.

A dual basis set was used in which the wave functions
were described by the Gaussian functions and the electronic
density was described by auxiliary plane waves. The TZV2P
Gaussian basis set31,32 was used in all GPW calculations.
The plane wave basis was extended to the density cutoff of
280 Ry. We utilized the pseudopotential of Goedeker, Teter,
and Hutter (GTH)33 to describe the core electrons. The BLYP
gradient corrected functional was used to compute exchange-
correlation contributions.34,35 To sample the configurational
space, we used the Born-Oppenheimer molecular dynamics
in which the convergence criterion for the SCF procedure
was set to 10-7 au at each step. An orbital transformation
scheme36 that is known to substantially accelerate conver-
gence of the SCF procedure was used. The time step of 0.5
fs was utilized in all molecular dynamic calculations. The
CSVR (canonical sampling through velocity rescaling)37

scheme was applied for thermolization of the system. All
simulations were performed at 300 K. The metadynamics
parameters chosen were 0.001 au for the hill height and 0.5
au for the hill width. The mass of virtual particle in
metadynamics simulations was selected to be 100 au.

The initial equilibration of the entire system was performed
by using the empirical CHARMM force field.38 After
solvation and energy minimization, the system was equili-
brated for 500 ps. Next, the equilibration with fully quantum
description was performed for additional 20 ps. For modeling
of the second and the third stages of the reaction (Scheme
1), the initial conformations and velocities were extracted
from the metadynamics simulation of previous stage with
preliminary equilibration for another 10 ps. The trajectory
lengths for metadynamics simulations were 25-30 ps.

Results and Discussion

In our molecular dynamics simulations, we use the Gaussian
and Plane Wave method to describe the electronic structure

of the model system. Here, we provide an additional check
of this approach against the conventional all-electron density
functional theory with the B3LYP functional. The latter
approach, known as an adequate tool for molecular modeling,
was used in previous studies of this reaction.8,13-15,18-20 The
6-311++G(d,p) basis set was used in all DFT/B3LYP
calculations with the PC GAMESS quantum chemis-
try package (http://classic.chem.msu.su/gran/gamess/index.
html).39 We compared the computed equilibrium geometry
configurations and relative energies for the stationary points
of the model peptide referred to the reagent, transition state,
intermediate, and product structures shown in insets of Table
1. These calculations were performed without water
environment.

The comparison of optimized geometries shows almost
perfect agreement between the Gaussian and Plane Wave
based method on one hand and the all-electron B3LYP
approach on the other hand: the deviation between the
structures obtained with these two methods does not exceed
0.1 Å for internuclear distances and 2° for angles. Compari-
son of the relative energies shows that the GPW method
describes the potential energy surface of the model system
accurately enough (Table 1) but requires much less compu-
tational resources.

Next, we describe and discuss the resulting free energy
profiles for the three stages of the mechanism of succin-
imide formation shown in Scheme 1: deprotonation,
cyclization, and deamination, inside the shell of water
molecules (Figure 1).

Deprotonation Stage. For modeling this stage, we select
the distance between N and H atoms, describing cleavage
of the N-H bond from the initial value of 1.08 Å, as the
collective variable. The computed free energy profile along
this collective variable for the deprotonation stage is
presented in Figure 2 showing the activation barrier not
exceeding 21 kcal/mol.

Initially, the system is located in the potential energy
minimum near rN-H ≈ 1 Å. As soon as this minimum is
filled with Gaussians, the N-H bond breaks, and the proton
moves to the bulk phase. We notice that, upon cleavage of
the N-H bond, the zwitterionic species is formed. We also
notice that the leaving proton is transferred to the nearby
water molecule but not directly to the amino group. The result
of the subsequent hydrogen-bond reorganization is a transfer
of another proton to the amino group leading to the
zwitterionic conformation. We see that the proton that
protonates the -NH2 group is not physically the proton from
the collective variable so we cannot reliably sample the
corresponding conformations. An important issue is that the
zwitterionic species is stable only in the presence of solvent
water molecules. Attempts to optimize the corresponding
structure without a water environment resulted in the back
transfer of the proton to the nitrogen atom.

The outer minimum refers to the system in which the
proton from the collective variable is in the bulk. Because
of the difficulties to sample the corresponding conforma-
tions, it is hardly possible to accurately estimate the free
energy of this product state. The shape and depth of the
outer minimum should depend on concentration and the

Figure 1. Schematic presentation of the model system.
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size of the cell. However, this does not affect estimates
of the activation barrier heights. We think that the presence
of the minimum near rN-H ≈ 2.5 Å might also be attributed
to the difficulties of sampling the region with the proton
in the bulk.

In Figure 3, the CV dynamics graph is shown. From this
picture, it is clear that the backward reaction is not observed
because the process is not reversible. From this fact, we
conclude that the negative metadynamics biasing potential
gives us only an estimate of the reaction barrier. On the basis

of the observed bumps in free energy profile, we conclude
that the error should be within 5 kcal/mol. To obtain a full
free energy profile and a more accurate value for the barrier,
one needs to conduct a much longer simulation. However,
it is unclear whether it is possible to see the backward
reaction in a feasible time during the simulation.

Cyclization Stage. Next, we modeled the cyclization
stage corresponding to the formation of the succinimide
ring. It results from the attack of the peptide bond nitrogen
on the carbon from the amide group. For this stage, we

Table 1. Computed Relative Energies of Four Structures of the Model Peptide (kcal/mol)

Figure 2. Free energy profile for the deprotonation stage.
Collective variable is marked with the green line and
squares. Figure 3. Dynamics of the N-H distance.
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used the distance between N and C as the collective
variable. The resulting free energy profile is shown in
Figure 4. The calculated free energy barrier is about 20
kcal/mol. Initially, the system resided in a rather wide
energy well (between 3.2 and 4.8 Å) that was accounted
for by an unconstrained motion of the peptide chain. We
think that the small maximum near rN-C ≈ 3.7 Å can be
attributed to the insufficient sampling. When this well is
“filled” with Gaussian functions, the system moved to
another local minimum at rN-C ≈ 1.5 Å, and the chemical
bond was formed between N and C atoms yielding the
succinimide ring.

We notice that the excess proton from the amino group
was transferred to the newly formed negatively charged
oxygen leading to hydroxyl formation accompanied by
the hydrogen bonding with the nearby amino group. In
Figure 5, we show the dynamics of the C-N, N-H, and
O-H distances. From the graph, it is clear that, as soon
as the ring is formed (about 7 ps), the proton is transferred
to the oxygen (it is worth noting similarities in the
behavior of the C-N and O-H distances). But after the
system recrosses the barrier and the ring is broken, we
observe the back transfer of the proton.

Deamination Stage. Finally, the free energy profile for
the deamination process was calculated. The collective
variable chosen for this stage was the distance between the
nitrogen atom from the leaving amino group and the adjacent
carbon atom (the C-N bond distance). The resulting free

energy profile is shown in Figure 6. The computed free
energy barrier for this stage is about 15 kcal/mol. The profile
shows that this stage is characterized by the lowest free
energy barrier that suggests that the deamination stage should
proceed relatively easily compared to the first two stages.
From the metadynamics trajectory, we see that the state of
the living group is NH3. The leaving -NH2 group of the
peptide is protonated by the excess proton formed in the
deprotonation stage.

The peak in the profile near 4 Å on the CV axis may be
attributed to insufficient sampling in the regions where the
formed ammonia is far from the newly formed succinimide.
As in the case with the deprotonation stage, it is difficult to
sample the region of the outer minimum, and its shape should
depend on concentration and the size of the cell.

In Figure 7, the dynamics of the C-N collective variable
is shown. As in the case of deprotonation reaction, we are
unable to see the recrossing of the barrier because the process
is not reversible so the negative metadynamics biasing
potential gives us only an estimate of the activation barrier
for the given process.

Conclusion

Following the results of quantum simulations for separate
stages of the mechanism of the cyclic imide formation from
the asparagine residue in aqueous solution with an explicit
treatment of water molecules, we conclude that the rate
limiting stage refers either to deprotonation or to cyclization.

Figure 4. Free energy profile for the cyclization stage.
Collective variable is marked with the green line and squares.

Figure 5. Dynamics of the C-N, N-H, and O-H distances.

Figure 6. Free energy profile for the deamination stage.
Collective variable is marked with the green line and squares.

Figure 7. Dynamics of the C-N distance.
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The corresponding free energy barriers of these steps are
estimated as 20-21 kcal/mol. The estimated free energy
barrier for the deamination stage is 15 kcal/mol. Based on
the observed bumps in free energy profiles, the error of
obtained free energy barriers should be about 5 kcal/mol.
We conclude that longer trajectories and better sampling are
necessary to obtain full free energy profiles and more
accurate barriers for the reaction stages. However, it is
unclear whether it is possible to observe a backward reaction
for stages 1 and 3 in feasible simulation time. Nevertheless,
our estimates for the free energy barriers are consistent with
the available experimental kinetic measurements showing the
Arrhenius activation barrier of about 22 kcal/mol.11

If solvent molecules are ignored, the unrealistic energy
barriers (above 50 kcal/mol) are predicted in quantum
calculations. We show that one of the reaction intermediates
can be stabilized only in the presence of water molecules.
Therefore, the results of simulations demonstrate that the use
of fully solvated models and implication of extensive
sampling are the critical issues in theoretical studies of these
reactions.
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Abstract: An electrostatic model based on charge density is proposed as a model for future
force fields. The model is composed of a nucleus and a single Slater-type contracted Gaussian
multipole charge density on each atom. The Gaussian multipoles are fit to the electrostatic
potential calculated at the B3LYP/6-31G* and HF/aug-cc-pVTZ levels of theory and tested by
comparing electrostatic dimer energies, intermolecular density overlap integrals, and permanent
molecular multipole moments with their respective ab initio values. For the case of water, the
atomic Gaussian multipole moments Qlm are shown to be a smooth function of internal geometry
(bond length and angle), which can be approximated by a truncated linear Taylor series. In
addition, results are given when the Gaussian multipole charge density is applied to a model
for exchange-repulsion energy based on the intermolecular density overlap.

1. Introduction

Force fields are routinely used to simulate biological
molecules in order to study structure and function. Recently,
attention has been focused on developing accurate force field
models that are able to provide a more realistic account of
intermolecular interactions. For example, polarization
models1-6 have been incorporated into force fields7-16 in
order to account for many-body effects17-20 in polar
environments. In the SIBFA10-12 force field, multipoles are
placed on atoms and bond barycenters in order to accurately
account for the anisotropy in electrostatic interactions.
AMOEBA13-16 places multipoles on atoms and has been
developed as a force field for protein simulations. In addition,
electrostatic models, which employ geometry-dependent
charges, are being investigated.21-24

Atomic point multipole models derived from distributed
multipole expansions25-28 or fit to the electrostatic potential29

(ESP) have been proposed to improve the description of
electrostatic interactions. However, at short-range, it has been
noted25,30,31 that atomic point multipole electrostatic models
significantly underestimate electrostatic interactions at dimer
distances. This effect, called penetration error, becomes
important at dimer distances where there is significant overlap
of molecular charge densities. Damping functions31-34 have
been proposed as a short-range correction to atomic point
multipoles in order to account for penetration effects.

Another approach for calculating short-range electrostatic
interactions has been to model the electron density. For
example, simple Gaussian charge densities35-37 have been
used in models for liquids. Wheatley38,39 has studied
Cartesian Gaussian multipole charge distributions,40,41 which
are obtained by differentiating simple normalized Gaussian
functions. It was shown that at long-range, the interactions
between Gaussian multipole charge densities behave asymp-
totically as point multipoles.38 As an example, consider a
Cartesian Gaussian dipole charge distribution Fµ with dipole
moment µb, exponent R, and nuclear center Rb given by
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Fµ( rb) ≡ µb·∇R(R2

π )3/2

exp(-R2| rb - Rb|2) (1)

where rb is the field point and ∇R is the Cartesian gradient
with respect to the nuclear center Rb. The electrostatic
potential φµ(rb) arising from Fµ is given by

φµ( rb) ) ∫ d3r′
Fµ( rb′)

| rb - rb′| ) µb·∇R
erf(R| rb - Rb|)

| rb - Rb|
(2)

where erf(x) is the error function defined by

erf(x) ≡ 2

√π
∫0

x
exp(-u2)du (3)

Note that for large x, erf(x) ≈ 1. Thus, for large exponents
or separations, the electrostatic potential arising from a
Gaussian dipole behaves as a point dipole, i.e.

φµ( rb) ≈ µb·∇R
1

| rb - Rb|
R| rb - Rb| > >1 (4)

Recently, Giese and York42 have derived the electrostatic
energy integral, the density overlap integral, and the gradients
of their matrix elements between contracted solid harmonic
Gaussian (multipole) charge densities in the spherical tensor
framework. In analogy to taking derivatives of simple
normalized Gaussian functions to create Cartesian Gaussian
multipoles, spherical tensor Gaussian multipoles can be
constructed by contracting spherical tensor multipole mo-
ments Qlm with the solid harmonic gradient operator43,44

Clm(∇) acting upon a simple Gaussian function. In the
Supporting Information, a summary of the mathematical
background43-47 used in this work, including definitions and
theorems for the solid harmonic function Clm(x, y, z) and
the solid harmonic gradient operator Clm(∇), is provided.

Methods of calculating the Gaussian charge density
parameters are also being explored. Previously, we have
proposed the Gaussian Electrostatic Model (GEM)10,48-51

as an electrostatic model based on Gaussian charge density.
The GEM density F(r) is represented by a linear expansion
of conventional auxiliary Gaussian basis sets. The density
coefficients are fit to the ab initio density FQM(r) through a
least-squares fit to the error in self-interaction electrostatic
energy52-56 ∆Eself given by

∆Eself ) 〈FQM(r) - F(r)|
1
r

|FQM(r) - F(r)〉 (5)

GEM has been shown to accurately reproduce intermo-
lecular electrostatic interaction energies at both short- and
long-range distances. In addition, it was also shown that a
GEM-type model can be constructed by fitting to the
electrostatic potential (ESP) numerically on a grid.57 When
fitting to ESP, it was found that fewer Gaussian basis
functions were needed to reproduce ab initio intermolecular
electrostatic energies as compared to fitting to the error in
self-interaction electrostatic energy ∆Eself. In that work, we
have also given some preliminary results for fitting a single
s-type Gaussian charge function on each atom to the ESP.
It was found that a simple model consisting of a single
negative Gaussian charge distribution and positive nucleus
on each atom is able to account for a large fraction of the
penetration error and that it represents a significant improve-

ment over atomic point charge models for short-range
electrostatic interactions.

In the present study, we propose a natural extension to
the single (uncontracted) s-type Gaussian charge model by
generalizing to a model based on a single diffuse contracted
Gaussian multipole charge density on each atom. The radial
partof theGaussianmultipolechargedensity isaSlater-type58,59

contracted Gaussian function fit to exp(-λr). For each atom,
the Gaussian multipole moments Qlm and a single Slater-
type exponent parameter λ are fit to the ESP surrounding
the molecule calculated at the B3LYP/6-31G* or HF/aug-
cc-pVTZ levels of theory. The model is tested by comparing
electrostatic dimer energies, intermolecular density overlap
integrals, and permanent molecular moments with their
reference ab initio values. In addition, a significantly
improved method of fitting the Gaussian multipoles to the
ESP numerically on a grid is adopted. In particular, angular
grids available in most quantum chemistry codes are used,
and a smooth weighting function, similar to the one proposed
by Hu60 et al., is used to filter out points near the nuclear
centers.

In this work, we will show that a single diffuse contracted
Gaussian multipole (shell) on each atom is capable of
reproducing ab initio intermolecular electrostatic energies and
density overlap integrals on hydrogen-bonded dimers at
equilibrium geometries. For intermolecular electrostatic
energies, the accuracy attained by Gaussian multipoles is
shown to be approximately 0.1 kcal/mol, which is compa-
rable to that of our original GEM model. Since the GEM
model is represented by an auxiliary Gaussian basis set
consisting of many uncontracted Gaussian shells (multipoles)
on each atom, the proposed single Gaussian multipole model
is expected to be an efficient model suitable for developing
a force field for molecular dynamics simulations. In addition,
since there are fewer fitted parameters used in Gaussian
multipoles, the fit is more stable. Based on this property,
the atomic Gaussian multipoles Qlm are shown to be a
continuous function of internal geometry (bond lengths and
angles, etc). More specifically, it is shown that the atomic
Gaussian multipole moments Qlm can be approximated as a
truncated linear Taylor series in both bond length and angle
for the case of water.

The intermolecular density overlap integral calculated by
Gaussian multipoles can be applied to the exchange-overlap
model proposed by Wheatley and Price61,62 for the ex-
change-repulsion energy. The first order intermolecular
exchange-repulsion energy Eexch is defined as the total ab
initio dimer energy minus the intermolecular electrostatic
energy calculated using the frozen monomer wave functions.
The ab initio exchange-repulsion energy Eexch can be
modeled by fitting a proportionality constant K to the
intermolecular density overlap integral S by

Eexch = KSa (6)

where a is an empirical exponent parameter used to improve
the quality of fit.62 The expression in eq 6 is commonly
generalized to a pairwise sum over atom-atom61,62 contribu-
tions between the two monomers. One of the challenges of
developing parameters and applying the exchange-overlap
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model is first finding an accurate and convenient representa-
tion of the molecular charge density. In a previous work,48,50

we have applied the exchange-overlap model in eq 6 to the
GEM molecular charge density. A molecular pair K param-
eter was fit to the ab initio exchange-repulsion energy for
the water-water dimer over several randomly oriented
water-water geometries. Although fitting molecular pair K
parameters over atomic pair parameters may not be ideal
for constructing a general force field, we are interested in
studying the effects of applying an anisotropic charge density
to the exchange-overlap model. In the present study, a single
molecular pair K parameter (eq 6) is fit to the ab initio
exchange energies using the intermolecular density overlap
integrals calculated by atomic Gaussian monopoles, dipoles,
and quadrupoles for small molecule hydrogen-bonded dimers.
Including anisotropy in the description of charge density is
shown to make a significant improvement in reproducing
ab initio exchange-repulsion energies.

In the following section, a Gaussian multipole charge
density is defined, and expressions for the electrostatic
potential, the electrostatic energy, and the density overlap
integral are given. Details on fitting Gaussian multipoles to
the electrostatic potential are provided along with a discus-
sion on how the model is tested with ab initio intermolecular
electrostatic energies, intermolecular density overlap inte-
grals, and permanent molecular multipole moments. This is
followed by a brief discussion on how the intermolecular
density overlap integrals calculated by Gaussian multipoles
are applied to the exchange-overlap model. In the next
section, results for Gaussian multipoles are presented. Inter-
molecular electrostatic energies, intermolecular density overlap
integrals, and permanent molecular multipole moments calcu-
lated by Gaussian multipoles are compared with their respective
ab initio values. The geometry dependence of atomic Gaussian
multipole moments Qlm is presented for the case of water.
Results are given when the Gaussian multipole intermolecular
density overlap integrals are applied to the exchange-overlap
model. Lastly, the results are summarized and future applications
are discussed in the Conclusion Section.

2. Methods

In this section, a definition of a contracted Gaussian multipole
charge density is given along with expressions for the
electrostatic potential, electrostatic energy, and density
overlap integrals. This is followed by a brief discussion of
Slater-type contracted Gaussian functions and a description
of how the Gaussian multipoles are fit to the ESP. In the
next subsection, computational details on the calculation of
ab initio electrostatic energies and intermolecular density
overlap integrals are discussed. The calculation of permanent
molecular multipole moments are described. This section
concludes with computational details of how the exchange-
overlap parameters are fit.

2.1. Gaussian Multipoles. The definition we have used
for a contracted Gaussian multipole charge density is similar
to the one given by Giese and York.42 In that work,42

expressions for efficiently calculating electrostatic and density
overlap matrix element integrals between real regular solid
harmonic contracted Gaussian functions are given along with

gradients of their matrix elements. In order to test the model
for Gaussian multipole charge density, we have implemented
similar expressions using complex solid harmonic Gaussian
(multipole) functions, which are given below. A derivation
of the following results along with a summary of necessary
mathematical background43-47 are given in the Supporting
Information for the interested readers. Many of the theorems
quoted in the Supporting Information have been used in the
evaluation of integrals between solid harmonic Gaussian
basis functions63-65 for quantum chemistry calculations.

In the Introduction, it was mentioned that a spherical tensor
Gaussian multipole charge distribution can be defined in
terms of multipole moments Qlm and of the solid harmonic
gradient operator Clm(∇) acting upon a normalized Gaussian
function. As shown in the Supporting Information, the solid
harmonic gradient operator is especially useful in deriving
integral quantities, such as electrostatic energies and density
overlap integrals. In the following discussion, the final results
for the electrostatic energy and the overlap integral between
two Gaussian multipole charge densities are given after all
derivative operations have been evaluated.

A contracted Gaussian multipole charge density F(rb,Rb) with
moments Qlm and nuclear center Rb evaluated at the point rb
is given by

F( rb, Rb) ≡ ∑
l)0

lmax

∑
|m|el

QlmClm* ( rb - Rb)

(2l - 1)!!
Fl(| rb - Rb| ;Rµ)

(7)

where lmax is the maximum order of the Gaussian multipoles
(e.g., lmax ) 0 for monopoles, 1 for dipoles, etc.), Clm* is the
complex conjugate of a solid harmonic function, and Fl is a
derivative of a contracted Gaussian charge density defined
by

Fl(r;Rµ) ≡ (-1
r

d
dr)l ∑

µ)1

NC

cµ(Rµ
2

π )3/2

exp(-Rµ
2r2) (8)

where Nc is the degree of contraction. For l ) 0, the density
F0 is normalized to unity, (∑µcµ ) 1). The multipole moments
of the charge density F(rb,Rb) with respect to the center Rb are
the coefficients Qlm, i.e.

∫ d3rF( rb, Rb)Clm( rb - Rb) ) Qlm (9)

The electrostatic potential φ arising from F in eq 7 is given
by

φ( rb) ) ∫ d3r′ F( rb′, Rb)
| rb - rb′|

)∑
l)0

lmax

∑
|m|el

QlmClm* ( rb - Rb)

(2l - 1)!!
φl(| rb - Rb| ;Rµ)

(10)

where φlis defined by

φl(r;Rµ) ≡ (-1
r

d
dr)l ∑

µ)1

NC

cµ

erf(Rµr)

r
(11)

and erf(x) is the error function defined in eq 3.
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The electrostatic interaction energy between two Gaussian
multipole charge densities F1(rb,Rb1) and F2(rb,Rb2) and their
nuclei Z1 and Z2 is given by

U ) ∫ ∫ d3rd3r′
F1( rb, Rb1)F2( rb′, Rb2)

| rb - rb′| + Z1φ2(Rb1) +

Z2φ1(Rb2) +
Z1Z2

|Rb1 - Rb2|
(12)

where φ2(Rb1) is the potential at Rb1 due to F2 and φ1(Rb2) is
defined by a similar expression. The density overlap integral
S between two Gaussian multipole charge densities is defined
by

S ) ∫ d3rF1( rb)F2( rb) (13)

The electrostatic and density overlap integrals in eqs 12
and 13 can be expressed by42

∫ ∫ d3rd3r′F1( rb)O( rb, rb′)F2( rb′) )

∑
l1,m1

∑
l2,m2

Ql1m1

1 Tl1m1;l2m2
Ql2m2

2 (14)

where O(rb,rb′) ≡ 1/|rb- rb′| for the electrostatic integral, O(rb,rb′)
≡ δ(rb - rb′) for the density overlap integral, and the
interaction matrix Tl1m1;l2m2

is given below. The electrostatic
energy and density overlap integrals between two normalized
contracted Gaussian monopole charge densities with unit
charge are given by

F0(R) ≡ ∑
µ,ν

cµ
1cν

2
erf(RµνR)

R
(15a)

F0(R) ≡ ∑
µ,ν

cµ
1cν

2( π
Rµν

2 )3/2
exp(-Rµν

2 R2) (15b)

where R is the distance between nuclear centers and Rµ is
the Gaussian product exponent defined by

R ≡ |Rb1 - Rb2| Rµν ≡
RµRν

√Rµ
2 + Rν

2
(16)

In addition, the constants Alm and Blm are defined by

Alm ≡ √(l + m)!(l - m)!, Blm ≡
Alm

(2l - 1)!!
(17)

for l * 0, and A00 ) B00 ) 1. The scaled solid harmonic
function is defined by Rlm(rb) ≡ Clm(rb)/Alm. The interaction
matrix Tl1m1;l2m2

from eq 14 is given by

Tl1m1;l2m2
) Bl1m1

Bl2m2
∑
l)0

min(l1,l2)

∑
m)-l

l
(-1)l2+m

AlmBlm
×

Rl2-l,m2+m* (Rb)Rl1-l,m1-m* (Rb)Fl2+l1-l(R) (18)

where Fl(R) ≡ 2l (d/dR2)l F0(R). Finally, the point multipole
results for both electrostatic potential and energy can be
found by considering an uncontracted Gaussian multipole
(Nc ) 1), taking the large exponent limit (Rf ∞) and noting
erf(x) f 1 as x f ∞.

The atomic Gaussian multipole moments Qlm are com-
monly defined25 with respect to a local frame of the atom
Qlm

local and then rotated to a system or global frame Qlm
global ≡

Qlm through Wigner rotation matrices Dm′m
l

Qlm
global ) ∑

m′
Dm′m

l [R-1]Qlm′
local (19)

Recursion formulas for evaluating Dl
m′m have been given

in Choi66 et al. For each atom, the Cartesian transformation
matrix R between the local and global frames is defined with
respect to the relative positions of the atom and of its
neighbors.13,67,68

2.2. Slater-Type Contracted Gaussian functions. The
contraction coefficients dµ and exponents Rµ are fit to a
simple Slater function exp(-r) over all space for Nc ) 1 -
14

exp(-r) = ∑
µ)1

NC

dµ exp(-Rµ
2r2) (20)

For Nc ) 1 - 6, the optimized exponents agree with those
used in the development of the original STONG basis
sets.58,59 The contraction coefficients dµ and exponents Rµ

fit to exp(-r) are used to find the corresponding coefficients
and exponents for exp(-λr) by a scaling argument. The final
expression for a normalized Slater-type charge density with
unit charge and with exponent λ is given by

λ3

8π
exp(-λr) = ∑

µ)1

NC

cµ(Rµ
2λ2

π )3/2

exp(-Rµ
2λ2r2) (21)

where cµ ≡ dµ/8π × (π/Rµ
2)3/2. A full list of contracted

coefficients and exponents for exp(-r) can be found in the
Supporting Information for Nc ) 1 - 14.

2.3. Nonlinear Fit to Potential. The model for molecular
charge density presented in this work consists of an effective
nuclear charge Zeff and a set of contracted Gaussian multipole
moments Qlm with a single diffuse Slater exponential
parameter λ centered on each atom. Only the valence charge
density is modeled, and the core electron density near the
nuclear centers is neglected by using screened nuclear
charges Zeff ) Z - Ncore, where Z is the true nuclear charge
and Ncore is the number of core electrons. The number of
core electrons Ncore is taken to be 0 for hydrogen, 2 for the
first-row elements, and 10 for the second-row elements. Thus,
the screened nuclear charges Zeff are set to 1.0 for H, 4.0 for
C, 5.0 for N, 6.0 for O, 7.0 for F, and 7.0 for Cl. Initially,
we experimented with using the true nuclear charges, e.g. Z
) 8 for O. However, when the true nuclear charges are used,
the intermolecular density overlap integrals at equilibrium
dimer distances are consistently overestimated by 10-15%.
If the true nuclear charges are used, then the model is forced
to account for both the core and valence electron density
with a single diffuse Slater-type Gaussian function. By only
modeling the valence charge density, we had found that using
effective screened nuclear charges gave significantly smaller
errors when comparing to the ab initio intermolecular
electrostatic energy and the density overlap integral.

The model for Gaussian multipole molecular charge
density FGM evaluated at the point rb is represented as a sum
over atomic Gaussian multipole charge densities given by
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FGM( rb) ) ∑
a

∑
l)0

lmax

∑
|m|el

Qlm,aClm* ( rb - Rba)

(2l - 1)!!
Fl(| rb - Rba| ;λaRµ)

(22)

where Rba is the nuclear center of atom a, Qlm,a is the atomic
Gaussian multipole moments of atom a, λa is the Slater
exponent on atom a, and Fl is defined by eq 8. The
electrostatic potential due to the effective nuclear charges
and the Gaussian multipole charge density can be found from
eq 10 as

φ( rb;Qlm,a, λa) ) ∑
a

Zeff,a

| rb - Rba|
+

∑
l)0

lmax

∑
|m|el

Qlm,aClm* ( rb - Rba)

(2l - 1)!!
φl(| rb - Rba|, λaRµ) (23)

where rb is the field point, Zeff,a is the effective nuclear charge
of atom a, and φl is defined by eq 11. For each atom, Qlm,a

and λa are treated as optimizable parameters and fit to the
ab initio electrostatic potential φQM surrounding the molecule.
Gaussian quadrupoles are defined by lmax ) 2, i.e., a Gaussian
monopole, dipole, and quadrupole with the same atomic
exponent parameter λa are placed on a given atom a.
Similarly, Gaussian dipoles are defined by lmax ) 1, i.e., a
Gaussian monopole and dipole with the same atomic
exponent parameter λa are placed on a given atom a.

Points near the nuclei are either filtered out or discarded
by using a weighting function w(rb). The weighting function
w(rb) used in this work is a modified version of a weighting
function taken from Hu et al.60 In this present study, w(rb) is
a sigmoid function of the form:

w( rb) ≡ {exp{-σ[ln FQM( rb) - ln K0]
2} FQM( rb) g K0

1 FQM( rb) e K0

(24)

where FQM is the ab initio electron density. The weighting
function w(rb) is small for regions of high electron density,
while w(rb) ) 1 for regions of low electron density. The
adjustable parameters σ and ln K0 control the curvature and
the location of the sigmoid function, respectively. In the limit
of large σ, w(rb) becomes a step function. For Gaussian
multipoles, the σ and ln K0 parameters are set to 0.3 and
-6.0, respectively. The σ and ln K0 parameters are selected
by performing a two-dimensional (2D) scan of parameters
and by observing the average error in electrostatic dimer
energy of hydrogen-bonded dimers at equilibrium geometries.
A plot of the average root-mean-square deviation (rmsd) error
in electrostatic dimer energy is given in Figure 1 for the case
of contracted (Nc ) 4) Gaussian quadrupoles fit to the ESP
calculated at the B3LYP/6-31G* level. The surface is flat,
and a range of values perform equally well, e.g., (σ, ln K0)
) (0.2, -7), (0.3, -6), (0.4, -5), etc. Similar parameter
scans were performed with Gaussian monopoles, dipoles, and
quadrupoles at various degrees of contraction Nc, and the
same set of parameters were found to be local minima. In
Hu et al.,60 a weighting function for fitting atomic point
charges to the ab initio ESP is proposed. There, it was shown
that the point charges are stable with respect to varying

conformations. The main differences between the weighting
function w(rb) used in this work and the one proposed by
Hu60 et al. are that the ab initio electron density FQM is used
rather than an empirical model for FQM and that points far
away from the molecule are given a weight of 1.0. We have
also fit atomic point multipoles to the ESP using the σ and
ln K0 weight parameters of 0.8 and -9.0 given by Hu60 et
al.

The fitting function �2 is given by

�2(Qlm, λ) ) ∫ d3rw( rb)[�GM(Qlm, λ; rb)-�QM( rb)]2

(25)

where φGM and φQM are the ESPs calculated by Gaussian
multipoles (eq 23) and by ab initio, respectively. �2 is
approximated numerically on a coarse grain molecular grid
taken from a modified version of NWChem69,70 and opti-
mized using a Levenberg-Marquardt nonlinear least-squares
fit algorithm.71 The ab initio ESP is calculated at both the
B3LYP/6-31G* or HF/aug-cc-pVTZ levels using the Gauss-
ian 03 software package.72 Earlier in our study, we had
experimented with using rectangular grids similar to the
CHELPG-type73 grids used in optimizing atomic point
charges. A relatively fine grid spacing of 0.05 Å was used,
and points within 1 Å of any nuclei were discarded. For
uncontracted Gaussian multipole (Nc ) 1), this procedure
gave Gaussian multipole parameters which predicted elec-
trostatic energies in approximate agreement to the results
presented here, using the molecular grids with a smooth
weighting function. However, for water, the number of
rectangular grid points needed was on the order of 106-107,
which can be compared to 103-104 grid points used in the
coarse grain molecular grids.

Figure 1. Contour plot of the average rmsd error in electro-
static dimer energy (kcal/mol), as a function of parameters σ
and ln K0 for the ESP weighting function w(rb). The electrostatic
energies are calculated on hydrogen-bonded dimers at equi-
librium geometries using B3LYP/6-31G* Gaussian quadru-
poles (Nc ) 4). The dark-purple running through the center
represents minima in the average rmsd error in electrostatic
dimer energy.

194 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Elking et al.



2.4. Ab initio Dimer Energy and Molecular Density
Overlap Test. The model is tested by comparing intermo-
lecular electrostatic dimer energies and density overlap
integrals on equilibrium dimer geometries of various mol-
ecules hydrogen bonded to water. The geometries of the
dimers are optimized at both the B3LYP/6-31G* or HF/aug-
cc-pVTZ levels, while keeping the monomers rigid in their
respective monomer-optimized geometries. For the model
fit to B3LYP/6-31G* data, the model is tested by comparing
to the ab initio electrostatic energies calculated by the
constrained space orbital variation (CSOV) decomposition74

method, using a modified version of the HONDO75,76

quantum chemistry program. For the model fit to HF/aug-
cc-pVTZ data, ab initio electrostatic energies are calculated
by the reduced variational space77,78 (RVS) decomposition
method, using the GAMESS79 quantum chemistry program.
In addition, we have developed code to calculate ab initio
intermolecular density overlap integrals from the ab initio
density matrix using the McMurchie-Davidson algorithm.80

For the water-water dimer, the model is tested by
calculating intermolecular electrostatic energies and density
overlap integrals on nonequilibrium dimer geometries.
Several water-water dimer geometries are generated by
rigidly translating one water molecule with respect to the
other in the direction of the intermolecular H · · ·O hydrogen
bond. The intermolecular electrostatic energies and density
overlap integrals calculated by Gaussian multipoles are
plotted as a function of H · · ·O distance and compared to
their ab initio values. In addition, 100 water-water dimer
geometries are generated in random orientations, while the
relative center of masses lie between 2.5 and 5.0 Å. Scatter
plots of the intermolecular electrostatic energy and density
overlap integral are presented, comparing the results calcu-
lated by Gaussian quadrupoles with their ab initio values.

2.5. Molecular Multipole Moments. The Gaussian mul-
tipoles are further tested by comparing permanent molecular
dipoles (l ) 1), quadrupoles (l ) 2), octapoles (l ) 3), and
hexadecapoles (l ) 4) with their ab initio molecular
multipoles. The atomic Gaussian multipole moments Qlm at
position Rb are translated to the origin by the following
expression:25

Qlm
orgin )

∑
l1)0

lmax

∑
m1)-l1

l1 �(l + m
l1 + m1

)(l - m
l1 - m1

)Ql1m1
Cl-l1,m-m1

(Rb)

(26)

where Clm is a solid harmonic function. Note that Qlm
origin *

0 for all values of l and m. For example, an atomic Gaussian
dipole (with respect to its atomic position) contributes to the
total molecular dipole, quadrupole, octapole, etc. (with
respect to the origin). The translated atomic Gaussian
multipoles at the origin Qlm

origin are summed to give the total
spherical tensor molecular moment. Expressions for convert-
ing real spherical tensor multipoles into traceless Cartesian
multipoles can be found in Özdoğan.81 Below, the results
for converting complex spherical tensor multipoles Qlm ≡
Qr

lm + iQi
lm into their traceless Cartesian forms are given.

For l ) 1, the Cartesian dipole µR is related to Q1m by

µx ) -√2Q11
r µy ) -√2Q11

i µz ) Q10 (27)

For l ) 2, the traceless Cartesian quadrupoles ΘR�
TL are

related to Q2m by

Θxx
TL ) 1

2
(-Q20 + √6Q22

r ) Θxz
TL ) -�3

2
Q21

r

Θyy
TL ) 1

2
(-Q20 - √6Q22

r ) Θyz
TL ) -�3

2
Q21

i

Θzz
TL ) Q20 Θxy

TL ) �3
2

Q22
r

(28)

Note the trace of the quadrupoles is zero, i.e., Tr(ΘTL) )
Θxx

TL + Θyy
TL + Θzz

TL ) 0. For the conversion formulas of
traceless Cartesian octapoles (l ) 3) and hexadecapoles (l
) 4) from their complex spherical tensor moments, see the
Supporting Information. The ab initio molecular multipole
moments are calculated by Gaussian 0372 and then converted
to their traceless forms.25 For example, the expression for
converting Cartesian quadrupoles ΘR� into traceless Cartesian
quadrupoles ΘR�

TL
is given by

ΘR�
TL ) 3

2
ΘR� - 1

2
δR� ∑

p

Θpp (29)

Similar expressions for converting Cartesian octapoles and
hexadecapoles into their traceless forms are given in the
Supporting Information.

2.6. Gaussian Multipole Geometry Dependence. The
atomic Gaussian multipole moments Qlm

local in the local frame
(eq 19) are calculated as a function of both bond length and
angle for a water molecule. The geometry of water is
optimized at the B3LYP/6-31G* level. Several geometries
of water are found by performing two separate one-
dimensional (1D) scans of perturbing one of the bond lengths
and the bond angle away from equilibrium in increments of
0.1 Å and 1°, respectively. Atomic Gaussian quadrupoles
Qlm and exponent parameters λ (Nc ) 4) are fit to the B3LYP/
6-31G* ESP for the optimized water geometry. For each
perturbed geometry, new atomic Gaussian quadrupoles are
fit the B3LYP/6-31G* ESP calculated for that geometry,
while the exponent parameters λ are kept at their geometry
optimized values. The atomic Gaussian multipoles in the
local frame Qlm

local are plotted as a function of both bond length
and angle.

2.7. Overlap-Exchange Model. The exchange-overlap
model61,62 is tested using the model for Gaussian multipole
charge density for hydrogen-bonded dimer pairs. For a given
dimer, several geometries are generated by translating one
of the monomers in increments of 0.1 Å along the axis
defined by the two atoms forming the hydrogen bond. For
each dimer geometry, the B3LYP/6-31G* exchange energy
Eexch is calculated through CSOV decomposition. Only dimer
geometries for which the total dimer energy is within +5
kcal/mol of the total minimum dimer energy are kept.
Typically, this entails 40-60 dimer geometries of which the
exchange energy lies between 0 and 30 kcal/mol. For
example, the exchange-overlap model for the water-water
dimer is fit to 63 geometries, whose exchange energies lie
between 0 and 27 kcal/mol. For each dimer pair, a single
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molecular pair K parameter is fit to the ab initio exchange
energy (eq 6), using the intermolecular density overlap
integrals S calculated by Gaussian multipoles with a ) 0.95.

3. Results

In this section, results for Gaussian monopoles, dipoles, and
quadrupoles are presented. Recall that ‘Gaussian quadru-
poles’ refers to a model in which Gaussian monopoles,
dipoles, and quadrupoles with the same atomic exponent
parameter λ are placed on each atom. In the next few
subsections, results for intermolecular electrostatic energy,
density overlap integral, and permanent molecular multipole
moment, calculated by Gaussian multipoles, are compared
with their respective ab initio values. For the case of water,
the atomic local frame Gaussian multipole moments Qlm

local

are plotted as a function of bond length r and bond angle θ.
Lastly, results are given when Gaussian multipoles are
applied the exchange-overlap model.

The dependence of intermolecular electrostatic energy and
density overlap integral on the degree of Slater-type contrac-
tion Nc is studied. For Nc ) 1, the model for charge density
is a single Gaussian function. In the limit of large Nc, the
model for charge density is equivalent to using a Slater
function exp(-λr). For Gaussian multipoles fit to the B3LYP/
6-31G* ESP, the results for energy and density overlap
favored Nc ) 4. However, for the Gaussian multipoles fit to
the HF/aug-cc-pVTZ ESP, the errors in intermolecular
electrostatic energy and density overlap decreased for larger
values of Nc. The results indicate the optimal degree of
contraction Nc depends on the size of the ab initio basis set.
The smaller 6-31G* basis set favors a smaller degree of
contraction, while the larger aug-cc-pVTZ basis set prefers
a larger degree of contraction. The values of Nc ) 4 and Nc

) 8 are chosen for the Gaussian multipoles fit to the B3LYP/
6-31G* and HF/aug-cc-pVTZ ESPs, respectively. For more
details on the Nc dependence, see the Supporting Information.

3.1. Electrostatic Energy. Electrostatic dimer energies
for several molecules hydrogen bonded to water are calcu-
lated at their equilibrium geometries. In Table 1, electrostatic
dimer energies are given for Gaussian monopoles, dipoles,
and quadrupoles with Nc ) 4, which are fit to the ESP
calculated at the B3LYP/6-31G* level. The Gaussian mul-
tipole electrostatic dimer energies are compared with their
reference B3LYP/6-31G* values. The rmsd errors in the
electrostatic dimer energy are 0.568, 0.567, and 0.094 kcal/
mol for Gaussian monopoles, dipoles, and quadrupoles,
respectively. On average, the errors for Gaussian monopoles
and dipoles (Nc ) 4) are quite similar, while a significant
improvement is gained for Gaussian quadrupoles. As a
representative example, the electrostatic dimer energies of
the water-methanol(1) dimer are -8.751, -8.103, and
-8.558 kcal/mol for Gaussian monopoles, dipoles, and
quadrupoles, respectively. The superscript (1), (2), and (3)
denote multiple dimer geometries.These numbers can be
compared to the reference ab initio electrostatic energy for
the water-methanol(1) dimer of -8.524 kcal/mol. Gaussian
quadrupoles are found to be particularly important in
predicting the electrostatic dimer energies of organic halides
with water. For example, the ab initio electrostatic energy

for the water-CH3Cl(1) dimer is -0.372 kcal/mol. This result
can be compared to the electrostatic dimer energies predicted
by Gaussian monopoles, dipoles, and quadrupoles of -1.070,
-0.719, and -0.362 kcal/mol, respectively.

A similar analysis is performed at the HF/aug-cc-pVTZ
level. Gaussian multipoles (Nc ) 8) are fit to the ESP
calculated at the HF/aug-cc-pVTZ level, while the reference
ab initio electrostatic energies are calculated at the same level
of theory using the RVS decomposition method. Due to
computational limitations, 11 of the original 25 hydrogen-
bonded dimers are studied at this level. The dimers with the
smallest monomers are chosen (water, ammonia, methanol,
CH3F, and CH2F2). As expected, a significant improvement
is found by increasing the multipole order from Gaussian
monopoles to quadrupoles. The rmsd errors in electrostatic
dimer energy are 0.885, 0.366, and 0.133 kcal/mol for
Gaussian monopoles, dipoles, and quadrupoles, respectively.
As an example, the electrostatic energies for the
water-methanol(1) dimer predicted by Gaussian monopoles,
dipoles, and quadrupoles (Nc ) 8) are -9.233, -8.187, and
-8.847 kcal/mol, respectively. These results can be com-
pared to the HF/aug-cc-pVTZ electrostatic energy of -8.753
kcal/mol. For more individual results, see the Supporting
Information.

The results for intermolecular electrostatic energy, given
above, are calculated on equilibrium dimer geometries. For
nonequilibrium dimer geometries, the intermolecular elec-
trostatic energy is calculated for the water-water dimer. The

Table 1. Electrostatic Energies (kcal/mol) for Equilibrium
Hydrogen-Bonded Dimers (X-Water)a

X EM EDM EQDM CSOV

formamide(1) -13.59 -12.82 -13.42 -13.68
formamide(2) -8.723 -7.849 -8.554 -8.545
formamide(3) -7.618 -7.089 -7.627 -7.679
N-methylformamide -9.330 -8.058 -8.186 -8.285
water(1) -7.934 -7.730 -8.195 -8.235
water(2) -4.697 -4.582 -4.780 -4.879
water(3) -3.517 -3.192 -3.129 -3.179
methanol(1) -8.751 -8.103 -8.558 -8.524
methanol(2) -7.263 -7.712 -8.217 -8.296
CH3Cl(1) -1.070 -0.719 -0.362 -0.372
CH3Cl (2) -2.297 -2.564 -2.714 -2.768
CH2Cl2(1) -0.580 -0.274 -0.029 -0.035
CH2Cl2(2) -4.237 -4.211 -4.618 -4.693
CH3F(1) -3.187 -2.731 -2.481 -2.538
CH3F(2) -1.639 -1.889 -1.922 -2.003
CH2F2 -2.211 -1.803 -1.673 -1.743
CH2F2

(2) -2.904 -3.160 -3.233 -3.358
ammonia(1) -10.60 -11.04 -11.95 -12.04
ammonia(2) -3.360 -3.263 -3.538 -3.629
methylamine -11.61 -11.76 -12.35 -12.43
formaldehyde -6.046 -5.330 -6.113 -6.145
acetaldehyde(1) -7.676 -6.762 -7.541 -7.717
acetaldehyde (2) -6.943 -6.156 -7.036 -7.025
acetone -8.427 -7.541 -8.424 -8.545
dimethyl ether -7.457 -7.849 -8.300 -8.185

rmsd 0.568 0.567 0.094

a The electrostatic energies predicted by Gaussian monopoles
EM, dipoles EDM, and quadrupoles EQDM (Nc ) 4) are compared to
their reference B3LYP/6-31G* electrostatic dimer energies
calculated using the CSOV decomposition method. The
superscript (1), (2), and (3) denote multiple dimer geometries. 1
kcal/mol ) 4.184 kJ/mol.
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electrostatic energies calculated by Gaussian quadrupoles (Nc

) 4) and by ESP-fitted atomic point quadrupoles are plotted
for various hydrogen-bond distances H · · ·O in Figure 2 for
the water-water dimer and compared to their reference
B3LYP/6-31G* values. As in the case of Gaussian quadru-
poles, we call ‘atomic point quadrupoles’ as a model in which
ESP-fitted atomic point monopoles, dipoles, and quadrupoles
are placed on each atom. The optimized equilibrium dimer
H · · ·O distance is found to be 1.94 Å at the B3LYP/6-31G*
level. At the equilibrium dimer separation, Gaussian qua-
drupoles predict an electrostatic energy of -8.195 kcal/mol
and atomic point quadrupoles predict -6.422 kcal/mol, while
the reference ab initio result is -8.235 kcal/mol. The under-
estimation of the atomic point quadrupole energy is an
example of the penetration error25,30,31 for atomic point
multipoles. At long-range H · · ·O distances, beyond 2.3 Å,
both Gaussian and atomic point quadrupoles accurately
reproduce the ab initio electrostatic energy. At short-range
H · · ·O distances, less than 1.64 Å, the Gaussian quadrupole
electrostatic energy begins to slowly deviate from its
reference B3LYP/6-31G* result. For example at 1.54 Å, the
B3LYP/6-31G* ab initio electrostatic energy is -20.11 kcal/
mol, which can be compared to the result of -21.54 kcal/mol
calculated by Gaussian quadrupoles and -11.74 kcal/mol
calculated by atomic point quadrupoles. In Figure 3, the
intermolecular electrostatic energies calculated by Gaussian
quadrupoles are compared with their ab initio reference
values for several randomly oriented water-water dimers.
The electrostatic energies calculated by Gaussian quadrupoles
agree with their ab initio reference values for energies ranging
from -10 kcal/mol to +5 kcal/mol. Additional scatter plots
of intermolecular electrostatic energy can be found in the

Supporting Information for randomly oriented hydrogen-
bonded dimers.

In order to compare Gaussian multipoles with the Gaussian
Electrostatic Model (GEM),57 electrostatic dimer energies
are calculated on 10 water dimers,82,83 which represent local
minima on the water-water potential energy surface. Previ-
ously, GEM57 was fit to the B3LYP/6-31G* ESP using the
A1 and P1 auxiliary Gaussian basis sets (ABS). Two GEM
models for water were developed. In a three-point GEM
water model, ABS’s have been placed on atomic centers
only. A second GEM water model has been developed by
placing ABS’s on both the atomic centers and the bond
midpoints, resulting in a five-point GEM water model. The
average absolute errors in the electrostatic energy for the
three-point GEM water model are 0.11 and 0.12 kcal/mol
for the A1 and P1 basis sets, respectively. Including basis
functions on bond midpoints results in an improved fit for
GEM. The errors in the five-point GEM water fit to the ESP
are 0.06 and 0.04 kcal/mol for the A1 and P1 basis sets,
respectively. The average errors in electrostatic dimer energy
for GEM can be compared to the error of 0.06 kcal/mol for
Gaussian quadrupoles (Nc ) 4). The GEM five-point water
model with the A1 and P1 basis sets have a total of 110 and
213 primitive Gaussian functions, respectively. The total
number of uncontracted basis functions in the GEM water
models can be compared to the total number of contracted
Gaussian quadrupoles of 27.

3.2. Molecular Density Overlap Integral. The model for
Gaussian multipoles is further tested by comparing inter-
molecular density overlap integrals with their ab initio values.
In Table 2, the intermolecular density overlap integrals are
given for the hydrogen-bonded dimers at their equilibrium
geometries. The intermolecular density overlap integrals for
Gaussian monopoles, dipoles, and quadrupoles (Nc ) 4) are
compared with their respective B3LYP/6-31G* values. On
average, there is a significant improvement in going up in
multipole order from Gaussian monopoles to quadrupoles.
The rmsd errors in intermolecular density overlap integrals
are 2.571-, 0.752-, and 0.195 × 10-3 e2/Å3 for Gaussian
monopoles, dipoles, and quadrupoles, respectively. A rep-
resentative example is the water-methylamine complex at
equilibrium, which has an ab initio value of 15.89 × 10-3

e2/Å3. This value can be compared to the intermolecular
density overlap calculated by Gaussian monopoles, dipoles,
and quadrupoles of 19.78-, 17.05-, and 15.56 × 10-3 e2/Å3,
respectively. Similar trends can be found for the Gaussian
multipoles fit to the HF/aug-cc-pVTZ ESP. At the HF/aug-
cc-pVTZ level, the rmsd errors in intermolecular density
overlap integral are 2.668-, 0.502-, and 0.268 × 10-3 e2/Å3

for Gaussian monopoles, dipoles, and quadrupoles (Nc ) 8),
respectively. For individual results on HF/aug-cc-pVTZ
Gaussian multipoles, see the Supporting Information.

The results given in Table 2 are for intermolecular density
overlap integrals calculated at equilibrium dimer distances.
For nonequilibrium dimer geometries, the intermolecular
density overlap integrals are compared with their ab initio
values for the water-water dimer. In Figure 4, the intermo-
lecular density overlap integrals calculated by B3LYP/6-
31G* Gaussian quadrupoles (Nc ) 4) and the B3LYP/6-31G*

Figure 2. The electrostatic energy (kcal/mol) calculated by
atomic point and Gaussian quadrupoles and by ab initio is
plotted as a function of H · · ·O distance for the water-water
dimer.

Figure 3. The intermolecular electrostatic energy (kcal/mol)
calculated by Gaussian quadrupoles (y-axis) and by ab initio
(x-axis) is plotted for randomly oriented water-water dimer
geometries.

Gaussian Multipole Model (GMM) J. Chem. Theory Comput., Vol. 6, No. 1, 2010 197



reference values are plotted as a function of H · · ·O distance.
The intermolecular overlap integrals predicted by Gaussian
quadrupoles agree with their ab initio values for H · · ·O
distances ranging from 2.3 to 1.7 Å. For shorter separations,
the intermolecular overlap integrals predicted by Gaussian
quadrupoles begin to overestimate the ab initio result. In
Figure 5, the intermolecular density overlap integral calcu-
lated by Gaussian quadrupoles is compared with its respec-
tive ab initio value for several randomly oriented water-water
geometries. The intermolecular overlap integrals range from
0 to 30.0 × 10-3 e2/Å3. There is a small overestimation
(∼6%) of the intermolecular density overlap integrals
calculated by Gaussian quadrupoles as compared with their
ab initio values. In the Supporting Information, additional

scatter plots of intermolecular density overlap integral can
be found for other randomly oriented hydrogen bonded
dimers.

3.3. Molecular Multipole Moments. The permanent
molecular multipole moments up to hexadecapole are
calculated for the atomic Gaussian monopole, dipole, and
quadrupole models (Nc ) 4) and compared with their
reference B3LYP/6-31G* values. As an example, the nonzero
components of the molecular quadrupole for ammonia are
given in Table 3. A significant improvement is found by
increasing the atomic Gaussian multipole order from Gauss-
ian monopoles to quadrupoles. For example, the ab initio
Qxx component of the molecular quadrupole is 1.3140 D-Å,
which can be compared to the value predicted by Gaussian
monopoles, dipoles, and quadrupoles of 0.9211, 1.2701, and
1.3139 D-Å, respectively.

The results for molecular multipole moments given for
ammonia are representative of the other 14 monomers studied
in this work. The rmsd errors in molecular multipole moment
up to hexadecapole are averaged over all the molecules and
presented in Table 4. As expected, there is a significant
decrease in average rmsd error for increasing atomic Gauss-
ian multipole order. For example, the average rmsd errors
in molecular hexadecapole are 3.402 for atomic Gaussian
monopoles, 0.969 for Gaussian dipoles, and 0.130 D-Å3 for

Table 2. Intermolecular Density Overlap Integrals (× 10-3

e2/Å3) for Equilibrium Hydrogen-Bonded Dimers
(X-Water)a

X SM SDM SQDM SQM

formamide(1) 20.29 17.30 16.76 16.99
formamide(2) 15.47 11.05 11.25 10.88
formamide(3) 8.283 7.201 7.577 7.399
N-methylformamide 16.36 12.04 11.43 11.37
water(1) 11.28 9.969 9.133 9.061
water(2) 2.871 2.513 2.503 2.698
water(3) 1.189 0.958 0.930 1.084
methanol(1) 15.40 12.70 11.47 11.30
methanol(2) 8.783 10.21 9.470 9.518
CH3Cl(1) 0.662 0.461 0.243 0.308
CH3Cl(2) 1.790 2.469 3.238 3.250
CH2Cl2(1) 0.329 0.217 0.116 0.162
CH2Cl2(2) 3.812 3.704 5.341 5.440
CH3F(1) 5.679 3.358 2.886 3.086
CH3F(2) 2.542 2.561 2.738 2.881
CH2F2

(1) 3.635 2.044 1.806 2.036
CH2F2

(2) 4.477 4.016 4.275 4.569
ammonia(1) 15.63 13.75 13.21 13.39
ammonia(2) 3.647 4.297 4.230 4.327
methylamine 19.78 17.05 15.56 15.89
formaldehyde 10.71 8.028 8.060 7.871
acetaldehyde(1) 12.77 9.957 9.584 9.657
acetaldehyde(2) 12.63 9.390 9.573 9.241
acetone 14.30 11.37 11.18 11.12
dimethyl ether 15.56 14.34 12.58 12.25

rmsd 2.571 0.752 0.195

a The overlap integrals predicted by Gaussian monopoles SM,
dipoles SDM, and quadrupoles SQDM (Nc ) 4) are compared to their
reference B3LYP/6-31G* values. The superscripts (1), (2), and (3)
denotes multiple dimer geometries. 10-3 e2/Å3 ) 1.482 × 10-4 e2/
a0

3, where a0 is the Bohr radius.

Figure 4. The intermolecular density overlap integral ( × 10-3

e2/Å3) calculated by atomic Gaussian quadrupoles and by ab
initio is plotted as a function of H · · ·O distance (Å) for the
water-water dimer.

Figure 5. The intermolecular density overlap integral (× 10-3

e2/Å3) calculated by Gaussian quadrupoles (y-axis) and by
ab initio (x-axis) is plotted for randomly oriented water-water
dimer geometries.

Table 3. Non-Zero Components of the Molecular
Quadrupole Moment D-Å of Ammonia for Gaussian
Monopoles, Dipoles, And Quadrupoles (Nc ) 4) Fit to
B3LYP/6-31G* ESP

atomic xx yy zz rmsd

Gaussian monopoles 0.9211 0.9211 -1.8422 0.39291
Gaussian dipoles 1.2701 1.2700 -2.5400 0.04402
Gaussian quadrupoles 1.3139 1.3138 -2.6278 0.00015

B3LYP/6-31G* 1.3140 1.3140 -2.6281

Table 4. Average Rmsd Error (∆) in Traceless Molecular
Dipole, Quadrupole, Octapole, and Hexadecapole
Momentsa

atomic
∆dip

(10-3 D)
∆quad
(D-Å)

∆oct
(D-Å2)

∆hex
(D-Å3)

Gaussian monopoles 9.489 0.1947 0.9970 3.402
Gaussian dipoles 2.495 0.0453 0.2154 0.969
Gaussian quadrupoles 1.045 0.0061 0.0381 0.130

a Averaged over 14 molecules for Gaussian multipoles (Nc ) 4)
fit to the B3LYP/6-31G* ESP.
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Gaussian quadrupoles. For more individual results, see the
Supporting Information.

3.4. Gaussian Multipole Geometry Dependence. The
atomic Gaussian multipole moments are investigated as a
function of bond length r and bond angle θ for the case of
water. Gaussian quadrupoles (Nc ) 4) are calculated at the
B3LYP/6-31G* level for several geometries of water ob-
tained by perturbing either the O-H1 bond length or the
H1-O-H2 bond angle. The atomic Gaussian multipole
moments in the local frame (eq 19) are converted to their
traceless Cartesian moments (eqs 27 and 28). In Figure 6,
the atomic Gaussian monopole moment q on oxygen is
plotted when the H1-O bond length is varied. The Gaussian
monopole charge q is a smooth function of bond length,
which can be approximated as a straight line for bond lengths
between 0.92 and 1.00 Å (the equilibrium bond length is
0.9684 Å). In addition, the zz component of the local frame
traceless Cartesian quadrupole moment Θzz

local on the H1
hydrogen is plotted as a function of H1-O-H2 bond angle
in Figure 7. Θzz

local can be approximated as a straight line for
bond angles between 95° and 111° (the equilibrium bond
angle is 103.66°). In both Figures 6 and 7, the straight lines
are determined by the value of the local frame atomic
multipoles Qlm

local at the equilibrium geometry and by the finite
difference derivative of Qlm

local with respect to the bond length
or bond angle at the equilibrium geometry. The results given
in Figures 6 and 7 are examples, and the other atomic
Gaussian moments Qlm

local follow similar trends (see the
Supporting Information for more examples). For small
internal geometry perturbations, the above results suggest
that the local frame atomic Gaussian multipole moments can
be approximated by a truncated linear Taylor series as a
function of the two bond lengths r1 (H1-O) and r2 (H2-O)
and the bond angle θ (H1-O-H2) as

Qlm
local(r, θ) = Qlm

local,0 + (r1 - r1
0)

∂Qlm
local,0

∂r1
+

(r2 - r2
0)

∂Qlm
local,0

∂r2
+ (θ - θ0)

∂Qlm
local,0

∂θ
(29)

where Qlm
local,0 is the atomic Gaussian multipole at the

geometry optimized equilibrium structure. Evaluated at the
equilibrium structure, ∂Qlm

local,0/∂r1, ∂Qlm
local,0/∂r2, and ∂Qlm

local,0/
∂θ are the finite difference partial derivatives of Qlm

local,0 with
respect to r1, r2, and θ, respectively.

3.5. Exchange-Overlap Model. The exchange-overlap
model is fit to exchange-repulsion energies calculated at
the B3LYP/6-31G* level through CSOV decomposition as
described in Section 2.7. The intermolecular density overlap
integrals are calculated from Gaussian quadrupoles (Nc )
4) fit to the B3LYP/6-31G* ESP. For the water-water dimer,
the rmsd error of fit is 0.350 kcal/mol for Gaussian
quadrupoles, over a range of exchange energies from 0.0 to
27.0 kcal/mol. At the equilibrium water-water dimer
distance, the exchange energy calculated by the exchange-
overlap model is 5.449 kcal/mol, compared to the ab initio
result of 5.362 kcal/mol. In Figure 8, the water-water
exchange energy calculated by the model is compared with
the ab initio value and plotted as a function of H · · ·O
distance. A similar analysis is performed on the other
hydrogen-bonded dimers. The rmsd fit errors are averaged
over all the dimers and given by 0.764, 0.379, and 0.275
kcal/mol for Gaussian monopoles, dipoles, and quadrupoles,
respectively. This result indicates that including anisotropy
into the model for charge density makes a significant
improvement when applying the exchange-overlap model.
At equilibrium distances, the exchange energies lie between
0.1 and 10 kcal/mol. The rmsd in exchange energy at the
equilibrium dimer distance averaged over the hydrogen-
bonded dimers are 1.782, 0.262, and 0.276 kcal/mol for
Gaussian monopoles, dipoles, and quadrupoles, respectively.
For Gaussian quadrupoles, the molecular pair K parameters
range from 0.5786 kcal/mol (× 103 Å3/e2)0.95 for the
water-CH3F dimer to 0.7499 for the water-ammonia dimer.
The average value of the molecular pair K parameter over
all the dimers is 0.6607. Because of the variability of the K
parameters, a single molecular pair K parameter may not be
sufficient for larger molecules or for when a large amount
of configuration space is sampled. For more individual

Figure 6. Atomic Gaussian monopole moment q (e) on
oxygen in a water molecule as a function of H1-O bond
length. The B3LYP/6-31G* equilibrium H1-O bond length is
0.9684 Å.

Figure 7. Atomic local frame Gaussian quadrupole moment
Θzz

local (eÅ2) on the ‘H1’ hydrogen in a water molecule as a
function of H1-O-H2 bond angle. The B3LYP/6-31G* equi-
librium H1-O-H2 bond angle is 103.66°.

Figure 8. The exchange energy calculated by Gaussian
quadrupoles and by ab initio is plotted as a function of H · · ·O
distance for the water-water dimer.
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results, including exchange parameters K, rmsd errors, and
exchange dimer energies, see the Supporting Information.

4. Conclusion
We have proposed a model based on contracted Gaussian
multipole charge density. The atomic Gaussian multipoles
are fit to the ab initio electrostatic potential and are shown
to reproduce ab initio electrostatic dimer energies, intermo-
lecular density overlap integrals, and permanent molecular
multipole moments. For the case of water, the local frame
atomic Gaussian multipole moments Qlm

local are shown to be
a smooth function of bond length r and bond angle θ, which
can be approximated as a truncated linear Taylor series. In
a follow up work, we will present analytic atomic force
expressions for geometry-dependent Gaussian multipoles and
show that geometry-dependent electrostatic models are
capable of reproducing ab initio electrostatic atomic forces.
In addition, the intermolecular density overlap integrals
calculated by Gaussian multipoles have been applied to a
model61,62 for exchange-repulsion energy based on inter-
molecular density overlap integral. A molecular pair K
parameter is fit to the ab initio exchange-repulsion energy
for hydrogen-bonded dimers. A significant improvement is
found in going from Gaussian monopoles to quadrupoles,
indicating that including anisotropy in the description of
atomic charge density is important. Though the preliminary
results of applying the exchange-overlap model to the
Gaussian multipole charge density are encouraging, a more
extensive investigation would be useful, possibly by studying
atomic pair K parameters fit to a larger molecular data set.
We plan to further study the exchange-overlap model using
Gaussian multipoles, and we hope to propose a general set
of transferable exchange-overlap parameters in the near
future.
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Supporting Information Available: There are three
parts available. Part I contains additional mathematical details
and background. Elementary properties of spherical, solid,
and scaled solid harmonic functions are given along with
some theorems for the solid harmonic function and the solid
harmonic gradient operator. Expressions for electrostatic
energy and density overlap integral are derived for complex
Gaussian multipoles along with the Cartesian gradients of
their matrix elements. In addition, formulas for converting
complex spherical tensor multipole moments into their
traceless Cartesian forms are given. In part II, additional
results for Gaussian multipoles are presented. The depen-
dence on the degree of Slater-type contraction Nc is discussed.
Additional tables and figures of electrostatic dimer energies
and intermolecular density overlap integrals are presented.

For the case of water, additional plots of Qlm
local as a function

of bond length and bond angle are given. For the exchange-
overlap model, exchange-repulsion energies, molecular pair
K parameters, and rmsd of fits are provided for B3LYP/6-
31G* Gaussian multipoles. In part III, the Gaussian multipole
parameters, the Slater-type contraction coefficients/exponents,
and the equilibrium dimer geometries are given. This material
is available free of charge via the Internet at http://
pubs.acs.org.
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(81) Özdoǧan, T. J. Math. Chem. 2006, 42 (2), 201–214.

(82) Tschumper, G. S.; Leininger, M. L.; Hoffman, B. C.; Valeev,
E. F.; Schaffer, H. F.; Quack, M. J. Chem. Phys. 2002, 116,
690–701.

(83) van Duijneveldt-van, de; Rijdt, J. G. C. M.; Mooij, W. T. M.;
Duijneveldt, F. B Phys. Chem. Chem. Phys. 2003, 5,
1169–1180.

CT900348B

202 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Elking et al.



Performance of Nonlinear Finite-Difference
Poisson-Boltzmann Solvers

Qin Cai,†,‡ Meng-Juei Hsieh,‡ Jun Wang,‡ and Ray Luo*,†,‡

Department of Biomedical Engineering and Department of Molecular Biology and
Biochemistry, UniVersity of California, IrVine, California 92697

Received July 22, 2009

Abstract: We implemented and optimized seven finite-difference solvers for the full nonlinear
Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods,
one conjugate gradient method, and two inexact Newton methods. The performance of the seven
solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth
noting is the inexact Newton method in our analysis. We investigated the role of linear solvers
in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric
multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster
convergence rate. In addition, we explored strategies to optimize the successive over-relaxation
method to reduce its convergence failures without too much sacrifice in its convergence rate.
Specifically, we attempted to adaptively change the relaxation parameter and to utilize the
damping strategy from the inexact Newton method to improve the successive over-relaxation
method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted
strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee
convergence in the tested molecules. Especially the inexact Newton method exhibits impressive
performance when it is combined with highly efficient linear solvers that are tailored for its special
requirement.

Introduction

Electrostatic interaction plays a key role in determining the
structure and function of biomolecules.1-14 However, model-
ing of the electrostatic interaction in biomolecules remains
a serious computational challenge. The difficulty in modeling
a biomolecular system resides in its high dimensionality,
especially when explicit solvents are used. Explicit solvents
can provide a realistic description of the solution system but
require expensive computational resources. In contrast,
implicit solvent representation reduces the system degrees
of freedom by capturing the average or continuum behavior
of the solvent. To model the electrostatic interaction in the
salt water solution, the Poisson-Boltzmann equation (PBE)
has been widely used:

where ε(rb) is the dielectric constant, φ(rb) is the electrostatic
potential, F0 is the solute charge density, λ is the ion-
exclusion function with values of 0 within the Stern layer
and the molecular interior and 1 outside the Stern layer, e is
the unit charge, zi is the valence of ion type i, ci is the number
density of ion type i, kB is the Boltzmann constant, and T is
the absolute temperature. For a solution with symmetric 1:1
salt, eq 1 can be simplified to

where κ2 ) (8πe2I)/(εoutkBT) and C ) (ez)/(kBT). Here
“out” denotes the outside solvent, I represents the ionic
strength of the solution, and I ) z2c. If the electrostatic
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† Department of Biomedical Engineering.
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∇ · ε( rb)∇φ( rb) ) -4πF0 - 4πλ ∑
i

ezici ×

exp(-eziφ( rb)/kBT) (1)

∇ · ε( rb)∇φ( rb) ) -4πF0 + λ
εoutκ

2

C
sinh[Cφ( rb)] (2)
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potential is weak and the ionic strength is low, the nonlinear
PBE can be simplified to the linearized form15

The linearized PBE is easier to solve, but it is not very
accurate in modeling highly charged biomolecules, such as
nucleic acids, while the nonlinear PBE predictions have been
shown to yield good agreement with experiments and explicit
ion simulations.16-20 Solution of the nonlinear PBE has
attracted much attention in the past. Just as linear PBE
solvers, these methods can also be grouped into three
categories according to how the PBE is discretized, that is,
the finite difference method (FDM),17,19,21-27 the finite
element method (FEM),28-34 and the boundary element
method (BEM).35-37 A combination of FDM and BEM38

was also reported. Some of these methods have been
incorporated into the widely used PB programs, including
Delphi,24,26 UHBD,23 PBEQ,24 and APBS.28,31 This study
intends to evaluate the existing nonlinear FDM solvers and
explore strategies to improve their performance.

After the nonlinear PBE is discretized with FDM, a
nonlinear system is generated as follows

where i, j, and k are the grid indexes along x, y and z axes,
respectively. εi,j,k

x is the dielectric constant between grids (i,
j, k) and (i + 1, j, k); εi,j,k

z and εi,j,k
z are defined similarly. h is

the grid spacing in each dimension. φi,j,k is the potential at
(i, j, k). qi,j,k is the total charge within the cubic volume
centered at (i, j, k). The nonlinear system can then be denoted
as

where A is the coefficient matrix for the linear part of the
PBE, which is a positive-definite matrix, O is the potential
vector, b is the free charge vector, and N(O) denotes the
nonlinear term in the PBE. The discretized form of PBE can
be solved by several numerical methods, such as the
nonlinear relaxation methods as implemented in Delphi and
PBEQ,17,19,21,22,24,26,27 the nonlinear conjugate gradient
method implemented in UHBD,23 the nonlinear multigrid
method,25 and the inexact Newton method implemented in
APBS.16 The relaxation methods, extended from classical
linear methods such as Gauss-Seidel and successive over-
relaxation, were first attempted to solve the FDM version of
the nonlinear PBE.17,24 However, the convergence of such
methods cannot be guaranteed.16 The multigrid method was
also attempted,25 but it may diverge on certain applications.16

More robust approaches, such as the conjugate gradient
method23 and the inexact Newton method,16 were also
reported for biomolecular applications. The conjugate gradi-
ent method is very slow due to considerable evaluations of
the nonlinear term. The inexact Newton method is very

attractive and is proven to converge.16,39 More importantly,
the inexact Newton method can be combined with highly
efficient linear FDM solvers to yield highly efficient methods.

Despite the early introduction of various nonlinear PBE
solvers to biomolecular applications, a comparative and
extensive analysis of these solvers is still in need. Such an
analysis can guide future development and application of
nonlinear PBE solvers. In this study, we implemented,
evaluated, and improved when possible seven nonlinear PBE
solvers in the FDM scheme. In the following, the tested
algorithms of the nonlinear PBE solvers are first summarized.
This is followed by a comprehensive analysis of their
convergence and performance with a large number of high-
quality crystal structures of DNAs, RNAs, and proteins.

Methods

The discretized nonlinear PBE, eq 5, cannot be solved
directly for typical biomolecular systems. Even for a linear
equation system, the cost to compute the inverse of the
coefficient matrix A is prohibitively high. In practice, the
discretized PBE is often solved iteratively in the following
form

where δOt is an update of Ot at the tth iteration. The conjugate
gradient method follows a minimization strategy. It first
intends to find an update δOt, which is A-conjugate to all
previous updates if the nonlinear term is eliminated. δOt is
then scaled to minimize a predefined functional. In contrast,
the inexact Newton method and the relaxation method are
both derivatives of the root-finding Newton method for
nonlinear functions, which uses the first-order Taylor expan-
sion of the residual of eq 5, g(O) ) AO + N(O) - b, to
obtain an appropriate update δOt. The inexact Newton method
also requires δOt to be scaled to descend a functional that is
closely related to that used in the conjugate gradient method.

Conjugate Gradient Algorithm

Luty et al. first explored the use of the nonlinear conjugate
gradient (CG) method to solve the nonlinear PBE.23 The
nonlinear conjugate gradient method is derived from the
linear conjugate gradient method in a straightforward fashion.
The CG method always tries to solve a minimization
problem. The predefined functional G(O) to be minimized is
the integral form of g(O):

Here, superscript T represents the transpose of a vector or
matrix, ∆Π ) ∑i,j,k∫N(φi,j,k) dφi,j,k. Therefore, the stationary
point of G(O) is also the solution of g(O) ) 0. It is difficult
to build conjugacy between subsequent updates, δOt, for a
nonlinear equation system. Instead, the Fletcher-Reeves
algorithm for the corresponding linear problem is used as
an approximation, which was proven to converge.40 Thus,
δOt is computed in the following way:41

∇ · ε( rb)∇φ( rb) ) -4πF0 + λεoutκ
2
φ( rb) (3)

εi-1,j,k
x [φi,j,k - φi-1,j,k] + εi-1,j,k

x [φi,j,k - φi+1,j,k]

εi,j-1,k
y [φi,j,k - φi,j-1,k] + εi,j-1,k

y [φi,j,k - φi+1,j,k]

εi,j,k-1
z [φi,j,k - φi,j,k-1] + εi,j,k-1

z [φi,j,k - φi,j,k+1]

+ λ
εoutκ

2h2

C
sinh(Cφi,j,k) ) 4πqi,j,k/h

(4)

AO + N(O) ) b (5)

Ot+1 ) Ot + δOt (6)

min
O {G(O):G(O) ) 1

2
OTAO + ∆Π - bTO} (7)

δOt ) -g(Ot) + �tδOt-1 (8)
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where �t ) (g(Ot), g(Ot))/(g(Ot-1), g(Ot-1)), which is used to
enforce the A-conjugacy between δOt and all previous
updates in the linear case. Here (a,b) denotes the dot product
of two vectors a and b. Note that δOt is scaled so that eq 6
becomes

where Rt is the scaling factor. By tuning Rt, the functional G(O)
is minimized. The pseudocode for the nonlinear CG algorithm
is given as shown in Chart 1. In this chart, the superscript “0”
represents the initial value and the superscript “t” represents
the value at the tth iteration. Here, the inner Newton iterations
are employed to find the scaling factor Rt that minimizes G(O).
Luty et al. showed that the nonlinear CG solver was about 4
times slower than the linear CG solver with otherwise identical
conditions.23

Inexact Newton Method

The inexact Newton (NT) method starts from the standard
Newton method.42 The first-order Taylor expansion of g(O)
at O ) Ot gives

where N′(O) is the Jacobian matrix of the vector N(O), and
a diagonal matrix in this case. The ideal δOt would make
the new Ot+1 the root of g(O) ) 0. Thus, we have

In eq 11, the inverse of [A + N′(Ot)] is difficult to
compute and the corresponding δOt cannot be obtained within
a few iterations, but it is actually unnecessary to solve eq
11 precisely for δOt. Equation 11 is solved iteratively to the
extent that a predefined functional f(O) is ensured to decrease
in the update direction δOt, or in other words, a descent
direction of f(O) is found. Although the integral of g(O) in
the above nonlinear CG algorithm is a natural choice for
the functional,23 a simpler form is also effective,16

It has been proven that if the following condition is
satisfied

a descent direction of f(O) can always be obtained,16 and
the inexact Newton method can converge locally.42 Next, a
line search along the descent direction is conducted to ensure
f(Ot+1) < f(Ot), which can guarantee the global convergence
of the inexact Newton method.16 There are various ways to
solve eq 11 inexactly, such as the multigrid (MG) method,
the incomplete Cholesky conjugate gradient (ICCG) method,
and the successive over-relaxation (SOR) method. In sum-
mary, the NT algorithm can be written as shown in Chart 2.

The two NT solvers tested in this study are combined with
ICCG (NT-ICCG) and MG (NT-MG), respectively, which
are employed to solve the inner linear problem for δOt. The
ICCG method is an optimized version by Luo et al.43 In the
MG method, we applied a four-level v-cycle implementation,
where the restriction and prolongation were realized with a
three-dimensional seven-banded version of Alcouffe’s algo-
rithm.44 We employed the SOR method for the MG pres-
moothing and postsmoothing on fine grids and also for
solving the linear problem on the coarsest grid. The relaxation
parameter was set as 1.5 on fine grids and 1.9 on the coarsest
grid. Both the presmoothing and postsmoothing use five SOR
steps. Because eq 11 is solved inexactly, we adopted this
simple and fast implementation, which would be otherwise
unstable and unsuitable to solve a normal linear problem with
tight convergence criterion.45 Specifically, the convergence

Chart 1. Pseudocode for the Nonlinear CG Algorithm

Ot+1 ) Ot + RtδOt (9)

g(Ot + δOt) ) g(Ot) + [g′(O)|O
t ]δOt )

g(Ot) + [A + N′(Ot)]δOt (10)

[A + N′(Ot)]δOt ) -g(Ot) (11)

Chart 2. Pseudocode for the NT Algorithm

min
O {f(O):f(O) ) 1

2
g(O)T · g(O)} (12)

||[A + N′(Ot)]δOt + g(Ot)|| < ||g(Ot)|| (13)
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criterion for the NT-MG method was set as |[A +
N′(Ot)] δOt + g(Ot)| < |g(Ot)| , and the convergence
criterion for the NT-ICCG method was set as |[A +
N′(Ot)] δOt + g(Ot)| < 0.1 × |g(Ot)|.

Relaxation Algorithms

Unlike the inexact Newton method, a nonlinear relaxation
method uses a matrix B that is approximate to [A +
N′(Ot)]-1 in eq 11. Specifically, for the nonlinear SOR
method,

B ) ω[D + ωL + N′(Ot)]-1 (14)

For the nonlinear Jacobi method,

For the nonlinear Gauss-Seidel (GS) method,

In eq 14-16, D is a diagonal matrix, L is a strictly lower
triangular matrix, so that A ) D + L + LT, where LT

denotes the transpose of L. Each of the above approximate
matrices can be easily inversed and the update (δOt) can be
obtained by forward substitutions.

The nonlinear relaxation algorithms are similar to their
linear counterparts. The unknowns are updated iteratively
in a main loop. At each step, however, a nonlinear term,
either a sinh/cosh function22,24,26,27 or a polynomial,17,19,21

has to be evaluated on every grid point. A typical nonlinear
relaxation algorithm for the PBE can be summarized as the
pseudocode shown in Chart 3. In this chart, ω is the
relaxation parameter: ω ) 1 corresponds to the nonlinear
GS method, and 1 < ω < 2 corresponds to the nonlinear SOR
method. N′(φt

i,j,k) is a diagonal element of the matrix N′(Ot)22

or a corresponding approximate expression.17,19,21,24 The
above procedure works well for the nonlinear PBE in many
situations, but there are cases where the iteration diverges.24

The convergence failures can be reduced by optimizing the
relaxation parameter ω and adding the nonlinearity gradually.
For example, in the Delphi program, the nonlinear term is
added to the PBE by 5% each time and the optimal ω is
estimated adaptively on the basis of the average nonlinearity
across the whole space.26

In this study, the nonlinear SOR solver uses a constant
high-value ω; i.e., ω ) 1.9. Our previous analysis shows
that the optimal relaxation parameter for the linear SOR
method is between 1.9 and 1.95, depending on the struc-
tures.45 We chose ω ) 1.9, because it gives a reasonable
balance between convergence rate and convergence failure
among tested molecules. Reducing ω further can lead to
fewer convergence failures but much lower convergence rate.
For example, ω ) 1.8 reduces convergence failures by 24%
but simultaneously reduces the convergence rate by 49%.
Instead of optimizing ω, we implemented two different
strategies to reduce the convergence failures of SOR. In the
first revised SOR, termed the adaptive SOR (ASOR) method,
we initially use a high-value ω and then gradually lower it
if the norm of the residual starts to increase. As will be shown
below, ASOR can reduce the convergence failures of the
original SOR method and retains its overall convergence rate.
The second modified SOR method combines SOR with the
same line search used in the two NT methods after δOt is
calculated. The “damped” SOR (DSOR) method can also
improve the convergence efficiently, though neither can
guarantee convergence as will be shown below.

Simulation Details

We implemented seven nonlinear PBE solvers in the PBSA
program of the AMBER 10 package,46 including one
implementation of GS, three implementations of SOR,
one implementation of CG, and two implementations of NT.
The relaxation solvers and the conjugate gradient solver all
solve the corresponding linear PBE first and utilize the
solution as the initial guess of the solution of the nonlinear
PBE.

The dielectric constant was set to 1 within the molecular
interior and it was set to 80 within the solvent. The solvent
probe was set to be 1.5 Å to compute the solvent excluded
surface that was used as the solute/solvent dielectric bound-
ary. The ion probe was set to be 2.0 Å to compute the ion
accessible surface that was used as the interface between
the Stern layer and the bulk ion accessible solvent region.
The finite-difference grid spacing was set as 0.5 Å. The ratio
between the longest dimension of the finite-difference grid
and that of the solute was set as 1.5. The convergence
criterion for the nonlinear system was set to be 10-6 and the
ionic strength was set to 150 mM if not otherwise mentioned.
All floating point data were set in double precision to be
consistent with the rest of the Amber 10 package.

We initially collected 588 high-resolution (at least 2 Å)
nucleic acid structures with sequence diversity more than
30% from the Protein Data Bank. We first removed all ligand
molecules and those structures with non-natural nucleotides
unsupported by the Amber force field. Often the unsupported
nucleotides are located in the terminal regions, so that the
remaining structures can still be used if the terminal regions
are deleted. Finally, the test set includes 364 nucleic acids.
Hydrogen atoms were added in LEAP of the Amber 10
package.46 These molecules were assigned the charges of
Cornell et al.47 and the radii of Tan et al.48 The atom numbers
of the nucleic acids range from 250 to 5569, and the numbers
of grid points of the nucleic acids range from 313 551 to

Chart 3. Pseudocode for a Typical Nonlinear
Relaxation Algorithm for the PBE

B ) [D + N′(Ot)]-1 (15)

B ) [D + L + N′(Ot)]-1 (16)
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15 218 175. The PDB codes of the nucleic acids are given
as an appendix.

The performance statistics of the seven solvers was
collected on a computer cluster of 80 nodes with 1 GB of
memory of 3.0 GHz P4 CPUs. For some methods, calcula-
tions on the ten largest molecules in the test of 364 nucleic
acids require more than 1 GB of memory, so they were left
out in the overall analysis. Next, we tested the two NT solvers
with the 22 largest nucleic acids (>2000 atoms) in the test
set, with the ten largest nucleic acids included, on a server
node with 8 GB memory. We also tested the two NT solvers
with the 26 largest proteins (>4000 atoms) from the Amber
test set.46 Finally, we analyzed the effects of different salt
properties on the performance of the two NT solvers.

Results and Discussion

Idealized System Test. We first tested the nonlinear
solvers with an idealized system, i.e., a single ion with radius
of 1 Å and multiple charges in the salt-water solution. In
this simple system, the grid spacing was set to be 0.25 Å.
We compared the numerical solutions of the seven solvers
with the solutions obtained from the predictor-corrector
Adams method in Mathematica 6.0 under different condi-
tions. Here different charges for the single ion and different
ion concentrations were used. Figure 1 shows the results with
different charges for the single ion while the ion concentra-
tion is 500 mM, and Figure 2 shows the results under
different ion concentrations while the charge of the single
ion is 2e. Note that the solutions of all seven tested numerical
solvers are represented by the same symbol due to their
virtually identical numerical values. Both figures demonstrate
excellent agreements between the seven implemented solvers
and the standard numerical method packaged in Mathematica
for the tested systems.

Solver Convergence Statistics. We studied the conver-
gence of all the solvers for the 364 nucleic acid test set,

excluding the 10 largest molecules due to the memory
limitation of the computer cluster. The convergence statistics
are shown in Table 1. Three out of the seven solvers can
converge within 10 000 steps in all test cases, i.e., the CG
method and the two NT methods, each of which makes use
of a functional-assisted strategy. The original SOR method
fails in most cases but is noticeably improved if ω is
adaptively modified: 76% failed cases in the original SOR
method converge with the ASOR method. After a damped
step size is applied in the DSOR method, 88% failed cases
in the original SOR method converge.

Since we first solve the corresponding linear problem in
the nonlinear SOR solvers, the nonlinearity is weakened. This
strategy was found to improve the convergence. Moreover,
lower-value ω, or even under-relaxation, can obtain better
convergence than high-value ω.24,26 For example, in our test,
the GS method converges in more test cases than the original
SOR method, in spite of its much lower convergence rate.
The minimal ω in the ASOR method is equal to 1, so it is
expected that the ASOR method has the same number of
convergence failures as the GS method, but it converges
much faster because over-relaxation is initially used. The
DSOR method conducts a line search to descend f(O) in eq
12 but still cannot guarantee convergence, because the
direction is not necessarily a descent direction. Note that for
those test cases for which the original SOR method cannot

Figure 1. Comparison between the numerical solutions from
PBSA and Mathematica for the idealized system under
different charges of the single ion. PBSA: numerical solutions
in the PBSA program. Mathematica: numerical solutions from
the Mathematica program. The charge of the single ion is set
as 1e, 2e, and 4e, respectively. Ion concentration is 500 mM
and ion valence is 1. Only potential in the ion accessible region
is plotted.

Figure 2. Comparison between the numerical solutions from
PBSA and Mathematica for the idealized system under
different ion concentrations. Linear: solutions to the linearized
PBE. Nonlinear: solutions to the full nonlinear PBE. Ion
concentrations are set as 100 and 1000 mM, respectively.
The charge of the single ion is 2e and ion valence is 1. Only
potential in the ion accessible region is plotted.

Table 1. Solver Convergence and Relative Performance
Statistics for the Test Set of 364 Nucleic Acids, Excluding
the Ten Largest Onesa

solver GS SOR ASOR DSOR CG NT-ICCG NT-MG

av rel 47.10 3.32 3.71 5.86 21.35 1.99 1.00
unconv 6 25 6 3 0 0 0

a Relative performance of a solver for a molecule is defined as
the CPU time of the solver over the CPU time of the NT-MG
solver for the same molecule; av rel, average relative performance
over all tested molecules; unconv, number of convergence
failures.
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converge, the DSOR method shows better convergence rate
than the ASOR method.

There is one way to improve the inexact Newton method,
which is to use an appropriate convergence criterion to
inexactly solve the inner linear equation at each step. This
requires that each convergence criterion be different and
deliberately designed to prevent under-solving or oversolving
eq 11. Oversolving the equation means the convergence
criterion is too tight. This is because the descent direction
δOt no longer changes much when the appropriate conver-
gence criterion is reached. That is to say, the extra computa-
tion in reaching the tighter convergence criterion does not
result in noticeable improvement. Under-solving the equation
means the convergence criterion is so loose that δOt is no
longer a good descent direction, along which the functional
can decrease little. This will lead to a significant increase in
the Newton iteration steps. The set of convergence criteria
is called the forcing terms. A study on local convergence of
different sets of forcing terms was conducted in the litera-
ture.49 However, it is still hard to design appropriate forcing
terms if the initial guess is far away from the solution. Note
that NT-MG and NT-ICCG are in different situations. One
linear MG cycle can substantially reduce the residual and
probably oversolve the equation, while multiple ICCG cycles
are necessary to reduce the residual to the same level.
Therefore, we used a tighter inner convergence criterion for
NT-ICCG (the average relative performance is 53.12 if the
same inner convergence criterion as for NT-MG is used),
and for the same reason, NT-ICCG is more likely to be
improved by optimizing the forcing terms.

Finally, the convergence performance of SOR might be
improved if a hybrid method is employed. For example, one
would start with SOR and later switch to NT-MG when SOR
becomes ineffective. The memory requirement is the same
as in the more demanding method, i.e., NT-MG. This hybrid
method can definitely guarantee convergence. However, it
is useful only if SOR is superior to NT-MG during the initial
iteration steps, which is actually not the case. Thus, more
effort is definitely needed if a hybrid method is to be pursued.

Timing and Memory Requirement of Inexact Newton
Methods. In the following, we focus on the two NT methods
because of their significantly higher efficiency and robust-
ness. First, we examined the timing and memory requirement
of the two NT methods in solving PBEs for the test set of
364 nucleic acids, excluding the 10 largest ones. We utilized
the APBS finite-difference solver as a reference in this round.
All three solvers were compiled and tested under conditions
as identical as possible, though it should be pointed out that
the APBS solver has been adapted for parallel platforms,
which may impact its single-CPU performance. Specifically
the exactly same discretized nonlinear problems were solved.
Figure 3 shows that the memory requirement and solver time
of the three solvers are similar for smaller molecules, but
their difference becomes obvious when the number of grid
points increases. Both the memory and the timing trends for
NT-MG are linear over the number of grid points. The
memory trend for NG-ICCG is linear, but its timing trend
remains linear only for smaller test cases and becomes
nonlinear for larger test cases. On average, the APBS solver

requires the most memory, the NT-ICCG consumes the most
time, and the NT-MG needs less memory and less time than
both the NT-ICCG and the APBS solver. Although our
simple implementation of MG is superior under current
circumstances, a more robust MG solver will probably bring
more benefit if the convergence criterion for the nonlinear
equation is tighter. In this case, the linear equation should
be solved exactly in the last few Newton steps, because the
linear equation is a very good approximation. Finally, it
should be noted that the memory usages and the CPU times
among the three solvers differ at most by a factor of 2. The
difference may be overwhelmed by a higher grid resolution
and by a different testing condition, such as in molecular
dynamics, as our latest analysis has shown.50

Tables 2 and 3 list the solver time of the two NT methods
for the 22 largest molecules in the test set of 364 nucleic
acids and the 26 largest proteins in the Amber test set,

Figure 3. Scaling of solver CPU times and memory usages
versus numbers of grid points of the two inexact Newton
methods and the APBS solver for the test set of 364 nucleic
acids, excluding the 10 largest ones.

Table 2. Solver Times (s) of Two Inexact Newton Methods
for the 22 Largest Nucleic Acids in the Test Set of 364
Nucleic Acidsa

nucleic acids Natom Ngrid NT-MG NT-ICCG

1EHZ 2509 7 258 191 51.71 131.35
1EVV 2509 6 650 175 46.76 108.97
1I2Y 2124 3 820 287 18.31 51.83
1NUJ 3112 7 498 575 53.54 140.65
1NUV 3112 7 498 575 53.97 142.65
1Q96 2616 4 887 087 31.08 80.03
1U8D 2145 3 285 711 20.83 44.12
1ZCI 2448 5 980 975 34.74 107.87
244D 3120 4 956 175 34.81 79.97
2DZ7 2032 2 597 023 17.35 28.18
2EES 2145 3 285 711 20.43 48.83
2EET 2147 3 285 711 20.89 46.78
2EEU 2145 3 285 711 20.71 46.67
2EEV 2147 3 285 711 20.75 48.43
2G3S 2580 4 779 775 26.27 77.83
2G9C 2144 3 285 711 20.67 48.07
2GWQ 3128 6 286 383 40.55 104.68
352D 3024 4 956 175 34.75 90.32
3BNN 2696 8 078 175 57.32 146.12
3D2V 4970 8 299 375 61.94 164.30
2Z75 4646 11 979 711 102.47 225.23
3DIL 5569 15 218 175 126.39 383.26

a Natom, atom number; Ngrid, number of grid points.
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respectively. Since tested proteins are more compact than
tested nucleic acids, the average number of grid points is
similar for the two sets of molecules. It is apparent that the
solver times are also comparable between the two sets of
molecules, i.e., the solver efficiency mostly depends on the
number of grid points. More importantly, for these largest
tested molecules, NT-MG uses only a third of the time of
NT-ICCG. Note that it uses about a half of the time of NT-
ICCG in the overall test. This observation is consistent with
the intrinsic advantage of the MG method on large systems.

Performance of Inexact Newton Methods versus Con-
vergence Criterion. Next, the performance of the two NT
methods under a variety of convergence criteria ranging from
10-1 to 10-9 was examined. Five nucleic acids of different
sizes were selected as test cases in this round, 1SGS (1074
atoms), 1JRN (1564 atoms), 1U8D (2145 atoms), 1EHZ
(2509 atoms), and 2GWQ (3128 atoms). Figure 4 shows that
both methods can improve convergence without any steep
jump in the solver time, indicating a constantly smooth
convergence behavior. Specifically, a linear relationship
exists between the solver time and the logarithm of the
convergence criterion. The slope, however, increases with
the complexity and size of tested molecules.

Performance of Inexact Newton Methods versus Ion
Concentration. Finally, the effect of the ion concentration
was studied, and the results are shown in Figure 5. The
sample in this test consists five large nucleic acids, 1EHZ
(2509 atoms), 3BNN (2696 atoms), 1NUV (3112 atoms),
2GWQ (3128 atoms), 3D2V (4970 atoms). Three different
ion concentrations were tested, including 150, 500, and 1000
mM. Regardless of ion concentrations, the average solver
time of NT-MG for the five molecules is more or less
constant. On the contrary, the average solver time of NT-
ICCG depends on the ion concentration: the solver uses about

one-quarter less solver time when the ion concentration is
high (g500 mM). This observation indicates that NT-MG
is probably more stable than NT-ICCG under different salt
conditions in biomolecular applications.

We also tested the performance of the two NT methods
when the ion valence is changed. However, no clear trend
was observed. The average solver times of both the NT-
MG method and the NT-ICCG method only increase slightly
with the ion valence.

Conclusion

We implemented and optimized seven finite-difference
solvers for the nonlinear Poisson-Boltzmann equation,
including four relaxation methods, one CG method, and two
NT methods. We tested the performance of the seven solvers
with a large number of nucleic acids and proteins, with
special attentions given to the robust NT algorithm. We
investigated the role of linear solvers in its performance by

Table 3. Solver Times (s) of Two Inexact Newton Methods
for the 26 Largest Proteins in the Amber Test Set

proteins Natom Ngrid NT-MG NT-ICCG

1B8O_A 4348 4 779 775 29.91 98.38
1C0P_A 5566 7 258 191 73.34 194.19
1D8V_A 4211 5 849 375 32.19 119.25
1DCI_A 4281 6 204 975 40.45 160.39
1DJ0_A 4176 5 759 775 44.74 115.93
1DS1_A 4916 4 869 375 45.02 121.30
1E19_A 4874 6 384 175 34.93 127.91
1E6Q_M 7819 8 816 751 74.85 193.63
1E6U_A 4966 5 180 175 49.82 103.80
1EZA_0 4034 4 921 631 29.07 69.93
1EZO_A 5735 8 392 815 49.42 147.62
1F24_A 6221 6 286 383 39.43 108.85
1HZY_A 5092 4 869 375 30.28 97.17
1IXH_0 4856 5 637 663 36.70 87.21
1MLA_0 4485 4 424 175 28.18 81.41
1PA2_A 4441 4 779 775 30.43 91.16
1QH4_A 5983 6 829 375 37.72 130.39
1QNR_A 5129 4 379 375 37.47 91.42
1QOP_B 5895 5 233 167 41.56 140.93
1QQF_A 4365 4 019 679 22.28 56.62
1QTW_A 4380 4 342 767 26.85 85.04
1YUB_0 4168 6 768 719 37.55 134.50
2CTC_0 4801 4 342 767 28.59 71.34
2OLB_A 8254 7 866 207 53.02 148.77
3SIL_0 5804 5 359 375 38.29 120.50
7A3H_A 4578 3 615 183 22.25 68.95

Figure 4. Solver CPU times versus convergence criteria of
the two inexact Newton methods. Note that the flat region
between adjacent convergence criteria results from the same
number of iterations required to converge, even if the
convergence criteria are different; i.e., the residual reduction
is more than the specified convergence criterion reduction.

Figure 5. Solver CPU times versus ion concentrations of the
two inexact Newton methods.

Finite-Difference Poisson-Boltzmann Solvers J. Chem. Theory Comput., Vol. 6, No. 1, 2010 209



incorporating ICCG and MG into the algorithm. Specifically,
a four-level v-cycle was applied in the MG method, where
the restriction and prolongation were realized with a three-
dimensional seven-banded version of Alcouffe’s algorithm.
In addition, the SOR method was applied for the multigrid
presmoothing and postsmoothing on fine grids and also for
solving the linear problem on the coarsest grid. We adopted
this simple and fast implementation because the inner linear
problem of the NT method does not need to be solved
exactly. To accelerate the convergence of our implementation
of NT-ICCG, we tightened the convergence criterion of the
inner linear solver loop. In addition, we explored strategies
to optimize the SOR method to reduce its convergence
failures without too much sacrifice in its convergence rate.
In the ASOR method, ω was designed to decrease when the
norm of the residual starts to increase. This method reduces
the convergence failures by 76% and retains much of the
overall convergence rate of the original SOR method with a
high-value ω. In the DSOR method, the damping strategy
from the NT method was utilized to optimize the search step
length and was found to reduce the convergence failures by
88%.

Our results show that only the nonlinear methods ac-
companied with a functional-assisted strategy can guarantee
convergence, such as the CG method and the NT method,
while the relaxation methods cannot. Especially the NT
method exhibits impressive performance when it is combined
with highly efficient linear solvers. Therefore, our analysis
suggests that the functional-assisted strategies be used in
existing numerical solvers for biomolecular applications if
they intend to solve the nonlinear PBE for biomolecules.

Finally, it is instructive to discuss future directions in the
optimization of nonlinear solvers for biomolecular applica-
tions. First point charges are widely used to represent atomic
charge density distributions in current biomolecular models.
Unfortunately, this practice introduces singularity into the
right-hand side of PBE. The presence of charge singularity
results in discontinuity in the electrostatic potential with large
error when the finite-difference method is used. We have
developed a new formulation to remove the charge singular-
ity in the linear finite-difference solvers.51 Given the current
implementations of the nonlinear solvers, we are in a position
to investigate the effect of charge singularity on the
performance of the nonlinear finite-difference solvers. In
addition, we plan to extend our analysis and optimization of
the nonlinear finite-difference solvers in the context of
molecular dynamics simulations. It is expected that the
efficiency of the nonlinear solvers can be improved in
molecular dynamics simulations, just as in our prior analysis
of the linear solvers.45 However, further development is
necessary to fully take advantage of the potential update
nature in molecular dynamics to achieve computational
efficiency high enough for routine biomolecular applications.
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Appendix: Test Set of 364 Nucleic Acids

The following molecular structures, in both the Amber format
and the pqr format, can be downloaded from http://
rayl0.bio.uci.edu/rayl/#Database: 100D, 109D, 110D, 118D,
126D, 127D, 131D, 137D, 138D, 151D, 152D, 157D, 158D,
160D, 161D, 165D, 181D, 182D, 184D, 190D, 191D, 192D,
196D, 198D, 1A2E, 1BD1, 1BNA, 1CSL, 1D10, 1D11,
1D12, 1D13, 1D15, 1D23, 1D32, 1D36, 1D37, 1D38, 1D39,
1D43, 1D44, 1D45, 1D46, 1D48, 1D49, 1D54, 1D56, 1D57,
1D58, 1D63, 1D67, 1D78, 1D79, 1D88, 1D8G, 1D8X, 1D96,
1DA0, 1DA9, 1DC0, 1DCG, 1DJ6, 1DL8, 1DN8, 1DNO,
1DNS, 1DNT, 1DNX, 1DNZ, 1DOU, 1DQH, 1EHV, 1EHZ,
1EN3, 1EN8, 1EN9, 1ENE, 1ENN, 1EVP, 1EVV, 1F27,
1FD5, 1FDG, 1FMQ, 1FMS, 1FN2, 1FQ2, 1FTD, 1G4Q,
1I0T, 1I1P, 1I2Y, 1I7J, 1ICG, 1ICK, 1ID9, 1IDW, 1IH1,
1IHA, 1IKK, 1IMR, 1IMS, 1JGR, 1JO2, 1JRN, 1JTL, 1K9G,
1KCI, 1KD3, 1KD4, 1KD5, 1L1H, 1L2X, 1L4J, 1LJX,
1M69, 1M6F, 1M6G, 1M6R, 1M77, 1MF5, 1MSY, 1NLC,
1NQS, 1NT8, 1NUJ, 1NUV, 1NVN, 1NVY, 1O0K, 1OFX,
1OSU, 1P20, 1P4Y, 1P4Z, 1P79, 1PFE, 1PJG, 1PJO, 1Q96,
1Q9A, 1QCU, 1QYK, 1QYL, 1R68, 1RQY, 1RXB, 1S23,
1S2R, 1SGS, 1SK5, 1T0E, 1U8D, 1UB8, 1UE4, 1V9G,
1VAQ, 1VJ4, 1VS2, 1VZK, 1WOE, 1WQY, 1XA2, 1XCS,
1XCU, 1XJX, 1XJY, 1XPE, 1XVK, 1XVN, 1XVR, 1Z3F,
1Z8V, 1ZCI, 1ZEV, 1ZEX, 1ZEY, 1ZEZ, 1ZF0, 1ZF1,
1ZF2, 1ZF3, 1ZF4, 1ZF5, 1ZF6, 1ZF7, 1ZF8, 1ZF9, 1ZFA,
1ZFB, 1ZFC, 1ZFF, 1ZFG, 1ZNA, 1ZPH, 1ZPI, 200D,
212D, 215D, 220D, 221D, 222D, 224D, 232D, 234D, 235D,
236D, 240D, 241D, 243D, 244D, 245D, 248D, 251D, 255D,
258D, 259D, 260D, 272D, 276D, 279D, 284D, 288D, 292D,
293D, 295D, 2A43, 2A7E, 2ADW, 2AVH, 2B0K, 2B1B,
2B2B, 2B3E, 2D47, 2D94, 2D95, 2DCG, 2DES, 2DYW,
2DZ7, 2EES, 2EET, 2EEU, 2EEV, 2F8W, 2G32, 2G3S,
2G9C, 2GB9, 2GPM, 2GQ4, 2GQ5, 2GQ6, 2GQ7, 2GVR,
2GW0, 2GWA, 2GWQ, 2GYX, 2HBN, 2HTO, 2I2I, 2I5A,
2IE1, 2O1I, 2O4F, 2OE5, 2OE8, 2OIY, 2OKS, 2PKV, 2PL4,
2PL8, 2PLB, 2PLO, 2PWT, 2Q1R, 2QEK, 2R22, 2V6W,
2V7R, 2VAL, 2Z75, 307D, 308D, 310D, 312D, 314D, 315D,
317D, 331D, 332D, 334D, 336D, 348D, 349D, 351D, 352D,
354D, 355D, 360D, 362D, 368D, 369D, 370D, 371D, 377D,
385D, 386D, 393D, 394D, 395D, 396D, 397D, 398D, 399D,
3BNN, 3C2J, 3C44, 3CGP, 3CGS, 3CJZ, 3CZW, 3D0M,
3D2V, 3DIL, 3DNB, 3ERU, 3EUM, 413D, 414D, 420D,
423D, 428D, 431D, 432D, 434D, 435D, 437D, 439D, 440D,
441D, 442D, 443D, 452D, 453D, 455D, 463D, 465D, 466D,
472D, 473D, 476D, 477D, 479D, 480D, 482D, 483D, 485D,
5DNB, 7BNA, 9BNA, 9DNA.
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Abstract: A molecular dynamics (MD) investigation on a series of oligo-R-arabinofuranosides
(1-8) using the AMBER force field and the GLYCAM carbohydrate parameter set is reported.
The validation of the method was carried out by direct comparison of experimental vicinal
proton-proton coupling constants (3JH,H) with those obtained by using an empirically determined
Karplus equation and density functional theory (DFT)-derived relationships specifically tailored
for R-arabinofuranosyl systems. A simple code was developed to implement the determination
of 3JH,H by applying these relationships to the probability distributions of rotamers and ring
conformations displayed by the simulations. The empirical Karplus relationship and the DFT-
derived equations yielded, in most cases, the same trend as experiment for intra-ring 3JH,H values.
This direct comparison circumvents additional sources of errors that may arise from the
assumptions introduced by the deconvolution procedures often used to calculate population of
rotamers and ring conformations from experimental 3JH,H.

Introduction

Molecular dynamics (MD) simulations of glycoconjugates
are an active area of research due to the role of carbohydrate-
containing molecules in several life processes,1-4 and it is
now appreciated that the conformational preferences of these
molecules are critical determinants of their biological
activity.5,6 The conformational analysis of complex carbo-
hydrates is often too complex and challenging to be addressed
completely by experimental methods and thus such investiga-
tions rely heavily on the tandem use of computational and
experimental approaches (largely NMR spectroscopy and X-ray
crystallography).5,6 To complement these techniques, significant
efforts have therefore been devoted to studying the conforma-
tional equilibrium of carbohydrates computationally.

Various accounts have described the development of
methodologies for deriving force field parameters, including
atomic charges, to simulate biomolecules,7-12 and there are
extensive reports describing molecular dynamics simulations
on oligosaccharides containing pyranoside (six-membered)
rings.13-17 Software programs for the structural prediction
of sugars have also been developed to investigate possible
conformations not visited by nonergodic simulations.18-20 Far
fewer investigations of oligosaccharides containing one or more
furanose (five-membered) rings have been reported.21-27

Our group has a long-standing interest in the furanoside-
containing polysaccharides that are found in the cell wall
structure of mycobacteria, including the pathogenic species
Mycobacterium tuberculosis and Mycobacterium leprae,
which cause tuberculosis and leprosy, respectively.28 These
glycoconjugates play a critical role in mycobacterial survival
and pathogenicity. Conformational investigations of these
molecules are of interest as the information gleaned will be
of help in developing inhibitors of enzymes that process
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furanose sugars.29 However, conformational studies of oli-
gofuranosides are more complex than comparable investiga-
tions on oligopyranosides, due to the inherent flexibility of
five-membered rings.21-26

Furanoside rings can adopt a number of twist (T) and
envelope (E) conformations, which can be depicted using
the pseudorotational itinerary (Figure 1). Each conformer can
be described by two coordinates: the Altona-Sundaralingam
(AS) phase angle of pseudorotation (P), which represents
the atoms that are displaced from the plane, and the AS
puckering amplitude (φm), a measure of the maximum
displacement from the planar ring form.30 Given five
endocyclic torsion angles of a given conformer, P and φm

can be calculated through the use of the equations shown in
Figure 1.30 The interconversion barrier between these
conformers is relatively low (<5 kcal/mol),31 and this
flexibility renders the theoretical description of furanosides
challenging, as one must consider both the torsion angles of
the ring (Figure 1) as well as any exocyclic dihedral angles.

Determination of the solution conformation of carbohy-
drates is most frequently performed using NMR spectros-
copy,32-34 and great effort has been devoted to the study of
molecular conformations by analysis of both homo- and
heteronuclear NMR coupling constants and their orientational
dependence.32-44 Experimental coupling constants, 3JH,H, are
measured as an average over the entire conformational space
of the molecule and this average can be expressed by eq 145

〈J〉 ) ∫0
360J(φ) F(φ) dφ (1)

where J(φ) is an extended Karplus equation that correlates
the vicinal nuclear spin-spin coupling constants to the
dihedral angle between the coupled spins and F(φ) is the
probability distribution of dihedral angles about a particular
bond.

The simplest method for assessing conformation about
acyclic fragments is the “discrete model”.45 In this approach,
it is assumed that a set of equilibrating rotamers of discrete
dihedral angles (usually three staggered rotamers) adequately
describes the conformational preferences about that bond.
As an example, for the C4-C5 bond in methyl R-D-
arabinofuranoside (1), three staggered rotamers about this

bond, gt, tg, and gg, can be defined (Figure 2) and are
generally used in calculations of this type.

This approach is formally expressed by eq 2, where Xi (i
) 1, 2, 3) are the unknown populations of the discrete
rotamers, φi is the H4-C4-C5-H5R or H4-C4-C5-H5S
dihedral angle in each of the three rotamers, and 〈J〉 is the
measured average coupling constant.

〈J〉 ) ∑
i)1

3

XiJ(φi) with ∑
i)1

3

Xi ) 1 (2)

This assumption leads to potential errors in the analysis,
because it does not consider deviations from the staggered
conformations and does not account for contributions from
dihedral angles with low probability. In addition, for some
systems more than three conformers may exist.

The search for alternatives to address the limitations arising
from assumptions of the discrete model and thus to better
define F(φ) gave rise to the generation of continuous models.
The continuous probability distribution (CUPID)45 is among
the most popular continuous models used.35 This method is
based on the fact that the probability distribution of rotamers,
F(φ), must be a periodic function of φ and therefore can be
expressed as a Fourier series where the coefficients of the
expansion are the parameters to be determined from eq 1.
For practical reasons, the Fourier series must be truncated,
and this constitutes the main limitation of the method. Aside
from its use in determining rotamer populations about single
bonds, CUPID has been adapted for use in the conformational
analysis of five-membered ring systems (CUPID-5), incor-
porating the general principles of pseudorotation.46 The use
of CUPID-5 yielded generally more accurate fits to the
experimental NMR coupling constants, compared to discrete

Figure 1. Pseudorotational itinerary for methyl R-D-arabinofuranoside, 1.

Figure 2. Definitions of the three staggered rotamers about
the C4-C5 bond in 1. The angle ω is defined as the
O5-C5-C4-O4 torsion angle.
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model approaches, e.g., PSEUROT analysis,47 which as-
sumes a two-state equilibrium for the five-membered ring.

The solution conformation of carbohydrates depends
heavily on the interaction between the hydroxyl groups and
solvent molecules.48,49 Such interactions exhibit a strong
electrostatic character (i.e., H-bonding) and thus requires a
reliable set of atomic charges to properly model carbohy-
drates and to obtain acceptable simulation results compared
to experiment.50,51 Previously, we reported a procedure to
obtain a set of atomic charges representative of the confor-
mational equilibrium of 1,52 which has also been successfully
applied to methyl �-D-arabinofuranoside.53 This procedure
reduced conformer-dependent charge variability, leading to
better agreement between the C4-C5 bond rotamer distribu-
tions obtained from the MD simulations with those deter-
mined from NMR spectroscopic data.54,55 In addition, these
studies allowed us to gain insight into the ring conformation
of 1 and its � anomer. However, here the agreement in the
value of the pseudorotational phase angle, P, with experiment
was less good. In particular for 1, the MD simulations
predicted a broad distribution of conformers centered around
a single region of conformational space, whereas PSEUROT
analysis of available 3JH,H data predicted an approximately
1:1 ratio of two conformers.

We describe here the use of probability distributions
obtained from molecular dynamics simulations of 1 as the
basis for calculating Boltzmann-averaged 3JH,H values using
eq 1, which were then compared to those obtained experi-
mentally. In one approach, we used an available generalized
Karplus equation56 (eq 3) for correlating each ring and
exocyclic dihedral angle in all MD-derived conformers of 1
with 3JH,H values.

3JHH ) 14.63 cos2
φ - 0.78 cos φ + 0.60 +

∑
i

λi{0.34 - 2.31 cos2[�iφ + 18.4|λi|]} (3)

In this equation, φ is the dihedral angle between the
coupled protons, λi is the difference in electronegativities
between a non-hydrogen substituent i and hydrogen, and �i

is equal to (1 depending on the relative orientation of
substituents along the coupling path. A limitation of this
approach is that the equation used for deriving these “Karplus
relationships” was generated empirically by analyzing various
substituted ethane fragments possessing a range of substit-
uents with varying electronegativity. Thus, although this
equation is generalizable, we questioned if better correlation
of conformation and 3JH,H for 1 and larger oligomers could
be obtained by using relationships more tailored to the
R-arabinofuranose ring system. Hence, using density func-
tional theory (DFT) calculations, we derived spin-spin
coupling relationships for each ethanic fragment in 1, which
were then used in the calculation of 3JH,H values. Better
agreement with experiment was indeed found using the DFT-
derived equations. With this method in hand, we carried out
MD simulations on a set of oligofuranosides (2-8, Figure
3) to determine the robustness of the method in these larger
molecules.

Methods

Nomenclature. For clarity we will refer to the C4-C5
rotamers of each unit in the oligofuranosides as the rotamers
of the corresponding ring, although they are not completely
contained in these rings.

DFT 3JH,H Coupling Profiles. The accurate measurement
of spin-spin coupling constants has aided in the structure
determination of various molecules ranging from small
organic molecules to large proteins.57-63 The difficulty in
calculating the spin-spin coupling tensor, which describes
the interactions of nuclei through their interactions with the
electrons of the molecule, arises from (1) the several
mechanisms64,65 that all contribute to the spin-spin coupling

Figure 3. Oligoarabinofuranosides studied; rings have been lettered to facilitate comparison with 1.
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tensor and therefore cannot be neglected a priori and (2) the
involvement of not only singlet excitations (similar to those
found in the expressions for shielding) but triplet excitations,
which are nearly impossible to accurately calculate in the
Hartree-Fock approximation. Therefore, a theoretical frame-
work in which electron correlation is taken into consideration
must be used for this purpose. For a detailed discussion of
the calculation of spin-spin coupling constants and the
implementation in quantum mechanical software packages,
the reader is referred to reviews by Vaara et al.,65 Autschbach
and Le Guennic,64 and Helgaker et al.66,67,69

DFT calculations of the spin-spin coupling constants were
performed using the Gaussian 03 program68 at the B3LYP/
cc-pVTZ level of theory.69,70 This level of theory was chosen
on the basis of the results of 3JH,H calculations for ethane
using several different functionals and basis sets (see
Supporting Information). For these calculations, 10 envelope
conformers of 1 were constructed; three C4-C5 rotamers
and three C5-O5 rotamers were generated for each envelope,
giving a total of 90 conformations. The geometries of all 90
conformations were then optimized at the B3LYP/6-31G*
level of theory. A single endocyclic torsion angle (represent-
ing the four-atom plane of each envelope conformer) was
fixed at 0° to maintain the envelope structure. For example,
the EO conformer was generated by fixing C1, C2, C3, and
C4 in the plane. All other geometric parameters were allowed
to vary during the geometry optimizations. In all cases, the
preoptimized geometries were built to minimize intramo-
lecular hydrogen bonds, i.e., the O-H bond of the C-3
hydroxyl group is oriented anti to C-4. This structural motif
was maintained through all optimizations for the entire set
of furanosides. For the spin-spin coupling calculations, all
four contributions to the 3JH,H were computed, including
Fermi contact (FC), spin dipolar (SD), paramagnetic
spin-orbital (PSO), and diamagnetic spin-orbital (DSO).
The resulting J data were extracted for all conformations
(see Supporting Information for complete coupling constant
data).

For a picture of the structural dependencies of 3JH,H on
their respective H,H torsion angles, the Marquardt-Levenberg
nonlinear least-squares algorithm71 was used to fit the
acquired coupling constants to a truncated Fourier series in
the H,H dihedral angle (φ) (eq 4)72

3JHH ) a + b cos(φ) + c cos(2φ) (4)

The coefficients a, b, and c can be determined from the
fitting of the DFT data, and five equations can be obtained
corresponding to the five three-bond H,H coupling pathways
in the molecule (H1-C1-C2-H2, H2-C2-C3-H3,
H3-C3-C4-H4, H4-C4-C5-H5R, H4-C4-C5-H5S).

Molecular Dynamics (MD) Simulations. All MD simu-
lations were performed with the SANDER module of the
AMBER 9.0 suite of programs73 using the parm99 force field
together with the GLYCAM (version 04f) parameters for
carbohydrates.74,75 The topology of the oligofuranosides was
built by using the additivity principle76,77 to the set of atomic
charges obtained for monosaccharide 1, which were deter-
mined, as previously reported,52 to account for the flexibility
of the ring. The starting geometries were also constructed

from multiple units of 1 using the Leap module in AMBER.
The simulations were carried out in water and under NPT
conditions coupled to an external temperature bath78 at 300
K and to a pressure bath at 1 atm to be consistent with the
NMR data available. Each oligofuranoside was put in a
theoretical box of approximate dimensions of 30 Å × 30 Å
× 30 Å filled with TIP3P79 water. We used periodic
boundary conditions and the SHAKE80 algorithm to fix all
hydrogen-containing bonds to their equilibrium value. A
dielectric constant of unity was used and a cutoff of 8 Å
was set for nonbonded (short- and long-range) interactions.
The particle mesh Ewald algorithm was used for treatment
of long-range electrostatics.81,82

The simulations were started by first minimizing the
energy of the water molecules with the geometry of the sugar
molecules constrained. This was followed by a total energy
minimization. Fifty cycles of steepest decent energy mini-
mization followed by 950 cycles of conjugate gradient were
applied to these first two steps. An annealing run of 100 ps
was further applied followed by a short equilibration MD
run of 150 ps. After this short MD run, production dynamics
were performed up to 240 ns keeping the same temperature
and pressure of 300 K and 1 atm, respectively.

In our earlier work,52,53 simulation times of over 200 ns
were required to obtain accurate rotamer distributions.
Moreover, the convergence of the gt:tg:gg populations as a
function of simulation time was used to establish this >200
ns criterion used in the present research. Shorter simulations
will result in errors of several units of percentage on the
rotamer populations. New methodologies will be required
in order to analyze larger oligomers to avoid prohibitive
simulation times.

Calculation of 3JH,H Values from Conformational
Ensembles Obtained from MD Simulations. For an ac-
curate comparison of the DFT/MD-derived 3JH,H values to
experiment, ensemble averaging must be carried out. This
was done by calculating 3JH,H values for each relevant bond
in compounds 1-8 using the DFT-determined equations and
the generalized Karplus equation previously developed by
Altona and co-workers (eq 3).56 These 3JH,H values were then
ensemble-averaged using eq 1.

Results and Discussion

Spin-Spin Coupling Profiles. The spin-spin coupling
constant data were plotted as a function of the respective
H,H torsion angles and fitted to eq 4 (Figures 4 and
5). Each curve resulted in an equation, which correlates the
3JH,H magnitude with each dihedral angle (eqs 5-9). The
coupling profiles for the ring protons (Figure 4 and eqs 5-7)
show reasonably well fitted curves, although it is apparent
that the curves are not well parametrized at torsion angles
near 0° ((90°). It should be appreciated, however, that these
equations are well-defined only over the area of rotational
space that is possible given the constraints of this ring system.
In addition, in all of the dihedral angle distributions generated
from the MD conformer ensemble, no conformers that adopt
these configurations are visited (see Supporting Information).
For angles that cannot be obtained while the ring structure
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is maintained (e.g., H2-C2-C3-H3 ) 0°), use of a
particular equation will give unrealistic values for the
corresponding 3JH,H (i.e., J > 20 Hz).

3J1,2 ) 4.62 + 3.16 cos(φ) + 4.57 cos(2φ) (5)

3J2,3 ) 8.04 + 8.07 cos(φ) + 7.24 cos(2φ) (6)

3J3,4 ) 4.44 + 0.50 cos(φ) + 4.25 cos(2φ) (7)

The coupling profiles along the C4-C5 bond (Figure 5
and eqs 8 and 9) also illustrate well-fitted (R2 ) 0.97) and
well-defined Karplus-type relationships. Of particular note,
the 3JH4,H5R curve is shifted by ca. 15° from the 3JH4,H5S curve.
As a result, a phase factor has been added to eq 9 to obtain
a better fit to the DFT data.

3J4,5S ) 4.95 - 0.42 cos(φ) + 4.03 cos(2φ) (8)

3J4,5R ) 5.23 + 0.02 cos(φ + 15.1°) +
4.67 cos(2φ + 30.2°) (9)

The dependence of the 3JH,H values on the rotation of the
C5-O5 bond was also investigated. Some variation in the J
values as a function of H5-O5-C5-C4 angle was observed,
and this analysis is presented in the Supporting Information.

Comparison of DFT/MD-Derived and Experimental
3JH,H Values for 1. With the empirical and DFT-derived
relationships (eqs 3 and 5-9, respectively) in hand, and with

the use of eq 1, we calculated averaged 3JH,H values using
the distribution of conformers we had previously obtained
from an MD simulation of 1.52 This investigation had
identified a single conformer family located in the north-
eastern portion of the pseudorotational itinerary (Figure 1).
Presented in Table 1 is a comparison of these calculated 3JH,H

values for 1 with those measured by NMR spectroscopy.
Analysis of these data reveals that the DFT-derived eqs 5-9
yield results that are in better agreement with experimental
3JH,H than those calculated using the empirical relationship
(eq 3). Indeed, this is observed for all coupling constants,
with the exception of 3JH4,H5R. The calculated ring couplings
(3JH1,H2, 3JH2,H3, and 3JH3,H4) show the same trend as experi-
ment, with a near perfect agreement observed for 3JH3,H4.
The calculated 3JH1,H2 is slightly larger than the experimental
value, which could be attributed to small errors in the
conformer distributions obtained from the MD simulations.

There is good agreement with the DFT/MD-determined
3JH4,H5S value; however, for 3JH4,H5R significant deviations
from experiment are observed. Again, a possible explanation
for this discrepancy stems from small differences in the MD-
predicted hydroxymethyl rotamer populations and those
found in solution. The simulations overestimate the gg
rotamer population (56%) compared to experiment (48%)
and underestimate the gt rotamer population (37% compared
to 45%). In the gt rotamer, H4 and H5R are trans to each
other and hence the 3JH,H for this rotamer is large. This
coupling is therefore the largest contributor to the average
3JH,H, and if the population is underestimated in the MD
simulations, then the calculated average coupling would be
smaller than the experimental value. Better agreement with
the experimental 3JH4,H5R values would be obtained if, in the
MD simulation, the population of the gt rotamer is increased
and the population of the gg rotamer is decreased. In contrast,
the 3JH4,H5S values would remain less affected, as the 3JH4,H5S

value is rather insensitive to the relative populations of the
gt and gg rotamers (the largest coupling between H4 and
H5S is present in the tg rotamer). More information can be
found in the Supporting Information. It should be appreciated,
however, that differences as low as 0.2 kcal/mol in the
relative energies of two rotamers can lead to significantly
different rotamer populations. Therefore, differences in
energies between MD and solution would need to be less
than 0.2 kcal/mol to obtain better agreement.

It is not surprising that the use of the DFT-derived
relationships yields better results than the generalized equa-

Figure 4. 3JH,H coupling profiles for the ring protons of methyl
R-D-arabinofuranoside. All fits resulted in an R2 value of 0.99.

Figure 5. 3JH,H coupling profiles along the C4-C5 bond of
methyl R-D-arabinofuranoside. φ is the H4-C4-C5-H5(R/
S) dihedral angle.

Table 1. Comparison of Experimental and Theoretical
〈3JH,H〉 Values (in Hz) for 1a

coupling exp EKb DKb

〈3JH1,H2〉 1.7 2.8 2.4
〈3JH2,H3〉 3.4 5.2 3.8
〈3JH3,H4〉 5.8 8.5 5.8
〈3JH4,H5R〉 5.8 4.2 4.2
〈3JH4,H5S〉 3.3 1.4 3.2

a Exp ) experimental, EK ) empirical Karplus equation, DK )
DFT-derived equations. b MD simulations led to a conformational
distribution largely located in the northeast region of the
pseudorotational itinerary (centered around P ≈ 45°) and a
C4-C5 rotamer distribution of approximately 37% gt, 7% tg, and
56% gg.
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tion. Nevertheless, the difference between the two is striking,
with the 3JH,H values differing by an average 1.3 Hz (over a
range of 0.4-2.6 Hz). An important implication of this
finding is that the results of many previous conformational
analyses of R-arabinofuranose rings,31,83-85 which relied
upon the use of generalized relationships such as eq 3, should
now be re-evaluated. These previous studies also involved
the analysis of 3JH,H by PSEUROT,47 in which a two-state
conformational model is assumed. The results in Table 1
and our previous MD simulations on 152 suggest that the
two-state model is not applicable for the R-arabinofuranose
ring. Hence, the use of the PSEUROT approach in probing
the conformation of these ring systems appears to be of
questionable utility. Instead, an alternative approach would
be to carry out an AMBER/GLYCAM MD simulation of
the R-arabinofuranoside of interest and subsequently use the
resulting conformer ensemble to calculate 3JH,H values that
can be directly compared with those from experiment (see
below). Moreover, use of the dihedral angle distributions
from the MD simulations with the DFT-determined equations
leads to significantly better agreement than the use of
idealized geometrical parameters (e.g., H1-C1-C2-H2 )
180°; see Supporting Information), thus demonstrating that
the DFT-determined equations must be used in conjunction
with the MD conformer ensemble to reasonably predict the
3JH,H values.

Conformational Analysis of Larger r-Arabinofurano-
side Oligomers (2-8). Having had success in applying this
approach to monosaccharide 1, we next turned our attention
to larger oligosaccharides containing R-arabinofuranoside
residues (2-8), the conformations of which we have previ-
ously investigated.55 To begin, we carried out MD simula-
tions on disaccharides 2-4, which are the three possible
isomeric methyl R-D-arabinofuranosyl-R-D-arabinofurano-
sides.

Rotamer Populations in 2-4. MD simulations of 2-4
required 240 ns for the rotamer populations to achieve
convergence to reasonable uncertainties (errors in populations
of 3% or less), a simulation time similar to that reported
previously for 1.52 Figures 6-8 show the time dependence

of the ω angle for both rings in each of 2-4, as well as the
resulting histograms. Table 2 summarizes the rotamer
populations about the C4-C5 bond in each ring for the three
disaccharides.

The results presented in Figures 6-8 and Table 2
demonstrate that the simulations yield three well-defined
rotamers for the C4-C5 bond of each ring in disaccharides
2-4. In the R-(1f2) and R-(1f3)-linked disaccharides, 2
and 3, respectively, the rotamer populations of both rings
exhibit the same trend, namely Xgg > Xgt > Xtg, which is in
agreement with the results obtained for 1,52 as well as
experiment.54,55 However, different results are observed for

Figure 6. Time dependence of the ω angle (insets) and the
resulting histograms obtained from the simulation of 2 for ring
A (red) and ring B (blue).

Figure 7. Time dependence of the ω angle (insets) and the
resulting histograms obtained from the simulation of 3 for ring
A (red) and ring B (blue).

Figure 8. Time dependence of the ω angle (insets) and the
resulting histograms obtained from the simulation of 4 for ring
A (red) and ring B (blue).

Table 2. MD-Derived Rotamer Populations for Rings A
and B of 2-4a

2 3 4

1 A B A B A B

Xgt 37 (3) 25 (2) 34 (2) 27 (2) 35 (2) 17 (2) 30 (2)
Xtg 7 (1) 8 (1) 9 (1) 8 (1) 9 (1) 18 (2) 8 (1)
Xgg 56 (3) 67 (3) 57 (3) 65 (3) 56 (3) 65 (3) 62 (3)

a Standard errors were calculated according to Allen and
Tildesley88 and are reported in parentheses.
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the R-(1f5)-linked disaccharide 4. The rotamer populations
of ring B follow the trend observed for the rings in 1-3
(Xgg > Xgt > Xtg) but those of ring A follow the trend Xgg >
Xtg ≈ Xgt. The results of the simulations in ring A of 4 thus
differ from experimental data, which has shown that the
C4-C5 bonds in both rings in 4 have similar rotameric
distributions.54 On the basis of these results and those
obtained from 1, it is clear that for “terminal” C4-C5 bonds
(all those in 1-3 and ring B in 4) the simulations provide
rotamer populations similar to each other and also to
experiment. However for “internal” C4-C5 bonds, as for
ring A in 4, poorer agreement with experiment is seen;
although the gg rotamer is still the most populated, the tg
rotamer is enhanced at the expense of the gt rotamer.

Shown in Table 3 are the 3JH4,H5R and 3JH4,H5S coupling
constants measured by NMR spectroscopy,26,27 as well as
those calculated from the conformer ensemble obtained from
the simulations by application of the empirical Karplus
equation and the DFT-determined equations. These data
demonstrate that agreement between the calculated 3JH4,H5R

and 3JH4,H5S values and the experimental ones improves
significantly by using the DFT-derived equations as opposed
to the generalized relationship. In particular, the DFT-derived
equation for 3JH4,H5S reproduces the experimental value
essentially identically for all three molecules. With regard
to 3JH4,H5R, the calculated values are all significantly smaller
than those obtained from experiment, which is consistent with
the monosaccharide 1, but again better agreement is observed
using the DFT-derived equations. Again, this discrepancy
may be due to the MD-predicted hydroxymethyl group
conformation.

Rotamer Populations in 5-8. We next examined the
C4-C5 rotamer populations in four larger oligosaccharides
(5-8, Figure 3); results analogous to those seen in 2-4 were
observed. Rotamers about C4-C5 bonds involved in an
R-(1f5) linkage (rings A and B) exhibit similar dependen-
cies of the ω angle and histograms to that of ring A in
disaccharide 4. In contrast, for terminal C4-C5 bonds (rings
C or D), populations similar to those of both rings of
disaccharides 2 and 3 and ring B of 4 are obtained (Table
4).

As would be expected from the similarity between the
C4-C5 rotamer populations in 5-8 with those in 2-4, the
trends observed in the 3JH4,H5R and 3JH4,H5S magnitudes are
analogous to those described above (Table 5). That is, the
use of the DFT-derived equation significantly underestimates

the 3JH4,H5R magnitude while accurately predicting the value
for 3JH4,H5S. Similar to the results for 2-4, use of the
empirical Karplus equation for the coupling pathways in 5-8
leads to the correct trend, however, the magnitudes agree
very poorly with experiment, and particularly poor agreement
is observed for ring B of 7 and 8, which is glycosylated at
both O5 and O3. In both molecules, the calculated C4-C5
rotamer populations are inverted relative to experiment,
regardless of whether the DFT-derived or empirically derived
curves are used to calculate the 3JH,H. Consistent with the
results for 1-4, when the DFT-derived relationships (eqs 5-9)
are used, the 3JH4,H5S values obtained for the C4-C5 bonds
in 5-8 agreed well with experiment (in all cases within 0.4
Hz).

Distribution of Ring Conformers. Having investigated
the C4-C5 rotamer populations in 1-8, we turned our
attention to the ring conformations in the oligomers and the
related coupling constants, 3JH1,H2, 3JH2,H3, and 3JH3,H4. Thus,
the same analysis carried out for 3JH4,H5R and 3JH4,H5S was
performed for the 3JH,H in each furanose residue of oligosac-
charides 2-8. As mentioned previously, direct comparison
between experimental 3JH,H and those calculated by applica-
tion of the various coupling relationships to the conformer
ensemble obtained from the MD simulation will eliminate
errors associated with the two-state model inherent in the
PSEUROT47 approach. Table 6 lists the 3JH1,H2, 3JH2,H3, and
3JH3,H4 determined from NMR spectroscopy,54 as well as
those calculated from the simulations of oligofuranosides
2-8. For the sake of comparison, the data for 1 are included
again in Table 6.

Use of either the generalized Karplus equation or the DFT-
derived relationships led to the same trend as experiment
(3JH3,H4 > 3JH2,H3 > 3JH1,H2) in all the compounds. As was
demonstrated for 1, use of the DFT-derived equations lead
to 3JH,H magnitudes that agree with experiment better than
the use of the empirical relationship,56 which uniformly
overestimates the magnitudes. It should be noted that both
equations yield the lowest magnitudes of 3JH1,H2, 3JH2,H3, and
3JH3,H4 for rings substituted at C3, which is also observed
experimentally. Taken together, these results suggest that
these AMBER/GLYCAM MD simulations provide an ac-
curate distribution of ring conformers and that the discrep-
ancies with the absolute 3JH,H values stem from differences

Table 3. 3JH4,H5R and 3JH4,H5S (in Hz) for Each Ring in 2-4
Obtained from Experiment and from MD Simulation
Conformer Populationsa

ring A ring B

Exp EK DK Exp EK DK

2 R 5.8 2.4 3.4 5.8 3.8 4.0
S 3.1 1.6 3.3 3.3 1.7 3.3

3 R 5.8 2.8 3.6 5.8 4.0 4.1
S 3.4 1.6 3.3 3.4 1.7 3.3

4 R 5.5 2.6 3.5 5.5 3.2 3.7
S 3.4 2.0 3.5 3.4 1.6 3.3

a R ) 3JH4,H5R, S ) 3JH4,H5S, Exp ) experimental, EK )
extended Karplus equation, DK ) DFT-derived equation.

Table 4. MD-Derived Rotamer Populations for the Rings
A, B, C, and D of 5-8a

ring A ring B ring C ring D

5 Xgt 14 (2) 24 (2) 30 (2)
Xtg 15 (2) 7 (1) 8 (1)
Xgg 71 (3) 69 (3) 62 (3)

6 Xgt 14 (2) 13 (2) 32 (2)
Xtg 16 (2) 15 (2) 8 (1)
Xgg 70 (3) 72 (3) 60 (3)

7 Xgt 9 (1) 31 (2) 31 (2)
Xtg 22 (2) 9 (1) 8 (1)
Xgg 69 (3) 60 (3) 61 (3)

8 Xgt 17 (2) 11 (1) 28 (2) 34 (2)
Xtg 18 (2) 22 (2) 7 (1) 10 (1)
Xgg 65 (3) 67 (3) 65 (3) 56 (3)

a Standard errors were calculated according to Allen and
Tildesley 86 and are reported in parentheses.

218 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Taha et al.



between the spin-spin coupling profiles derived for 1 and
those that could be calculated, for larger, more complicated
systems such as 2-8.

We also evaluated the distribution of P for all of the rings
in these compounds. Similar to what we observed for 1,52

unsubstituted rings, or those glycosylated at O2 and O5,
display conformational distributions with a single conformer
family, located in the northern hemisphere between -60°
and 90° (Figure 9, left panel, and Supporting Information).
In contrast, for rings substituted at O3 such as ring B of 3,
5, 7, and 8 the distributions of the P display a second
populated area of conformational space in the southern
hemisphere, which is centered about P ) 120° (Figure 9,
right panel). Thus, attaching another sugar to the ring
influences the ring conformation only when this group is
attached at O3, not at O2 or O5. This corresponds well to
the results obtained by the analysis of 3JH,H.

Conclusions

We report here the combined use of AMBER/GLCYAM MD
simulations and calculation of 3JH,H (3JH1,H2, 3JH2,H3, 3JH3,H4,

3JH4,H5R, and 3JH4,H5S) from the resulting conformer distribu-
tion to probe the conformation of a group of oligosaccharides
consisting of one to four R-arabinofuranosyl residues (1-8).
This approach allows for the direct comparison of vicinal
coupling constants obtained from NMR spectroscopy and
conformer populations from MD simulations, thereby cir-
cumventing possible sources of errors introduced by the
model used to analyze NMR data (e.g., the two-state model
inherent in PSEUROT47 or the “discrete” model45).

The coupling constant values calculated from either the
DFT-derived 3JH,H relationships or the empirically derived
Karplus equation showed, for nearly all cases, the same trend
as experiment. These results lend credence to the ability of
AMBER/GLYCAM to provide accurate conformer distribu-
tions of oligosaccharides containing R-arabinofuranoside
rings. Not surprisingly, the DFT-derived equations obtained
for 1 lead to significantly better agreement between experi-
ment and theory, compared to the use of an empirical Karplus
equation. Indeed, for many of the 3JH,H nearly identical
agreement between the calculated values and those obtained
from experiment is observed.

Table 5. 3JH4,H5R and 3JH4,H5S (in Hz) for Each Ring in 5-8 Obtained from Experiment and from MD Simulation Conformer
Populationsa

ring A ring B ring C ring D

Exp EK DK Exp EK DK Exp EK DK Exp EK DK

5 R 5.4 2.1 3.2 5.8 2.4 3.4 5.9 3.2 3.8
S 3.1 1.5 3.3 3.2 1.5 3.3 3.1 1.6 3.3

6 R 5.9 2.2 3.3 5.7 2.0 3.2 5.8 3.5 3.9
S 3.2 1.8 3.4 3.2 1.7 3.3 3.3 1.7 3.3

7 R 5.3 1.9 3.3 5.9 3.4 3.9 6.0 3.3 3.8
S 3.0 2.4 3.7 3.4 1.7 3.4 3.3 1.6 3.3

8 R 5.4 2.5 3.5 5.4 2.2 3.4 5.7 2.9 3.6 5.7 3.9 4.1
S 3.1 2.1 3.5 3.0 2.4 3.7 3.2 1.6 3.2 3.2 1.8 3.4

a R ) 3JH4,H5R, S ) 3JH4,H5S, Exp ) experimental, EK ) extended Karplus equation, DK ) DFT-derived equations.

Table 6. Vicinal Coupling Constants (in Hz) for the Ring Protons for Each Ring in 1-8 Obtained from Experiment and from
MD Simulation Conformer Populationsa

ring Ab ring Bb ring Cb ring Db

Exp EK DK Exp EK DK Exp EK DK Exp EK DK

1 3JH1,H2 1.7 2.8 2.4
3JH2,H3 3.4 5.2 3.8
3JH3,H4 5.8 8.5 5.8

2 3JH1,H2 1.6 0.9 1.7 1.6 1.7 2.0
3JH2,H3 3.5 3.6 3.0 3.4 4.4 3.5
3JH3,H4 6.3 7.5 5.3 6.1 8.2 5.6

3 3JH1,H2 1.3 0.7 1.8 1.6 1.7 2.0
3JH2,H3 2.2 2.9 2.7 3.4 4.4 3.5
3JH3,H4 5.5 6.8 4.9 6.2 8.2 5.6

4 3JH1,H2 1.6 2.4 2.2 1.6 2.5 2.3
3JH2,H3 3.1 4.6 3.6 3.1 4.9 3.7
3JH3,H4 5.8 8.0 5.5 6.1 8.3 5.7

5 3JH1,H2 1.7 2.4 2.2 1.2 0.2 1.6 1.6 1.8 2.1
3JH2,H3 3.4 4.4 3.5 2.2 2.5 2.6 3.4 4.5 3.5
3JH3,H4 5.4 7.8 5.5 5.8 6.6 4.8 6.2 8.3 5.7

6 3JH1,H2 1.7 2.4 2.3 1.6 2.1 2.2 1.6 2.3 2.2
3JH2,H3 3.2 4.5 3.5 3.2 4.3 3.4 3.3 4.8 3.7
3JH3,H4 5.9 7.9 5.5 6.0 7.8 5.5 5.9 8.4 5.7

7 3JH1,H2 1.1 0.5 1.7 1.6 2.0 2.1 1.6 1.8 2.1
3JH2,H3 2.1 2.8 2.7 3.3 4.6 3.6 3.4 4.5 3.5
3JH3,H4 5.3 7.0 5.0 5.9 8.4 5.7 6.0 8.3 5.7

8 3JH1,H2 1.8 2.3 2.2 1.2 0.1 1.6 1.6 2.3 2.2 1.6 1.6 2.0
3JH2,H3 3.4 4.4 3.5 2.0 2.6 2.6 3.3 4.8 3.6 3.3 4.4 3.5
3JH3,H4 5.9 7.8 5.5 5.5 7.0 5.0 5.8 8.5 5.8 6.0 8.2 5.6

a Exp ) experimental, EK ) extended Karplus equation, DK ) DFT-derived equations. b See Figure 3 for definition of ring labels.
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As determined in earlier studies with monosaccharide 1,52

long simulation times (240 ns) are required to achieve
convergence. The simulations yield three well-defined rota-
mers for each ring of the oligofuranosides 2-8. In the
particular cases of terminal rotamers, their populations exhibit
the trend Xgg > Xgt > Xtg. However, internal rotamers, which
are defined as those involved in an R-(1f5) linkage, follow
a different trend, namely, Xgg > Xtg ) Xgt; the results for
these internal linkages do not agree with experimental data.
In the search for the origin of this discrepancy, we evaluated
the efficiency of the TIP3P model to represent the water-
carbohydrate interactions in 2-8 by performing the same
simulations using the TIP4P water model (data not shown).
The use of this more sophisticated water model led to the
same outcome as TIP3P, thus suggesting the difference with
experiment is not related to the choice of water model. We
postulate that the use of coupling relationships more tailored
to these substituted linkages may lead to better agreement
between the rotamer populations obtained from the simula-
tions and those determined experimentally.

Another point of poor agreement is the 3JH4,H5R magnitudes
in 2-8, for which the calculated values are significantly
smaller than those measured by NMR spectroscopy. In
attempting to determine the origin of this discrepancy, we
considered that it may result from the effect of C5-O5 bond
rotation on the magnitude of this 3JH,H. However, when this
was investigated (see Supporting Information), we found that
rotation about this bond has only a minor effect on the
coupling across the C4-C5 bond, which is consistent with
earlier work by Serianni and co-workers on computed 3JH,H

values in hydroxymethyl groups in pyranosides.39 Currently,
investigations are ongoing to elucidate the lack of agreement
between the computed and experimental values for 3JH4,H5R.
A possible alternative approach for the prediction of these
couplings would be to sample the MD trajectories for a small
set of representative conformers and to perform the DFT
coupling calculations directly on these structures. This
approach will avoid any possible errors that may be
introduced in the fitting of the DFT data to obtain the
coupling profiles. Moreover, the possibility that the MD
simulations may not accurately predict the C4-C5 rotamer
distributions may be a source of the discrepancy in the
3JH4,H5R values. For a more complete determination of the

solution conformation of the hydroxymethyl groups in
2-8, measurements of 2JC,H, 3JC,H, and 4JC,H would provide
additional insights. Similar studies have been conducted
by Serianni and co-workers, where various coupling
constants in 13C-labeled carbohydrates were used to probe
conformation.38-41,86,87 Analogous studies on 1 are cur-
rently ongoing.

With regard to ring puckering, the simulations yield P
distributions for the rings of oligofuranosides 2-8 that are
essentially identical to those previously determined for the
monomer, methyl R-D-arabinofuranoside 1.52 The conformers
are distributed in the northern hemisphere and thus in a single
region of the pseudorotational itinerary. These results confirm
our earlier work on 1, which suggested that the two-state
conformational model for assessing ring conformation using
PSEUROT is not valid for R-arabinofuranoside rings. On
the basis of the simulations carried out here, a notable
exception is for rings glycosylated at O3 (for ring B of 3
and 6-8), where a second area of conformational space,
centered in the southern hemisphere around P ) 120°, is
populated. The two-state model therefore appears to be valid
for these substituted rings.
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Figure 9. Time dependence of the P angle (insets) and the resulting histograms obtained by the simulation of disaccharide 3
ring A (right) and ring B (left).
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Abstract: A benchmark study for relativistic density functional calculations of NMR spin-spin
coupling constants has been performed. The test set contained 47 complexes with heavy metal
atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal
atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different
levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The compu-
tational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-
order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include
solvent effects. The NMR computations also employed the continuum solvent model. Computa-
tions in the gas phase were performed in order to assess the importance of the solvation model.
The relative median deviations between various computational models and experiment were
found to range between 13% and 21%, with the highest-level computational model (hybrid density
functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent
model, and a Gaussian finite-nucleus model) performing best.

I. Introduction

Indirect nuclear spin-spin coupling (J coupling) is one of
the most important nuclear magnetic resonance (NMR)
observables. Because of its high sensitivity, the possibility
of routine measurements, and its ability to provide useful
data about the geometric as well as the electronic structure
of chemical compounds, NMR is a widely used technique
in chemistry and neighboring scientific disciplines. Conse-
quently, calculations of NMR parameters based on first-
principles theory are of high importance to help with the
interpretation of experimental data and make predictions.
Also, the computation of NMR parameters such as nuclear

magnetic shielding and J coupling offers new ways of
analysis that can enhance the knowledge about NMR
observables and improve our ability to understand the
implications of experimental NMR data.1-6

On the theoretical side, apart from the evidently important
topic of modeling NMR parameters, there are few molecular
properties that are as sensitive to relativistic effects as J
coupling: relativistic “corrections” exceeding 100% of the
nonrelativistic result are rather common when elements from
the sixth row of the periodic table are involved.6 Moreover,
indirect nuclear spin-spin coupling is quite sensitive to
approximations used to describe the electron-electron
interactions, the quality of the basis set, and just about every
other approximation made in the computational model. J
coupling is therefore an excellent testing ground for elec-
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tronic structure methods, for relativistic quantum chemical
methods, and for relativity-correlation, relativity-solvation,
etc., “cross terms”.

J couplings with heavy atoms can be challenging to obtain
experimentally and reproduce computationally. The reliable
calculation of coupling constants for heavy nuclei has some
important theoretical requirements for the computational
model, most importantly the inclusion of relativistic effects
and electron correlation, basis sets that are capable of
describing the large relativistic effects on J coupling, but
also more ‘exotic’ features such as an adequate finite nuclei
representation. Due to the variational instability of the
perturbation operators it is also advantageous if the calcula-
tion makes use of analytical derivatives techniques instead
of a finite-field differentiation.78

In recent years, first-principles codes for heavy atom
spin-spin coupling constants have become available that
consider most, if not all, of these aspects.7-13 Relativistic
effects were considered in these approaches in different ways,
making use of four-component theory7 and various ap-
proximate two-component methods (or their scalar relativistic
versions) such as the zeroth-order8,9,12,13 and infinite-order10

regular approximations (ZORA, IORA), or Douglas-Kroll
transformations.11 Density functional theory (DFT) is usually
the method of choice in calculations of heavy nuclei NMR
properties in larger metal complexes because it includes
electronic correlation at an affordable computational cost.
In the past, relativistic NMR computations were a highly
specialized research topic. In recent years a substantial body
of computational data has become available, demonstrating
that in particular relativistic DFT computations of heavy
nucleus NMR parameters can be successfully undertaken
even for large metal complexes. For a recent overview of
theoretical methods and available case studies, see ref 6.

The availability of easy-to-apply relativistic NMR methods
of affordable computational cost allows researchers who are
not specialized in theory developments to routinely augment
their work by first-principles calculations. As a consequence,
it is very important to develop protocols for such computa-
tions with reasonably well-known and well-understood error
bars, perhaps similar in spirit to the established model
thermochemistries. It is the intent here to study of perfor-
mance of a family of computational models for relativistic
J-coupling computations and determine the error bars with
respect to a substantial set of experimental data for coupling
constants involving one or two heavy metals. In this way,
adequate settings may be determined for an overall agreement
of computed spin-spin coupling constants with experiment
which allow for an estimation of the error bars of newly
computed coupling constants or to gauge whether agreement
with experiment has been obtained for ‘good enough
reasons’. For an assessment of the overall performance of
the method a wide range of different couplings needs to be
tested, including compounds with different heavy metals and
spin-spin couplings through one, two, or more bonds.
Having well-tested basis sets available for such computations
is also extremely important.

A comparatively widely applied method for relativistic
J-coupling computations is presently the analytic-derivative

ZORA relativistic approach described in refs 8, 9, 12, and13
which includes scalar and spin-orbit relativistic effects, a
finite nucleus model, and allows for nonhybrid as well as
hybrid DFT computations. The program also includes several
methods for chemically motivated analyses of the results.14-17

A modest number of benchmark data (23 one-bond coupling
constants) has been reported along with the original nonhy-
brid DFT scalar relativistic point-nucleus implementation,8

indicating overall reasonable agreement with experiment. In
this and other previous works, a mix of experimental
structures and geometries optimized at various levels of
theory have been used along with varying approximations
in the exchange-correlation (XC) potential and the XC
response kernel. Subsequent applications also have employed
varying basis sets, geometries, and functionals. Combining
the results from these previous studies into one data set would
provide an inconsistent assessment of the method overall.

In this work, we will provide systematic data for 88 one-,
two-, and multibond coupling constants involving heavy
metal atoms based on a well-defined computational model
that is easy to establish in routine computations (see
computational details for references): All geometries were
optimized at the scalar-ZORA/BP/TZP level of theory with
inclusion of a continuum solvation model followed by
J-coupling computations with a finite nucleus model, the
continuum solvation model, and a basis set suitable for J
coupling. Herein, scalar vs spin-orbit ZORA and nonhybrid
vs a hybrid functional (PBE vs PBE0) computations will be
compared with experimental data to determine the perfor-
mance of each computational model with respect to repro-
ducing experimental data. In addition to compiling data for
benchmark systems from previous studies, a sizable number
of new coupling constants were added and are computed here
for the first time. Further, many coupling constants of
previously studied systems are computed here for the first
time at the hybrid DFT level of theory and including finite
nucleus effects. The benchmark set contains 30 two-bond
as well as several multibond couplings, a test set large enough
to critically assess the performance of relativistic DFT
methods using standard functionals to calculate coupling
constants with heavy elements other than one-bond couplings.

The approximations leading to deviations between theory
and experiment, defining the error bars for each method, are
not only in the basis set and functional but also in the overall
computational model since most of the experimental J
couplings were determined in solution at finite temperature.
Previous work from our group has highlighted the importance
of solvent effects for J coupling in metal complexes6,14,18-22

for which nonhybrid DFT computations have indicated that
the use of a continuum model is not always sufficient. In
the present benchmark study, errors from a lack of treating
explicit solvation dynamically, which would be the most
desirable computational model but also a very expensive one,
will therefore contribute to the error bars of each computa-
tional model. Overall, the results are encouraging: the most
sophisticated model (based on spin-orbit hybrid DFT
computations) performs best, yielding a 12.5% median
relative deviation from experiment.
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This paper is organized as follows. In section II details
for the computational models, regarding the basis sets, and
other technical details are provided. The benchmark data are
provided and discussed in section III. The discussion focuses
on general performance as well as on individual interesting
cases or classes of compounds and classes of J couplings.
A brief conclusion can be found in section IV.

II. Computational Details

All computations were performed with a pre-2009 release
of the Amsterdam Density Functional (ADF) package.23

Relativistic effects were incorporated in the computations
with the zeroth-order regular approximation (ZORA)24,25

using both the scalar (spin-free) and the two-component
formalisms. Relativistic effects in this approach are consid-
ered in the one-electron part of the Hamiltonian (relativistic
corrections to the kinetic energy of the electrons and to the
electron-nucleus attraction as well as one-electron spin-orbit
terms), along with relativistic corrections to the electron-
electron interactions in a mean-field sense. Like in most
applications of relativistic DFT NMR methodology, the
spin-other-orbit term was not considered in the computa-
tions. Previous experience with two-electron spin-orbit
contributions indicates that their relatiVe importance de-
creases in comparison to their one-electron counterparts when
the nuclear charges become larger,26-28 and consequently,
their effect on the coupling constants investigated here is
expected to be small.

The calculations of spin-spin coupling (J coupling)
reduced constants were performed using the CPL module
of the ADF package.8,9,12,13 “Pure”, i.e., nonhybrid, DFT
computations employed both the Vosko-Wilk-Nusair
(VWN)29 local density approximation (LDA) and Perdew-
Burke-Ernzerhof (PBE)30 generalized gradient approxima-
tion (GGA) terms; for simplicity, this functional will be
referred to as PBE. Differences in the results compared to
PBE proper, which was originally devised with a different
local correlation functional, are very minor and will not affect
the conclusions of this work. Hybrid DFT calculations used
a corresponding PBE0 functional which includes 25% of
Hartree-Fock exchange.31 In order to facilitate the hybrid
functional calculations orbital-pair density fitting techniques
were applied.12,32,33 For a better representation of the
Kohn-Sham orbitals near the nuclei, the atomic nuclei were
represented as Gaussian charge distributions, not as point
charges as is usually done, because the effect of the nucleus
representation in heavy metal spin-spin coupling calcula-
tions has been found to be significant. For details about the
finite-nucleus implementation and benchmark data for J-
coupling constants see ref 13. For the user of the software it
is only required to provide a “NuclearModel Gaussian” input
keyword. The nuclear radii are determined on the fly from
atomic masses stored in the ADF software library.13

The heavy metal basis set used for obtaining the J
couplings was an updated version of the ‘JCPL’ (short for J
coupling) Slater-type orbitals (STO) basis set used in
previous publications.8,13 Since the time when some of these
basis sets were first devised, the ZORA STO basis sets
accompanying the ADF package have undergone minor

revisions and we decided to generate a fresh set of basis
sets for this benchmark study and future computational work.
This JCPL basis set will accompany future releases of the
program. Like previous versions, for the sixth-row elements
this basis is derived from the TZ2P basis of the ADF basis
set library adapted for ZORA calculations which is a valence-
triple-� and core-double-� all-electron STO basis set with
two sets of polarization functions. For the sixth-row elements,
basis functions with exponents . Z (Z ) nuclear charge)
were replaced by an even-tempered set of 9 high-exponent
1s and 2p functions along with a set of accompanying
density-fit functions. A ratio of 1.69 has been used to form
the even-tempered set in order to reach exponents around
10 000 with relatively few functions. Previous work showed
good performance of basis sets derived in this way.13,15

Moreover, in finite nucleus computations, these basis sets
yielded reasonably well-converged results with respect to the
high-exponent augmentation without causing numerical prob-
lems,13 and thus, they represent an economical yet reasonably
accurate choice for routine computations. For lighter ele-
ments, four 1s basis functions with exponents 2 Z, 3 Z, 4 Z,
and 100 Z were added following a recipe given by Watson
et al.34 but with corresponding density fit functions added.15

Atom types not involved in spin-spin couplings were
represented using a double-� all-electron STO basis set with
one set of polarization functions for all atoms (DZP of the
ADF basis set library). No frozen cores were used.

For verification, all coupling constants were also computed
with the older version of the JCPL basis and with the basis
TZ2P3 from ref 13, which was constructed in a similar way
as JCPL but with STO exponents reaching 3 × 104 for the
sixth-row metals for elements as heavy as Hg and Pb. The
obtained coupling constants were very similar (the difference
is less than a 1% in more than 95% of the couplings
calculated with the PBE functional). In calculations of
coupling constants with the TZ2P3 basis and the hybrid
functional, PBE0 led to convergence problems in several
compounds of Hg, W, and Pt. Convergence issues with PBE0
computations and basis sets with very high STO exponents
were also noted previously in ref 13, where the basis set
convergence in relativistic J-coupling DFT calculations was
investigated. The convergence problems for very high
exponent basis functions are tentatively attributed to the
accuracy of the numerical integration/density fitting combi-
nation used to compute the exact exchange integrals. No
convergence problems were found with the JCPL and the
revised JCPL basis. Due to the similarity of the results it
was decided only to report data obtained with the updated
JCPL basis in this work. We note, however, that both in ref
13 and during the course of the present study we noticed a
slower convergence of the PBE0 J couplings with respect
to the high-exponent augmentation, in particular with a point-
nucleus model. The finite-nucleus data reported here are
likely to be better converged, but the difference in basis set
convergence of nonhybrid vs hybrid DFT J couplings of
heavy atoms may warrant further investigation.

For consideration of solvent effects, the ADF implementa-
tion of the conductor-like screening model (COSMO)35 was
applied. Dielectric constants of 20.7, 37.5, 2.3, 4.8, 2.6, 8.9,
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5.0, 46.7, 2.3, 32.6, 2.31, 2.78, 84.0, 7.58, 2.38, and 78.39
were used to describe the solvents acetone, acetonitrile,
benzene, chloroform, CS2, dichloromethane, dimethyl ether,
DMSO, Freon 113, methanol, Pb(CH3)4, PbCl4, sulfuric acid,
THF, toluene, and water, respectively, along with default
atomic radii.

Coupling computations were performed with the following
settings for the numerical integration: a global parameter of
6.0 and an atomic core parameter of 8.0. These values
roughly indicate the number of significant figures for the
density integration.36 The two-component relativistic analogs
of the FC, SD, PSO, and DSO terms as well as spin-orbit
cross terms were included in the spin-spin couplings, except
where scalar relativistic calculations were performed, in
which case the (often small) SD term was neglected to lower
the computational expense.

Conversions between J coupling in Hertz and reduced
coupling K were based on the following gyromagnetic ratios,
in 107 rad/(T s): 26.7522128, 6.728284, 25.18148, 10.8394,
2.624198, -10.0317, 1.1282403, 5.8385, 4.8457916, 15.5393338,
15.6921808, and 5.58046 for 1H, 13C, 19F, 31P, 35Cl, 119Sn, 183W,
195Pt, 199Hg, 203Tl, 205Tl, and 207Pb, respectively.37 Where
applicable, the couplings constant reported in this work were
obtained as the average of the computed constant for every
equivalent atom pair in the molecule since experimentally
equivalent atoms may be nonequivalent in the calculation, for
instance due to the free rotation of alkyl groups and other ligands
under experimental conditions. Further, the coupling constants
reported here are unsigned because the sign is not always known
experimentally. We note that for the TlX series of diatomics,
calculations and experiment agree in that the isotropic coupling
is negative and the coupling anisotropy is positive.12 The
Supporting Information provides the full set of coupling
constants, including their signs, for each of the computational
models employed here.

Molecular geometries used for the spin-spin coupling
computations were obtained by full DFT optimizations. The
scalar ZORA operator was used to include relativistic effects
along with a triple-� all-electron basis with polarization func-
tions optimized for ZORA calculations (TZP from the ADF
basis set library) and small frozen cores (1s frozen for C, N, O,
and F, 1s-2p for Cl and P, 1s-3p for Br, 1s-4p for Sn and I,
and 1s-4d for W, Pb, Pt, Tl, and Hg). The XC functional
chosen for optimizations was BP, the combination of the
Becke8838 and the Perdew8639 generalized gradient approxima-
tions (GGAs), which has been shown in benchmarks to produce
reliable local minimum structures for metal complexes.40-42

For consistency with the J-coupling computations, solvent
effects were included in the optimizations by the COSMO
method using the dielectric constants listed above.

III. Results and Discussion

A. Benchmark Overview and Discussion of the
Scalar ZORA PBE Results. For this study a comprehensive
set of experimental J-coupling data has been compiled in
order to include representative cases for a wide range of
heavy metal spin-spin couplings. The major NMR nuclei
of the sixth row of the periodic table have been studied: W,
Pt, Hg, Pb, and Tl. For the analysis a total of 47 different
systems have been calculated to obtain 88 different spin-spin
couplings involving one or two heavy atoms. This study
includes one-bond couplings, as in previous benchmarks, but
also a considerable number of two-bond couplings and some
couplings through more than two bonds. A list of the selected
complexes and computed couplings, with references to the
experimental measurements, is provided in Tables 1 and 2.
The full data set, experimental and computed coupling
constants, is provided in the Supporting Information.

Table 1. Molecules and Spin-Spin Couplings Computed for This Work. Part 1: Hg and Pt

metal formula solventa one bond two bond others refs

Hg Hg(CN)2 CH3OH Hg-C 43
[Hg(CN)4]2- gas phaseb Hg-C 44
Hg(CH3)Cl CH3Cl Hg-C Hg-H 45
Hg(CH3)Br CH3Cl Hg-C Hg-H 45
Hg(CH3)I CH3Cl Hg-C Hg-H 45
Hg(CH3)2 CH3Cl Hg-C Hg-H 45
Hg(CH3)(CF3) εr ) 8.0c Hg-F, Hg-H 46
Hg(C6H5)2 CH2Cl2 Hg-C Hg-C Hg-Cd 43
Hg(CCCl)2 DMSO Hg-C Hg-C 43
Hg(CH3)CCH C6H6 Hg-Ce Hg-C 43
IrCl(SnCl3)(HgCl)(CO)(PH3)2

f CH3Cl Hg-Sn, Hg-P 47
Pt Pt(P(CH3)3)4 THF Pt-P 48

Pt(PF3)4 THF Pt-P 49
[Pt(CO)3]22+ H2O Pt-Pt, Pt-Cg Pt-Cg 50
[Pt(CN)5]24- H2SO4(conc) Pt-Pt, Pt-Cg Pt-Cg 51
cis-PtH2(P(CH3)3)2 CH3COCH3 Pt-P, Pt-H 52
trans-PtH2(P(CH3)3)2 CH3COCH3 Pt-P, Pt-H 52
cis-PtCl2(P(CH3)3)2 CH2Cl2 Pt-P 53
trans-PtCl2(P(CH3)3)2 CH2Cl2 Pt-P 53
cis-PtI2(NH2CH3)2 CH3COCH3 Pt-H, Pt-C 54
trans-PtI2(NH2CH3)2 CH3COCH3 Pt-H, Pt-C 54
Pt(SnCl3)(CH2C(CH3)CH2)(C2H4) CH3Cl Pt-Sn, Pt-Ch Pt-C, Pt-Hi Pt-Hj 55

a Solvent model used in calculations. b Experimental value corresponds to solid-state NMR of K salt. c Neat liquid. A dielectric constant of
8.0 representative of organic compounds with CF3 groups was used. d Both three-bond and four-bond spin-spin couplings. e Two different
couplings for both methyl and ethinyl ligands. f Experimental value for IrCl(SnCl3)(HgCl)(CO)(P(C6H5)3)2. g Both cis and trans inequivalent
couplings. h Four inequivalent couplings. i Five inequivalent couplings. j Three-bond coupling.
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In Figure 1 most of the computed reduced spin-spin
coupling (J-coupling) constants obtained from scalar ZORA
computations using the nonhybrid PBE functional are plotted
vs experiment. A good correlation can be observed for most
of the computed couplings, although there are several large
disagreements, in particular for the Tl systems. Apart from
these outliers, the correlation appears to be reasonable at the
scale of the plot.

Since the data set spans several orders of magnitude and
includes some severe outliers one needs to be careful with
assessing the performance numerically based on average or
rms deviations. An overall assessment of the agreement with
experiment can be obtained by comparing the average and
median of the unsigned deviation for both the absolute and

the relative errors, with associate variability measures as the
standard deviation (SD) around the average and median
unsigned deviation (MD)79 around the median (see
Table 3).

The most significant discrepancy between theory and
experiment is the systematic underestimation of the coupling
constant in the thallium systems. This is expected because
previous works12,15 have shown that in these Tl compounds
the inclusion of spin-orbit coupling is crucial. The relative
errors for couplings involving Pb are of similar magnitude.
In this case there are a number of small coupling constants
that are not well described at the scalar ZORA PBE level of
theory. Besides Tl and Pb the most significant absolute
deviation of the coupling constant is observed in the complex
IrCl(SnCl3)(HgCl)(CO)(PH3)2. For its huge Hg-Sn two-bond
coupling constant, which is outside the plot range of Figure
1, the deviation of 11 710 × 1019 T2 J-1 with respect to the
experiment represents 23% of the total coupling of -50 838
× 1019 T2 J-1.47 This and most of the other significant
discrepancies and selected cases will be discussed later in
section III.E. Couplings involving Hg and a light ligand in
linear Hg(II) complexes are reasonably close to experiment.
We note already here that the hybrid DFT results for Hg-C
couplings reported below agree very well with experiment.
It should be noted, however, that explicit solvation was
demonstrated to increase Hg-C couplings in linear Hg(II)
complexes quite significantly,21 and therefore, it is likely that
an error compensation regarding the complexes structure,
solvation effects on structure and J coupling, and approxima-
tions in the density functional, is influential both in the
present computations as well as in previous work. By
extrapolating the trends regarding solvation effects that were
reported in ref 21 a dynamic model with explicit solvation

Table 2. Molecules and Spin-Spin Couplings Computed for This Work. Part 2: W, Pb, and Tl

metal structure Solventa one bond two bond others refs

W W(CO)6 CH3Cl W-C 56
W(CO)5PF3 CFCl2CF2Clb W-P 57, 58
W(CO)5PCl3 CFCl2CF2Clc W-P 58
W(CO)5PI3 CFCl2CF2Clc W-P 58
η5-(C5H5)W(CO)3H CH3CNd W-H 59
WF6 CS2 W-F 60
W(CCH3)(CH2CH3)3

e C6H6 W-H 61
Pb PbCl4 PbCl4f Pb-Cl 62

Pb(CH3)4 Pb(CH3)4
f Pb-C Pb-H 63, 64

Pb(CH3)3H CH3OCH3 Pb-H Pb-H 64
Pb(CH3)2H2 CH3OCH3 Pb-H Pb-H 64
Pb(CH3)2(CF3)2 εr ) 8.0g Pb-F, Pb-H 46
Pb(CH3)3CF3 εr ) 8.0g Pb-F, Pb-H 46
PbH4 CH3OCH3

h Pb-H
Pb2(CH3)6 C6H6 Pb-C Pb-C, Pb-H Pb-H 65

Tl TlF gas phase Tl-F 66
TlCl gas phase Tl-Cl 66
TlBr gas phase Tl-Br 66
TlI gas phase Tl-I 66
Tl4(OCH3)4

i C6H5CH3 Tl-Tli 67
Tl(CN)3 H2O Tl-C 68
Tl(CN)2Cl H2O Tl-C 68
Tl(CN)Cl2 H2O Tl-C 68

a Solvent used in calculations. b Experimental solvent quoted simply as Freon. We selected Freon 113 with its intermediate εr.
c Experimental solvent unknown; selected CFCl2CF2Cl for analogy with W(CO)5PF3. d Experimental measurement in liquid crystal (ZLI-1132
Merck/EBBA). e As a model for W(CC(CH3)3)(CH2C(CH3)3)3. f Neat liquid. g Neat liquid. A dielectric constant of 8.0, representative of organic
compounds with CF3 groups, was used. h Experimental value not known. The value used has been extrapolated from Pb(CH3)3H and
Pb(CH3)2H2. i Experimental value for Tl4(OC(CH3)3)4, 205T-203Tl.

Figure 1. Computed absolute values of the reduced nuclear
spin-spin coupling constants K versus absolute experimental
values (in units of 1019 T2 J-1) for PBE, scalar ZORA
calculations. Two coupling constants involving Sn and a heavy
metal nucleus have been omitted due to their magnitude.
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might eventually lead to an overestimation of these J
couplings with respect to experiment at the level of theory
employed for this study. However, this will have to be
demonstrated explicitly in future work. Unlike previous
computations,21 here the full GGA response kernel is
considered in the computations, along with the continuum
model, the revised JCPL basis, and finite nucleus corrections,
and the geometries were optimized which is an important
factor. The combination of these effects lead to a less strong
underestimation of Hg-C couplings calculated with a GGA
functional when explicit solvation is omitted, as compared
to previous work, which is beneficial for the performance
of the computational model used here.

Overall, the pronounced discrepancy between average and
median errors in the summary for all metals in Table 1
indicates that at this level of theory a considerable number
of outliers taint the otherwise reasonable appearance of the
data set in Figure 1. Regarding the performance of the
computations for two-bond and higher couplings, the results
are promising since the relative median deviations from
experiment are comparable to the one-bond couplings.

B. Functional: PBE vs PBE0. Using a hybrid functional
(PBE0) results in a clear improvement of the overall
agreement of the computed coupling constants with experi-
ment as can be observed in both the plot of computed
couplings vs experiment (Figure 2) and the statistical
parameters (Table 4). The outliers for Tl remain at this scalar
relativistic level of theory. Most of the coupling constants
are better represented with this functional (57 of the total
88 coupling constants improve toward experiment). However,
when computing the overall deviation by metal, for molecules
containing Hg, Pb, and W, worse average results are observed
in the hybrid-DFT calculations. For mercury, however, this
trend is coming from an individual exception, the huge
2J(Hg-Sn) coupling constant in IrCl(SnCl3)(HgCl)-
(CO)(PH3)2. It has a great absolute error in both sets of scalar
relativistic calculations. Its calculated value is further away
from experiment with PBE0, with an unsigned deviation
around 100 times the second largest error among the Hg
couplings. If this coupling is discarded, a very significant
improvement of the overall mean deviations is obtained for
both the PBE0 and the PBE sets of calculations. The change
from the PBE calculations (average deviation ) 255.4 1019

T2 J-1) to PBE0 (average deviation ) 82.1) shows the general
trend of improvement for Hg when including exact exchange

in the functional with results closer to experiment in 14 of
the 23 calculated K (Hg-X) couplings. Regarding the W
and Pb computations, a general trend is not observed in the
absolute mean deviation. For example, the number of
improved results for the W complexes (4) and of worse
results (3) are similar, and so the overall accuracy for scalar
relativistic PBE vs PBE0 is comparable. However, an
improvement in the relative deviations is observed in the
Pb and W results due to improvements of the calculations
of the small J-coupling constants for which the relative error
with PBE is often quite large. The small couplings will be
discussed in more detail further below.

Regarding the relation of the coupling path length to the
performance of the model, the hybrid functional yields better
agreement with experiment for the one-bond couplings than
for two- and multibond couplings. Although the inclusion
of exact exchange in the functional reduces the one-bond
coupling overall deviations to less than one-half, the agree-
ment with experiment becomes worse for the long-range
couplings (three and four bond). The improvement of the
performance mainly for the one-bond couplings is also
clearly visible in the relative mean and median errors. In
the case of two-bond couplings, the mean absolute deviation
increases from PBE to PBE0, but it is mostly due to the
individual bad result of the Hg-Sn coupling, as mentioned
above. When omitting the Hg-Sn coupling from the test

Table 3. Statistical Error Parameters for the PBE, ZORA Scalar Calculations

absolute deviationa relative deviationa

∆Kmean SDb ∆Kmedian MDc ∆Kmean
rel SDb ∆Kmedian

rel MDc

total 513.3 1462.7 71.1 68.4 39.6% 90.2% 17.6% 11.5%
Hg 753.4 2352.5 158.5 153.4 16.9% 10.3% 17.0% 7.3%
Pt 233.7 685.7 32.5 30.4 23.3% 23.5% 13.6% 7.5%
W 73.8 57.0 70.3 42.8 35.7% 46.2% 10.3% 8.7%
Pb 98.1 111.7 25.7 19.1 100.2% 192.9% 68.5% 18.3%
Tl 2226.0 2536.9 2235.2 1122.8 57.0% 55.2% 56.2% 14.5%
one bond 676.7 1043.6 324.7 241.1 46.7% 122.9% 18.3% 9.5%
two bond 352.0 1920.2 14.7 9.3 32.9% 33.3% 18.2% 9.4%
longer 4.3 2.8 3.7 1.9 18.7% 14.8% 11.4% 6.3%

a Mean and median unsigned absolute and relative deviations from experiment. Absolute deviations in 1019 T2 J-1. Relative deviation
calculated as ∆Krel ) |(Kcalcd - Kexp)/Kexp × 100%| with unsigned K values. b Standard deviation (SD) calculated as ((1/N)Σi)1

N (∆Ki -
∆Kmean))1/2. c Median unsigned deviation (MD) obtained as mediani (|∆Ki - ∆Kmed|).

Figure 2. Computed vs experimental reduced couplings (in
1019 T2 J-1) for PBE0, scalar ZORA calculations. See also
caption of Figure 1.
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set the mean absolute deviations are comparable within the
uncertainties of the averages (absolute average ) 27.4 for
PBE and 31.1 for PBE0), showing a similar performance in
this case for both functionals for the two-bond couplings.

C. Spin-Orbit Effects. The inclusion of spin-orbit (SO)
coupling in the ZORA computations has no systematic effect
on the accuracy of the couplings when considering the whole
data set. The calculation results are summarized in Tables 5
and 6 and Figures 3 and 4. In the PBE0 calculations, for
example, 44 of the 88 computed couplings are improved by
including SO coupling in the formalism. As a result, the
absolute average deviation is improved but not the median,
and the relative errors are very similar. As pointed out earlier,
a systematic and large improvement is obtained for some of
the couplings involving the Tl atom. SO effects on other
molecules are less significant and variable, even decreasing
the agreement with experiment in some examples. For most
metals, the overall effect of including SO coupling is different

in hybrid and pure DFT calculations: in 34 of the computed
couplings spin-orbit coupling improves the result only for
one of the functionals.

The SO effect will be analyzed separately for the different
kinds of couplings under consideration here. As a general
finding, the overall deviations listed in Table 6 document
that the combination of the PBE0 functional with the
spin-orbit ZORA relativistic formalism yields the best
agreement with experiment among the computational models
tested here and that it is an overall well-performing method
for this set of coupling constants. The results are somewhat
reassuring because this computational model is also the most
sophisticated among those tested here. Incidentally, it is the
most expensive model too in terms of the required computing
resources.

For the Hg compounds, including SO effects always
reduces the absolute mean deviation from experiment, but
the median of the absolute unsigned error increases. In the

Table 4. Statistical Error Parameters for the PBE0, ZORA Scalar Calculations

absolute deviationa relative deviationa

∆Kmean SDb ∆Kmedian MDc ∆Kmean
rel SDb ∆Kmedian

rel MDc

total 476.5 2500.5 33.9 30.9 22.4% 33.2% 12.2% 9.3%
Hg 1093.8 4746.0 32.9 17.0 16.4% 13.5% 7.5% 6.0%
Pt 118.9 238.7 13.6 10.8 15.1% 15.1% 10.8% 6.4%
W 87.8 122.9 35.0 27.3 19.1% 16.3% 15.7% 12.8%
Pb 98.8 186.7 28.2 27.1 42.4% 65.2% 20.2% 11.3%
Tl 1317.4 1598.9 1265.1 750.9 33.1% 35.9% 30.3% 18.3%
one bond 363.3 711.2 132.1 120.8 19.5% 41.0% 8.0% 18.2%
two bond 678.8 3890.0 8.5 8.4 25.7% 21.8% 18.2% 14.1%
longer 14.1 12.1 11.3 7.5 19.0% 11.5% 24.0% 10.4%

a Mean and median unsigned absolute and relative deviations. Absolute deviations in 1019 T2 J-1. See footnotes of Table 3 for details.
b Standard deviation (SD). c Median unsigned deviation (MD).

Table 5. Statistical Error Parameters for the PBE, ZORA Spin-Orbit Calculations

absolute deviationa relative deviationa

∆Kmean SDb ∆Kmedian MDc ∆Kmean
rel SDb ∆Kmedian

rel MDc

total 466.1 1142.0 69.2 65.5 40.7% 97.1% 20.6% 11.6%
Hg 665.6 1633.6 171.0 170.4 20.0% 11.5% 17.8% 6.3%
Pt 290.2 861.0 35.4 32.2 24.5% 21.7% 16.2% 10.5%
W 99.3 80.9 50.0 45.8 38.4% 50.4% 12.1% 8.2%
Pb 122.4 130.1 53.9 39.0 106.7% 209.7% 56.7% 32.8%
Tl 1649.0 2068.0 1587.5 1092.7 38.5% 39.7% 38.7% 10.4%
one bond 662.6 1181.5 362.2 359.0 47.6% 132.1% 22.2% 11.8%
two bond 255.5 1359.7 17.2 14.0 34.1% 33.8% 19.9% 10.1%
longer 4.0 3.4 3.2 2.4 17.1% 16.5% 14.2% 8.3%

a Mean and median unsigned absolute and relative deviations. Absolute deviations in 1019 T2 J-1. See footnotes of Table 3 for details.
b Standard deviation (SD). c Median unsigned deviation (MD).

Table 6. Statistical Error Parameters for the PBE0, ZORA Spin-Orbit Calculations

absolute deviationa relative deviationa

∆Kmean SDb ∆Kmedian MDc ∆Kmean
rel SDb ∆Kmedian

rel MDc

total 352.2 1934.4 43.4 39.0 22.4% 36.1% 12.5% 9.4%
Hg 856.8 3686.8 35.0 32.7 14.8% 12.5% 10.1% 7.4%
Pt 111.9 246.7 19.0 17.5 16.6% 15.0% 11.5% 7.9%
W 70.6 74.9 44.1 37.5 15.0% 16.0% 8.2% 5.5%
Pb 68.2 72.0 30.0 26.3 49.0% 72.2% 26.5% 16.5%
Tl 737.1 1019.6 487.0 258.8 22.0% 29.9% 13.3% 8.9%
one bond 235.8 465.3 96.7 87.6 17.2% 45.2% 7.4% 17.5%
two bond 545.2 3023.7 10.2 6.5 29.3% 21.3% 25.1% 11.8%
longer 11.3 9.2 9.1 5.2 18.3% 9.7% 22.3% 9.9%

a Mean and median unsigned absolute and relative deviations. Absolute deviations in 1019 T2 J-1. See footnotes of Table 3 for details.
b Standard deviation (SD). c Median unsigned deviation (MD).
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PBE calculation most of the individual Hg couplings (19
out of 23) have slightly less good agreement with experiment
when including SO coupling, but the improvement in the
very large 2J(Hg-Sn) dominates the overall statistics. In the
PBE0 calculations it is also the 2J(Hg-Sn) coupling that
dominates the absolute deviations, but here also the general
trend is that SO coupling improves the results slightly. At
the PBE0 level, 15 of the Hg coupling constants improve
with respect to experiment when SO effects are considered.
However, the average improvement (excluding the
2J(Hg-Sn) coupling) is just on the order of 10 × 1019 T2

J-1.
For the Pt complexes the inclusion of SO coupling worsens

the agreement with experiment for most of the J couplings
(for 21 couplings with PBE and 20 with PBE0 out of a total
of 34). On the other hand, the absolute mean deviation from
experiment is smaller for the PBE0 calculations when
comparing scalar with SO results but only by about 7 × 1019

T2 J-1. We emphasize the case of the Pt-Pt coupling in the
[Pt(CN)5]2

4- complex: In this case inclusion of SO coupling
yields a large difference between theory and experiment (in

PBE0 calculation by more than 1000 × 1019 T2 J-1, which
is 33% of the experimental value). This result highlights the
difficulty of assessing approximate computational results in
which potentially important effects are not included: a good
agreement of scalar relativistic data with experiment might
lead to the conclusion that the magnitude of SO effects is
small, which is not correct in this case.

For complexes with W, opposite behaviors with respect
to SO effects are observed with the two functionals.
Spin-orbit effects in combination with the hybrid functional
clearly improve the results, but they render the agreement
of PBE with experiment worse. The combination of PBE0
with the SO relativistic formalism yields overall very good
results, with a median relative deviation of 10%. These are
the best results for any of the metals in terms of both absolute
and relative deviations.

For compounds of Pb, it also depends on the functional
whether SO effects improve the agreement with experiment
or not. In the nonhybrid PBE calculations both relative and
absolute deviations increase upon inclusion of SO effects.
Despite the fact that the PBE0 absolute mean deviation is
lower with SO coupling, there is an increase in the relative
errors compared to scalar relativistic calculations, showing
that spin-orbit coupling mainly improves the larger J
couplings but renders the results worse for some of the Pb
couplings with small magnitudes.

For complexes with Tl, the increase of the accuracy of
the calculations upon the inclusion of SO coupling is very
significant for the TlX (X ) halide) series for both func-
tionals. However, the SO effect in the Tl(CN)nCl(3-n) series
and for Tl4(OCH3)4 is to increase the deviation from
experiment. Since the gain in accuracy for some of the
systems is quite significant (around 40% of the experimental
value) while the loss of accuracy for the cyanide series is
relatively minor (around 3%), the overall result is a clear
improvement of the Tl couplings upon inclusion of SO
coupling in the computations. Therefore, for the Tl systems
the best results for the reduced NMR spin-spin coupling
constants are obtained from the spin-orbit relativistic hybrid
PBE0 functional calculations.

Focusing on the one-bond couplings, despite the fact that
the absolute mean deviation is always smaller when spin-orbit
coupling is included, in the PBE calculations the absolute
median and both the relative mean and the median deviations
increase slightly. The meaning of this is that some of the
worst results are improving, but there is somewhat less good
agreement with experiment for some of the coupling
constants that agreed quite well with experiment in the scalar
relativistic calculations. Overall, with PBE there is only an
improvement toward experiment for one-third of the cou-
plings upon including SO coupling. When spin-orbit
coupling is applied in combination with the hybrid functional,
most of the results improve toward experiment, and as a
consequence, all the statistic parameters improve.

For the two-bond couplings, although the absolute averages
show better agreement with experiment when SO coupling
is included, this is mainly due to the Hg-Sn case. If it is
excluded from the test set the mean absolute deviations are
slightly higher but just by 2 × 1019 T2 J-1 for PBE and 11

Figure 3. Computed vs experimental reduced couplings (in
1019 T2 J-1) for PBE, spin-orbit ZORA calculations. See also
caption of Figure 1.

Figure 4. Computed vs experimental reduced couplings (in
1019 T2 J-1) for PBE0, spin-orbit ZORA calculations. See also
caption of Figure 1.
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× 1019 T2 J-1 for PBE0. At the same time the absolute
median and both relative deviations worsen slightly.

The effect of SO coupling in the statistical parameters for
longer range couplings is quite small, and general trends are
not observed (the data set is also small, and not too much
significance should be attributed to minor differences in the
statistical parameters for different sets of computations). For
the few data points we have available, one-half of the
coupling constants improve and the other half become worse
in comparison with experiment when SO coupling is
included.

D. Overall Importance of the Solvent Model. One might
wonder how large the influence from the continuum solvent
model is in the calculations. In Table 7 the statistical data
are provided for calculations at the PBE0 ZORA spin-orbit
level but without the continuum model. The optimized
geometries are the same as those used in all other computa-
tions in this paper. If we focus on the relative deviations
from experiment, it is seen that the performance of the gas-
phase calculations is not significantly worse than the calcula-
tions with the COSMO solvent model when taking the
standard deviations of the mean and median into consider-
ation. The breakdown per metal reveals similar performance
of the gas-phase computations for Hg, Pt, and W, as
quantified by the median relative deviations. The trends in
the absolute deviations are strongly influenced by the Hg-Sn
coupling (see the apparently remarkable improvement of the
overall absolute average errors). As will be discussed in the
next section, the large-magnitude Hg-Sn coupling tends to
dominate the mean deviations in our data set and in the case
of the gas-phase calculations this coupling constant happens
to be close to experiment. Given the sensitivity of this
coupling constant to the computational model, this Hg-Sn-
bonded compound deserves further investigation. For the
trigonal Tl systems such as Tl(CN)2Cl we will demonstrate
in the next section that a dynamic study with explicit solvent
molecules (water) is likely to be necessary in order to
reproduce the experimental J couplings within a 10% margin
of error. Previous work by our group has reported large
explicit solvent effects on J couplings in metal complexes
with Tl.14,18 The breakdown per metal in Table 5, in
comparison with the COSMO data in Table 4, already shows
improvements for Tl from the continuum model. However,
just like in other Tl complexes that we investigated in the

past, the continuum model alone, without explicit solvent,
is not sufficient to reproduce experimental data obtained in
solution.

E. Some Individual Cases. 1. Tl. The J couplings in the
Tl compounds are quite strongly dependent on the compu-
tational model. The pronounced SO effects have already been
highlighted. The findings in this work further echo conclu-
sions from previous studies of Pt-Tl coupling constants
carried out in our group14 in which a strong sensitivity of
the results with respect to the computational model was
noted. A spin-orbit relativistic formalism as well as the use
of a hybrid functional appears to be overall beneficial for
the computation of NMR parameters in Tl complexes.
However, we pointed out already that spin-orbit coupling
does not improve the results for some cyanide thallium
complexes.

The J coupling in the Tl-X series of diatomics is
particularly strongly affected by SO coupling. Figure 4 (see
also the Supporting Information) shows that despite the
strong improvement toward experiment the SO PBE0 results
are still somewhat too small in magnitude. This is in part
due to the structural aspect of the computational model: the
BP-optimized bond lengths are larger than the experimentally
determined equilibrium distances reported in ref 69. Figure
5 demonstrates that when experimental equilibrium distances
are used for the TlX series the computed coupling magni-
tudes slightly overshoot the experimental ones. Remaining
deviations from experiment are tentatively attributed to the
approximations in the density functional as one of the major
remaining sources of error.

For some examples, such as Tl(CN)2Cl, the deviation
between computations and experiment remain quite large
even for the PBE0 SO calculation. It is likely that solvent
effects need to be modeled explicitly in order to obtain J
couplings that are within 5-10% of the experimental data.
Previously, the importance of including solvent effects with
explicit solvent molecules was demonstrated for complexes
with vacant sites in their first coordination sphere.14,18,21 In
order to investigate this issue, for the Tl(CN)2Cl complex
an additional set of calculations was performed but now
considering explicitly the solvent. Two water molecules, one
above and one below the metal-ligand plane, were added
in the calculations. The results show some improvement,
reducing the deviation from experiment from 26% to 18%

Table 7. Statistical Error Parameters for Gas-Phase PBE0 ZORA Spin-Orbit J-Coupling Calculationsd

absolute deviationb relative deviationb

∆Kmean SDc ∆Kmedian MDd ∆Kmean
rel SDc ∆Kmedian

rel MDd

total 241.9 549.2 44.5 43.2 24.4% 36.5% 13.9% 10.4%
Hg 188.7 266.9 61.0 55.1 13.5% 12.8% 13.8% 4.7%
Pt 186.0 417.1 31.9 31.5 23.2% 24.3% 11.6% 10.4%
W 65.9 64.7 33.9 26.6 18.3% 16.1% 8.7% 7.3%
Pb 53.7 68.8 18.0 9.9 42.8% 70.5% 25.2% 15.7%
Tl 1163.0 1695.1 559.1 463.0 29.5% 37.9% 23.6% 19.2%
one bond 396.6 795.7 137.4 129.7 22.6% 44.7% 10.9% 12.0%
two bond 61.3 155.4 10.8 6.1 27.4% 25.4% 21.5% 10.4%
longer 10.3 9.3 7.6 5.0 14.1% 6.4% 16.4% 4.8%

a Same as Table 6 and Figure 4 but without application of the continuum solvent model in the J-coupling computations (optimized
geometries were the same as in Table 4 and Figure 4). b Mean and median unsigned absolute and relative deviations. Absolute deviations
in 1019 T2 J-1. See footnotes of Table 3 for details. c Standard deviation (SD). d Median unsigned deviation (MD).
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in the spin-free PBE0 calculation (which yields the best
results for this molecule).

2. Small Couplings. It has been pointed out above that
the hybrid functional performance is superior for most of
the smallest coupling constants. This is shown explicitly in
Figure 6 where the coupling constants are plotted on a
smaller scale. In particular, for a group of very small Pb
couplings, with magnitudes of less than 50 × 1019 T2 J-1,
the inclusion of HF exchange in the functional brings the
results closer to experiment. The same behavior is observed
for the SO relativistic computations. For the small coupling
constants, which may afford large relative deviations from
experiment, the hybrid functional appears to be particularly
beneficial.

3. Huge Sn Couplings. In this study, the performance of
the functionals was also tested for some very large J-coupling
constants. In general, reduced couplings involving Hg tend
to be very large, and the ‘world record’ holders among
coupling constants are therefore not surprisingly Hg-Hg one-
bond couplings.19,70-72 Herein, we considered some very
large coupling constants between a heavy metal and the Sn
nucleus. As seen above, for the largest coupling, 2J(Hg-Sn)
in IrCl(SnCl3)(HgCl)(CO)(PH3)2, the deviation from experi-
ment is always large, both in absolute and relative terms.

However, this is not a general behavior for Sn couplings.
For example, the 1J(Pt-Sn) coupling is within 1% of the
experimental value (absolute deviation ) 240 × 1019 T2 J-1).
Also, the behavior of these couplings with respect to the
functional is different: For the Hg-Sn coupling, the error is
larger with PBE0 while the Pt-Sn coupling constant is closer
to experiment with the hybrid functional.

4. Model Compounds. In order to reduce the computa-
tional resource requirements for some of the calculations a
few large compounds considered in this study have
been replaced by smaller models. These complexes are
IrCl(SnCl3)(HgCl)(CO)(P(C6H5)3)2, W(CC(CH3)3)(CH2C-
(CH3)3)3, and Tl4(OC(CH3)3)4). For the Hg system, a model
compound was calculated where triphenylphosphine was
replaced by PH3. For the other systems methyl has replaced
tert-butyl. The models for the ligands along with a missing
treatment of solvent and dynamic effects are likely respon-
sible for part of the deviations between the computations
and experiment. Whether the approximations for the ligands
have a large impact, however, is unclear at this time. The
Hg system has been discussed in the previous paragraph.
For the W and Tl compounds, the absolute mean deviation
from experiment is 61.3 × 1019 T2 J-1, and the relative mean
deviation is 8.4% for the PBE spin-orbit calculations which
agree best with experiment. The corresponding data are 197.4
× 1019 T2 J-1 and 53.7%, respectively, for the PBE0
spin-orbit computations which agree worst with experiment.
The performance of the calculations for these systems is
similar to the average performances for the whole test set
for three of the four computational models, except for PBE0
spin-orbit where 2J(203Tl-205Tl) is strongly overestimated
with this method.

IV. Concluding Remarks and Outlook

It is not easy to achieve good agreement between computa-
tions and experiment for heavy atom J-coupling constants
in heavy metal systems. It has previously been pointed out
that relativistic effects serve as a kind of ‘magnifying glass’
for subtle effects in the bonding in such systems,4 which is
one of the reasons for these difficulties. Any approximation
in the computational model is ‘felt’ by this sensitive
molecular property. Nonetheless, from the results in this
benchmark study, a reasonably good performance of the
hybrid functional PBE0 in the computations of spin-spin
coupling constant with heavy metal atoms can be observed.

Figure 6. Computed vs experimental reduced couplings (in 1019 T2 J-1) for scalar ZORA, PBE vs PBE0, for |K| < 100: (left)
PBE, (right) PBE0.

Figure 5. Computed vs experimental reduced couplings (in
1019 T2 J-1) of the Tl-X (X ) F, Cl, Br, I) diatomics for PBE0,
spin-orbit ZORA calculations: Optimized (BP/ZORA/TZP,
blue square markers) and experimental bond lengths (orange
diamond markers).
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The good performance includes the representation of two-
bond coupling constants in heavy metal systems, which have
not previously been benchmarked. The inclusion of spin-orbit
coupling in the calculations does not consistently lead to
improved agreement with experiment across the whole test
set, and its application must be analyzed more carefully. This
finding can only mean that exclusion of SO coupling is in some
cases balancing errors resulting from other approximations.

The systematic use of DFT-optimized structures is con-
sidered beneficial for the purpose of this paper since it makes
all computations subject to similar potential deficiencies in
the geometries. This way, the errors in the J couplings due
to the optimizations are part of the whole assessment of each
computational model. Overall, the most sophisticated com-
putational model in which the J couplings are computed with
SO coupling and with the hybrid functional performs best
on average with a 12.5 ( 9.4% median deviation. Outliers
are still present in this computational model, as evidenced
by the larger relative mean absolute error of 22.4%, which
also has a large standard deviation. This computational model
should be considered satisfactory for discussing trends in
the J couplings for a wide range of sixth-row heavy atom
spin-spin coupling constants and to analyze the results in
chemically meaningful terms. Much better quantitative
agreement with experiment, i.e., setting a goal of reducing
these deviations by an order of magnitude, is likely to require
dynamic models including sophisticated treatment of solvent
effects along with better density functionals (or explicitly
correlated wave function methods), more flexible basis sets,
and possibly a more accurate treatment of relativistic effects
beyond ZORA. Regarding the latter, numerical and basis set
DFT calculations of ZORA hyperfine integrals of heavy atom
semicore and valence orbitals needed for the calculations of
J coupling have revealed that they are within less than 1%
deviation of the four-component relativistic results.73 Since
J coupling is a valence property (i.e., in heavy element
compounds the contributions from atomic core orbitals for
which ZORA affords significant errors are negligible15,74),
approximations other than the relativistic model are likely
to be of higher importance.
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Abstract: A new implementation of the vibrational self-consistent field (VSCF) method is
presented on the basis of a second quantization formulation. A so-called active terms algorithm
is shown to be a significant improvement over a standard implementation reducing the
computational effort by one order in the number of degrees of freedom. Various types of screening
provide even further reductions in computational scaling and absolute CPU time. VSCF
calculations on large polyaromatic hydrocarbon model systems are presented. Further, it is
demonstrated that in cases where distant modes are not directly coupled in the Hamiltonian,
down to linear scaling of the required CPU time with respect to the number of vibrational modes
can be obtained. This is illustrated with calculations on simple model systems with up to 1 million
degrees of freedom.

1. Introduction

A central topic in modern theoretical chemistry is the search
for linear scaling algorithms for the calculation of the
electronic structure of molecular systems. By linear scaling
it is meant that the computational effort scales linearly with
the size of the system. While traditionally electronic structure
methods have had much steeper computational scaling, there
has been significant progress in reducing the computational
scaling, in particular with respect to the self-consistent field
types of methods including Hartree-Fock and density
functional theory.1-3 While linear scaling methods for more
advanced and accurate electronic structure methods have
been more slow in coming, there have been activity and
progress along these lines as well.3-6

While calculation of the electronic structure is a very
fundamental issue and in many cases the logical first step
toward a theoretical description of a molecule, understanding
the dynamics of large and complex systems is another
fundamental challenge of modern theoretical chemistry. In

that framework the working conditions have been signifi-
cantly different. Classical molecular dynamics (MD) is
probably still the most widely used tool for studying the
dynamics of large molecular systems. However, classical MD
per definition involves a fundamental error in the complete
neglect of quantum effects. On the other hand, quantum
dynamical methods have generally proven to have a very
steep, often exponential, computational scaling with the size
of the system. Thus, quantum dynamical methods have very
rarely been applicable to larger systems.7-9 Obviously, this
is a problem as more and more research, both theoretical
and experimental, focuses on large molecular systems.

The self-consistent field method in either time-independent
form, known as vibrational self-consistent field (VSCF)
theory,10,11 or in the time-dependent form (TD-SCF), some-
times also denoted time-dependent Hartree (TDH), is comple-
mentary to classical MD in two ways: (i) the theory is
completely quantum mechanical in nature in contrast to the
classical MD; (ii) it involves the construction of the best
possible separation of motion in a self-consistently deter-
mined mean field in contrast to the full correlation of the
degrees of freedom in classical MD. In this study we shall
discuss further the use of VSCF. As in electronic Hartree-
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Fock theory, the VSCF method from the outset involves
significant approximations. However, VSCF is sometimes
good enough, and furthermore it acts as the stepping stone
to a variety of more advanced approaches.

It has very recently been shown that for a Hamiltonian
coupling at most two modes, advanced methods such as
vibrational coupled cluster (VCC) with up to two-mode
excitations (VCC[2]) can be made to scale cubically with
the system size.12 In the limit where each mode has only
significant interactions with a limited set of other modes,
essentially linear scaling was demonstrated for the key steps
in the VCC algorithm. However, the relevance of this is
based on the assumption that the VSCF state can be obtained
in an insignificant amount of time, since usually VSCF
provides the reference state and optimal one-mode basis
functions. In this paper, we illustrate how VSCF in a simple
implementation also scales cubically for a two-mode Hamil-
tonian, but a much improved active terms algorithm can bring
down the scaling to quadratic. Introducing various screenings
and other tricks, the scaling and absolute computational effort
can be reduced even further. As for VCC, and with even
lower computational cost, linear scaling can be obtained if
the mode-mode interactions are only local when proceeding
to systems with many degrees of freedom. Our new VSCF
approach is based on a second quantization formulation.13

The second quantization formulation of the many body
problem was decisive for the development of the many-mode
VCC approach. This work is the first detailed second
quantization based realization of a VSCF implementation.

There are a few other perspectives on fast VSCF methods.
A new approach for the construction of potential energy
surfaces (PESs) denoted adaptive density guided approach14

(ADGA) uses VSCF one-mode functions to construct one-
mode densities which are used as auxiliary quantities in an
iterative construction of the PES on a set of grids. The
densities are used (i) to guide the addition of new grid points,
(ii) to update the grid boundaries, and (iii) in the convergence
checks of the iterative algorithm. Clearly, it is essential that
the VSCF equations can be solved very efficiently to avoid
overhead in this procedure. In addition to relying on the
VSCF method, the final PES generated using ADGA may
also provide savings in the vibrational structure calculations
due to a more compact representation of the PES. Although
our main focus will be on the VSCF algorithm itself, this
paper also discusses further how the ADGA can provide
additional savings with respect to both PES construction and
vibrational wave function calculations using both VSCF and
post-VSCF methods.

The number of vibrational states increases strongly with
the size of the system. For larger molecules and significant
temperatures, the population of many excited vibrational
states introduces additional contributions to molecular prop-
erties in a thermodynamic framework. VSCF can also be a
very useful tool in this respect. With the algorithms of this
work VSCF is now so fast that it is in fact conceivable to
calculate many millions of states explicitly. Furthermore, a
recently introduced approach for combining anharmonic
wave functions with statistical mechanics has the determi-
nation of the VSCF reference state as the rate limiting step.15

Fast VSCF methods are thus open for calculating quantum
anharmonic partition functions and temperature-dependent
vibrational contributions to properties.15

In section 2 we describe the theory behind our approach.
We begin with a brief account of the construction and form
of the Hamiltonian since that is used later. However, the
choice and construction of the coordinates are not discussed
in any detail. The CPU times and scalings discussed in this
paper will focus on the anharmonic vibrational wave function
step. The construction of the PES can certainly be the rate
determining step in many calculations, but this depends on
the cost of single points (high-accuracy correlated ab initio,
density functional theory (DFT), semiempirical, or even
classical force field) and only the number of single-point
evaluations are discussed in this work. After this background
we discuss a second quantization formulation of VSCF and
an accompanying implementation. This includes the active
terms algorithm and various additional steps taken to reduce
scaling and absolute cost. All these aspects are then explored
in test calculations on all fundamental vibrations in polyaro-
matic hydrocarbons (PAHs) of increasing size. The compu-
tational details are described in section 3, and the results
are discussed in section 4. Finally, in section 5 we give a
summary and outlook.

2. Theory

2.1. Representation of the Hamiltonian. In mass-
weighted normal coordinates, the rovibrational Hamiltonian,

is given by the Watson operator.16 In the simplest case where
the interaction between rotation and vibration is neglected,
the kinetic energy operator is approximated as a sum of one-
mode operators, T ) -(1/2)Σm d2/dqm

2 . More generally, one
can include the terms accounting for vibrational angular
momentum and effective inverse moments of inertia which
are of importance in some systems. However, this is only a
minor detail in the context of this work and will not be
considered further here.

The construction of the PES, V, is an area of much
research; see, e.g., ref 17 and references therein. Normal
modes are nonlocal by construction and may conveniently
reduce some couplings in size, but the PES described in
nonlocal coordinates may not exhibit in a useful way the
expected decay of the size of couplings with distance. A
converging series of approximate PESs is introduced,

where V(1) corresponds to the uncoupled anharmonic oscil-
lator approximation, V(2) includes all couplings among pairs
of modes as well, etc. Eventually, the fully coupled M-mode
PES, V(M), may be recovered. The use of such restricted mode
coupling expansions has become widespread.18-23 In practi-
cal terms, this means that the PES is written as a sum of
low-dimensional subpotentials,

H ) T + V (1)

V(1), V(2), ..., V(M) (2)

V ) ∑
m

Vjm (3)
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In eq 3 the subpotentials Vjm are functions only of the
modes given in the mode combination (MC) m and defined
such that the function is zero if any of the corresponding
coordinates are zero. For instance, Vjm1,m2 embodies the true
two-mode coupling between modes m1 and m2, and it is related
to the original potential function as Vjm1,m2(qm1

,qm2
) ) V(...,0,qm1

,0,
...,0, qm2

, ...) - V(...,0,qm1
) 0,0, ...,0, qm2

, ...) - V(...,0,qm1
,0,

...,0, qm2
) 0, ...).

It is computationally convenient to work with a Hamil-
tonian in the sum over products (SOP) form,

where Nt is the number of terms in the operator and mt is a
MC denoting the set of modes that have one-mode operators
hm,t different from the unit operator in that particular term.

It has previously been shown how a Hamiltonian in the
form of eq 4 can be very useful for efficient implementation
of quantum dynamics codes, e.g., within the multiconfigu-
rational time-dependent Hartree (MCTDH) framework24 and
for VCC wave functions.12 Clearly, the Hamiltonian is not
directly given in the SOP form, and it must be part of our
numerical procedure to construct it in this way.

The simplest method is based on a Taylor expansion of
the PES around the equilibrium geometry which clearly
provides the PES in the required SOP form. Another method
involves the calculation of the PES on a set of grid points,
and an analytical representation of the PES is then obtained
by a least-squares fitting with a multivariate polynomial
function of sufficiently high degree.17 The combined use of
the restricted mode coupling expansion, eq 3, and the fitting
of the low dimensional subpotentials to a direct product
polynomial basis ensures that the PES is eventually given
in the SOP form, eq 4. A minor technical detail relevant
later is that, for numerical stability, the fitting is done in
frequency scaled normal coordinates, q̃i ) (ωi)1/2qi, ωi being
the harmonic frequency of the ith vibrational mode.

For both the Taylor expansion approach and the grid-based
approach described above, the one-mode operators are simply
normal coordinates in powers up to the degree of the
polynomial expansion, D, i.e., qm

i with i ) 1, 2, ..., D, as
well as second-order derivatives, (∂2)/(∂qm

2 ). The integrals
required for the implementation of VSCF using a Hamilto-
nian written in the SOP form are one-mode integrals of the
type

Different ways of handling these integrals have been
implemented depending on the form of the PES and the
chosen basis set; see refs 14 and 17. In any case, there are
only a few integrals per mode and the integral evaluation is
one-dimensional and can thus be done simply and fast. In
fact, due to the choice of a SOP operator, the integral part
becomes independent of the dimensionality of the PES. The
integral part always scales linearly with respect to the size
of the system with a very low prefactor. The calculation and

storage of the one-mode integrals are therefore never limiting
factors in the calculations and will not be discussed any
further.

The above procedures for obtaining analytical representa-
tions of the potential part of the vibrational Hamiltonian relies
on the ability to perform accurate fits to multidimensional
grids of points. For systems with strongly coupled modes,
this might not be straightforward, but the ability to use fairly
high polynomium degrees (say on the order of 14) provides
some flexibility. The problem is mentioned here for com-
pleteness. We also note in passing that other approaches
circumventing this step are widespread.18,25,26

2.2. Adaptive Density-Guided Approach for the PES
Construction. The ADGA was developed to provide a
robust, accurate, and black-box procedure for constructing
molecular PESs. ADGA uses the reduced density of the
nuclear wave function to iteratively tailor the grids (both the
spatial extension and mesh) onto which each of the potential
energy functions are evaluated. By using the quantity FVm,
where F is the density of the VSCF wave function and Vm is
the potential energy function for the given MC, m, the MCs
containing modes which are not strongly coupled will be
given a compact representation based on only a few single-
point calculations. More important couplings will be given
a more elaborate form based on many more sampling points.
As a consequence, the number and placement of the single-
point energy calculations are optimized, thus reducing
considerably the CPU time spent in the construction of the
PES and potentially improving accuracy at the same time.
As an additional advantage, the more compact representation
of in particular weak couplings can potentially improve the
computational scaling of the vibrational wave function
calculations. For instance, a weak two-mode coupling may
in the most favorable case be represented simply through
the terms qiqj, qi

2qj, qiqj
2, and qi

2qj
2, which is obviously

computationally cheaper to handle than a high-order poly-
nomial approximation. In fact, as the system grows larger,
one can expect that the ratio between the number of weak
and strong mode couplings increases and it is therefore
essential to have a method capable of approximating with
minimal cost the weak couplings. For a complete overview
of the adaptive procedure we refer to refs 14 and 27.

2.3. Vibrational Self-Consistent Field Theory. We begin
our derivation by noting that whereas previous formulations
of VSCF theory have been done in first quantization, we
choose to work in the second quantization formalism
introduced in ref 13. Note that this second quantization
formalism is different from the harmonic oscillator step-up/
step-down operator formulation sometimes used in vibra-
tional theory. The advantages of second quantization in
relation to VSCF will become apparent during the course of
the derivation.

The VSCF ansatz for the wave function of a system with
M modes is written as

The reference state is given by

H ) ∑
t)1

Nt

ct ∏
m)1

M

hm,t ) ∑
t)1

Nt

ct ∏
m∈mt

M

hm,t ) ∑
t)1

Nt

ctH
mt

(4)

himjm
m,t ) 〈φim

m(qm)|hm,t|φjm
m(qm)〉 (5)

|VSCF〉 ) exp(κ)|Φi〉 ) exp( ∑
m)1

M

∑
pmqm

κpmqm
m Epmqm

m )|Φi〉

(6)
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where i is a vector indicating for each mode which modal is
occupied in the reference state, and

The basic creation and annihilation operators, arm
m† and armm ,

satisfy the commutator relations

and the killer condition,

The operator κ is antihermitian such that exp(κ) is unitary
and the exponential prefactor therefore generates rotations
among the modals.

The optimal VSCF modals are obtained by invoking the
variational principle on the modal rotation parameters, κpmqmm ,
of the VSCF energy,

giving

By inserting the expression for the κ operator, eq 6, into eq
13, one obtains straightforwardly, for κ ) 0, that the criterion
for having an optimal |Φi〉 state is

This is the VSCF analogue of the Brillouin condition. An
effective mean-field operator for mode m, Fm,i, may be
introduced with matrix elements13 (notice that there is an
unfortunate sign error in eq 59 of ref 13).

By applying the basic second quantization commutator
relations, the nonredundant elements, corresponding to
occupied-virtual rotations, are given by

where we have used im for occupied and am for virtual
modals. The Fm,i matrix elements are thus directly related to
the VSCF gradient terms, eq 14. A zero gradient for mode
m may be obtained by diagonalizing the Fm, i matrix,

for all modes. In eq 18, Cm is a matrix containing the current
set of optimized modals while εm is a diagonal matrix holding

the corresponding modal energies. An outline of our VSCF
procedure will be given in a subsequent section.

At this point, we note that the computationally demanding
part of the self-consistent scheme is the construction of the
Fm,i matrix which involves the Hamiltonian. The Hamiltonian
in SOP form, see eq 4, can in second quantization be
represented as

where the integrals, hpm′qm′
m′,t

, are given by eq 5. The effective
operator in eq 15 may thus be written

This may be simplified by using the commutator relations

the latter of which follows directly from eqs 9-11.
From the δmm′ in eq 22, it follows that if mode m is not

contained in term t, it simply evaluates to zero and one needs
not to consider that term in the construction of the Fm,i matrix.
This defines our active terms algorithm: In the process of
evaluating the effective Fm,i operator, we partition the terms
of the Hamiltonian into two sets. The first set contains terms
which are active for mode m, i.e., have a nonzero double
commutator or, equivalently, have a nonunit one-mode
operator for that mode. The other set contains the remaining
terms which are inactive, i.e., only contain the unit operator
for mode m. Mathematically, we are thus working with two
sets of operator terms, {tact.|t: mt ∩ {m} ) {m}} and {tinact.|t:
mt ∩ {m} ) {}}.

For the active terms, eq 20 finally evaluates to

where we have introduced the effective factor

We now turn briefly to first quantization where the mean-
field operator for mode m assumes the form

Here, the integration is understood to be only over the M - 1
other degrees of freedom. For a SOP operator in first quantiza-
tion, eq 4, this leads to the following matrix elements,

|Φi〉 ) ∏
m)1

M

aim
m†|vac〉 (7)

Epmqm
m ) apm

m†aqm
m (8)

[arm
m , asm′

m′†] ) δmm′δrmsm′ (9)

[arm
m , asm′

m′] ) [arm
m†, asm′

m′†] ) 0 (10)

arm
m |vac〉 ) 0 (11)

EVSCF ) 〈Φi|exp(-κ)H exp(κ)|Φi〉 (12)

0 ) ∂

∂κrmsm
m

〈Φi|exp(-κ)H exp(κ)|Φi〉 (13)

0 ) 〈Φi|[H, Ermsm
m ]|Φi〉 (14)

Frmsm
m,i ) 〈Φi|[[arm

m , H], asm
m†]|Φi〉 (15)

Fimam
m,i ) 〈Φi|[H, Eamim

m ]|Φi〉 (16)

Famim
m,i ) -〈Φi|[H, Eimam

m ]|Φi〉 (17)

Fm,iCm ) Cmεm (18)

H ) ∑
t
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m′∈mt
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m , Epmqm

m ], asm
m†]aim

m†|vac〉

) ∑
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zm,thrmsm
m,t

(23)

zm,t ) ct ∏
m′∈mt\m

him′im′
m′,t (24)
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m′*m
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φim′

m′ |H| ∏
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φim′
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where hm,t is a one-mode operator working on mode m. In eq
26 it is assumed that the modals are given as a linear
combination of primitive basis functions, �um; see, e.g., ref 10.
If the Hamiltonian is partitioned into active and inactive terms,
the following contributions to the FQFm,i matrix are derived,
assuming normalized basis functions,

i.e., the active part is the same as the second quantization
effective operator Fm,i; see eq 23. The inactive part, which is
absent in the second quantization operator defined by eq 15,
merely adds a constant to the diagonal. This constant contribu-
tion may be safely neglected in the course of the optimization
since a constant added to the diagonal of a matrix does not
affect its eigenvectors. Thus, one can introduce the same
algorithm as in second quantization. However, in the latter case,
the terms inactive for a given mode are naturally found not to
contribute to the optimization.

2.4. Active Terms VSCF Algorithm. The optimization
of the VSCF reference state may proceed in many ways. In
this paper we pursue a direct first-order algorithm based upon
eqs 14-18. Second-order algorithms can be constructed on
the basis of the Hessian, i.e., the second-order derivatives
of the VSCF energy expectation value, eq 12. However, so
far we have found the first-order procedure to be sufficiently
stable. Our algorithm is based on a simple structure where
we solve the VSCF eigenvalue equations for one mode at a
time. This requires the construction of the VSCF mean-field
operator, Fm,i, and its subsequent diagonalization. This defines
a new set of one-mode functions for this particular mode.
The new occupied one-mode function is used in the
construction of the VSCF mean-field operators for the other
modes.

Thus, the algorithm for solving the VSCF equations
proceeds as follows:

Loop over VSCF iterations
Loop over all modes m

Construct the Fm,i matrix
Diagonalize Fm,i

Update himim
m,t

list
Calculate the VSCF energy and test for convergence

The diagonalization is in the space of one-mode functions
for a single mode and the matrix dimension is therefore Nm

× Nm, where Nm is the size of the one-mode basis used for
the expansion of the modals for mode m. Thus, it is a local
diagonalization independent of the size of the system with a
computational cost depending only on the size of the basis
set for each single mode. The update step calculates the
integrals, himim

m,t
, for the occupied level of each mode such that

these are readily available when needed in the calculation
of Fm,i for other modes as well as the energy,

Given the Hamiltonian operator in the SOP form, eq 4,
the active terms part for calculating Fm,i in the self-consistent
algorithm sketched above, proceeds as follows: We initially
determine for each mode m the corresponding set of active
terms in the Hamiltonian. Given this set, we, for each mode
m, make a pass through the active terms for m. For each
term we first calculate the zm,t factor by looping through the
modes in the particular term, excluding the target mode m.
After the zm,t factor has been constructed, the relevant one-
mode integrals for mode m are multiplied with zm,t and the
result added to Fm,i.

To set the above considerations into perspective, we
note that a M mode Hamiltonian which couples all pairs
of modes through its potential part has M(M - 1)/2
couplings. For such an operator, only M - 1 couplings
will be active in a given mode; the remaining (M - 1)(M
- 2)/2 couplings are inactive. Thus, the computational
cost of constructing the Fm,i matrix is reduced by a power
of M simply by construction as the inactive terms need
not be considered. Indeed, this order of reduction of the
computational effort is gained for all potentials, regardless
of the order of the coupling in the Hamiltonian; i.e., the
computational complexity for the construction of a Fm,i

matrix involving a N-mode coupled Hamiltonian is
reduced by the active terms algorithm as

M of these matrices must be constructed in each iteration,
Thus, the total computational complexity decreases from
O(MN+1) to O(MN).

Assume that the number of active terms for each mode in
the system is limited. More precisely, each mode m is
coupled directly to a limited set of modes much smaller than
the total set of modes. This means that there are many other
modes, m′, having no terms containing operators for both m
and m′. If the active terms algorithm is employed, the time
required for construction of the Fm,i matrix is thus expected
to be fairly constant with respect to the size of the system
though still linear in the number of active terms per mode.
Thereby, the scaling of the whole VSCF algorithm becomes
linear in the number of modes. In total, the computational
scaling of the active terms implementation scales roughly
as the number of modes times the number of active terms
per mode.

2.5. Screening. It is possible at various stages in the VSCF
algorithm to avoid calculation of contributions that are
numerically negligible.

Most trivially, terms in the Hamiltonian with ct coefficients
less than a certain threshold can be neglected. This is relevant
since the automatic procedures for determining the PES may
generate terms with essentially zero coefficients. This form
of screening is employed already when reading in the
operator, before the VSCF calculation.

In relation to the algorithm outlined above, screening on
the basis of the magnitude of the zm,t factor in eq 24 has also
been implemented. If the absolute value of zm,t times the norm

FQFumVm
m,i ) 〈�um|FQFm,i|�Vm〉 ) ∑

t

ct〈�um
m |hm,t|�Vm

m 〉 ∏
m′∈mt\m

him′im′
m′,t

(26)

FQFumVm
m,i,[act.] ) ∑

t∈{tact.}

zm,thumVm
m,t (27)

FQFumVm
m,i,[inact.] ) δumVm ∑

t∈{tinact.}

Ct ∏
m′∈mt

him′im′
m′,t (28)

E ) ∑
t

ct ∏
m∈mt

himim
m,t (29)

O (MN) f O (MN-1) (30)
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(square root of the sum of element norms squared) of the
hm,t integrals is less than a certain threshold times the
expected norm of the target quantity, Fm,act., the scaling of
the hm,t integrals and addition of the contribution to the Fm,i

matrix are avoided. The latter method defines a more rigorous
screening strategy but on the other hand also requires
significantly more computational work compared to the
screening on the Hamiltonian coefficients. We will in the
following investigate both of these types of screening as well
as a combination of the two.

2.6. Combination of Terms in the Hamiltonian. Yet
another method for reducing the number of terms in the
Hamiltonian, and thereby the computational cost, may be
introduced by combining terms in the operator. Consider
the Hamiltonian in eq 4. Each term is a product of one-
mode operators. The terms can be grouped into sets where
only the operator for a single mode differs between the
terms. Each of these sets can be reduced to a single term
by isolating the mode where the difference occurs, for
instance for modes 0 and 1:

Here three terms have been reduced to one by introduc-
ing an effective one-mode operator that is simply a linear
combination of the original ones. As a realistic example,
consider a two-mode Hamiltonian with simple kinetic
energy operators given by the second derivatives of the
normal coordinates and a Taylor expanded PES of order
D. In this case the individual operators are d2/dq2, and qn,
with n ) 1, 2, ..., D. By combining terms, the number of
one-mode operator terms is reduced from M(D + 1) to
M. The number of two-mode operator terms is reduced
from M(M -1)D(D - 1)/4 to M(M - 1)D/2, i.e,. by a
factor of (D - 1)/2. We note here that the Taylor PESs
are usually of low polynomial order, and more significant
savings may be observed for a grid-based potential. The
computational cost for this reduction comes in terms of
the extra integrals needed to be handled corresponding to
the combined one-mode operators. These integrals can be
stored or calculated on the fly.

Combining terms reduces the total number of terms in the
Hamiltonian. The CPU time depends rather directly on the
number of terms per mode so there are potentially significant
savings in CPU time by combining terms. We note that the
computational scaling with respect to the size of the system
is not changed by combining operator terms. The drawback
of combining terms is that it introduces in one form or
another additional storage and logic in the handling of the
operator information.

2.7. Program. The VSCF method is implemented in the
MidasCpp (Molecular Interactions, Dynamics and Simulation
in C++/Chemistry Program Package) program.28 The Mi-
dasCpp program also includes the discussed static and
adaptive grid methods for generating potential energy and
property surfaces. Interfaces to widely known electronic
structure programs including DALTON, ACESII, CFOUR,
and GAMESS are available in order to perform the electronic

structure calculations needed for the construction of potential
energy and molecular property surfaces.

3. Computational Details

In this study, we have investigated polyaromatic hydrocar-
bons (PAHs) consisting of 1-24 fused benzene rings with
at most four rings in each row. The PAHs will be denoted
PAHn, n ) 1, 2, ..., 24 corresponding to the number of fused
benzene rings in the molecule. In Figure 1 we present a few
examples of PAH structures.

The PAHs have been optimized at the PM3 level29,30 using
the GAMESS program.31,32 A normal mode vibrational analysis
has been performed by building the Hessian matrix numerically
from analytical gradients. A step size of 5 × 10-4 au has been
used. The MidasCpp suite of programs has been used to
construct the PESs through an interface to the GAMESS
quantum chemistry program. Both the static grid method as well
as ADGA have been used. In the static grid method, 16183/4

sets of coarse grid points have been used (see ref 17 for
notation). To these grids, a number of additional points have
been added by spline interpolation. Analytical representations
of the PESs have been obtained via least-squares fitting with a
multivariate polynomial function of 12th degree and using a
cutoff of 12 in the bidimensional fittings. No use of point group
symmetry was made.

The thresholds used for the construction of the PESs with
the ADGA procedure are as follows: the one-mode surfaces
were converged with εrel ) 1 × 10-2 and εabs ) 1 × 10-6,
while the two-mode surfaces were converged with εrel ) 5
× 10-2 and εabs ) 5 × 10-6 (see ref 14 for details). The
boundaries of the one-mode grids were iteratively determined
by requiring that 99.9% of the mean density constructed from
the three lowest vibrational states for each vibrational mode
was included in the boundaries of the one-mode grids.

As for the static grid approach, the maximum polynomial
degree used for the fitting of the surfaces is 12. However, in
the early cycles of the iterative procedure, when few
evaluation points are available, the maximum degree of the
fitting polynomials are reduced to n - 1 with n being the
number of evaluation points.

The basis set used during the VSCF calculations (both
during the ADGA and in the analysis of the VSCF and VCC
performances) consists of 13 harmonic oscillator functions
for each of the vibrational modes corresponding to vibrational
quantum numbers V ) 0, 1, ..., 12.

It should be noted that the energies and wave functions
obtained from the VSCF calculations differ slightly between
the ADGA and static grid PESs. The mean absolute deviation
(MAD) between fundamental excitation energies is of the
order of 1 cm-1 for all molecules.

The timings presented in the following are, with the exception
of the results for the duplicated PAH7 systems, obtained on
SUN Fire x2100 dual core servers (2.2 GHz, 2GB memory)
and refer to one iteration in the VSCF part; i.e., PES construction
and other time-consuming steps are not treated.

c1q0
nq1

a + c2q0
nq1

b + c3q0
nq1

c ) q0
n(c1q1

a + c2q1
b + c3q1

c)
(31)
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4. Sample Calculations: Polyaromatic
Hydrocarbons

In this section we describe some sample calculations. The
VSCF approximation as such and most of its limitations have
been extensively discussed in the literature, and we shall here
primarily discuss aspects relating to our new implementation.
Thus, the focus is on timings for systems of systematically
increasing size. The PAHs define a class of molecules that
can be extended in a systematic fashion with the normal
coordinates still being able to provide a reasonable descrip-
tion of the systems.

4.1. PES Setup. In Figure 2 we present, as a function of
system size, the number of terms in the Hamiltonian and
the number of required single-point evaluations using the
static grid approach and ADGA.

The static grid method provides a simple quadratic increase
in the number of single-point evaluations and the number
of terms in the Hamiltonian. This follows trivially from the
number of mode-coupling pairs, (1/2)M(M - 1), each of
which requires a constant number of evaluation points and
adds a constant number of terms to the Hamiltonian. In

ADGA, the same number of mode-couplings is handled but
the number of single-point evaluations and terms varies
among the couplings. From the inspection of Figure 2 it is
clear that ADGA is more efficient than the static grid method
in terms of single-point evaluations. The saving in single-
point evaluations increases with increasing system size from
17% for PAH1 (benzene) to 77% for PAH24. Turning to
the number of terms in the Hamiltonian, ADGA again offers
quite large savings. For the largest systems investigated here,
the analytical representation of the potential obtained with
the ADGA contains only 12% of the number of terms present
in the static grid Hamiltonian. This in turn provides
computational savings in the vibrational structure calcula-
tions. The saving is significant for molecules of the size of
PAH24 where the number of terms may otherwise easily
exceed 1 million even for two-mode coupled potentials.

4.2. Scaling of Native VSCF versus Active Terms
Algorithm. To investigate the performance of the active
terms algorithm relative to the native VSCF algorithm in a
simple setting, we initially use the static grid PESs which

Figure 1. Examples of polyaromatic hydrocarbons.
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have a fixed number of terms per mode-coupling irrespective
of the size of the system.

In the following, we assume that the CPU time for one
VSCF iteration follows a simple equation of the type

or

where M is the number of modes and A and B are fitting
parameters. In the following we report computational scaling
B and the prefactor 10A. This allows for a very simple
identification of the computational scaling as seen in Figure
3 which reports a log-log plot of the CPU time as a function
of system size for the native and active terms algorithms.
Linear least-squares fits are shown as well.

Due to the fact that the Hamiltonian couples all pairs of
modes, and we in this subsection do not take any measures

to reduce the cost of evaluating all these couplings, the CPU
time increases approximately proportional to some power
of M as discussed in Theory. From Figure 3 it is seen that
the native algorithm has a scaling of 2.6. The reason for this
deviation from the expected cubic scaling is due to the fact
that the leading order scaling is determined by the number
of inactive terms in eq 28, which scales like M2 (for all M
modes) rather than the number of active terms in eq 27,
which scales like M. However, the inactive terms are very
simple to calculate (stored in memory at all times), making
the prefactor on this term very low. This, in turn, results in
comparable computational times for the active and inactive
parts even for systems with 264 modes. The formula of eq
32 is too simple to capture this behavior.

For an operator with a mode-coupling level of two, one
should obtain quadratic scaling when using the active terms
algorithm. This is confirmed by the results reported in Figure
3. The difference in computational times between the active

Figure 2. Number of single-point calculations (left) and the number of terms in the potential (right) in the static grid and ADGA
potentials as a function of the number of vibrational degrees of freedom.

t ) 10AMB (32)

log t ) A + B log M (33)

Figure 3. Time for a single VSCF iteration as a function of the size of the system (log-log scale). The broken and dotted lines
represent the curves fitted to the data for the native and active terms, respectively.
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terms algorithm and the native algorithm is thus due to the
inactive terms. For PAH2, PAH6, and PAH24, the fraction
of time spent in the inactive terms part is 37, 59, and 78%,
respectively, clearly indicating that for larger systems the
computational effort of the native algorithm is dominated
by the inactive part, and for sufficiently large systems cubic
scaling is obtained.

Having clearly illustrated the better performance of the
active terms algorithm over the native algorithm, we will in
the following only use the active terms algorithm.

4.3. Screening. To reduce the scaling, one may use
several types of screening. Here we investigate the compu-
tational speedup gained by (i) screening of the ct coefficients,
(ii) screening of the contributions to Fm,i on the basis of zm,t,
and (iii) the combination of i and ii. In Table 1 the
computational scalings and prefactors are presented for
several thresholds of i and ii. The mean and maximum
absolute deviations (MAD and MAXAD) of the VSCF
fundamental frequencies with respect to the results obtained
without screening were computed for all molecules, and their
maximum values are presented for each threshold as well.

4.3.1. Screening of ct. We begin our discussion by
considering screening of the ct coefficients in Table 1. In
the three cases shown, the mean and maximum absolute
deviations (MAD and MAXAD) of the VSCF fundamental
frequencies with respect to the results obtained without
screening are all below 0.5 cm-1. This is certainly acceptable
for VSCF fundamental frequencies. It is worth noting that
many-mode correlation effects beyond VSCF and variations
in the electronic structure methods for generating the
individual PES points, as well as details in the construction
of the PES may easily provide larger effects. Thus, 0.5 cm-1

is well below the accuracy expected in the full calculation.
For the screening thresholds included in Table 1, the scaling
is reduced compared to quadratic scaling but no clear trend
is evident. Thresholds of 10-12, 10-10, and 10-9 yield scalings
of 1.89, 1.79, and 1.82, respectively.

4.3.2. Screening on Contributions to Fm,i on the Basis
of zm,t. The screening on the contributions to the elements of
the Fm,i matrices represents a perhaps more rigorous way of
screening than the screening on the PES expansion coefficients.

In Table 1 we present the results obtained for PAHn, n )
1-24, using several thresholds for the screening of contribu-
tions to Fm,i by inspecting zm,t. The computational scaling

with the system size decreases compared to quadratic scaling
when increasing the screening threshold above 10-10. For
screening thresholds of 10-8 to 10-5 the computational
scalings are rather similar and within their respective standard
errors. A threshold of 10-4 provide a computational scaling
of M1.57(0.04, which represents a significant reduction of the
unscreened quadratic computational scaling. With a threshold
of 10-4, the maximum MAD and MAXAD errors are 0.03
and 0.2 cm-1, which is clearly acceptable for systems of this
size. For lower screening thresholds, the MAD and MAXAD
errors are significantly lower.

4.3.3. Combined Screening. Figure 4 illustrates the com-
putational scaling when using a threshold of 10-9 for the
direct screening on the ct coefficients and a threshold of 10-4

for the screening of zm,t. The MAD/MAXAD for the VSCF
fundamental frequencies for each molecule relative to those
obtained without any screening are included as well. For
completeness, the results from the combined screening are
presented in short form in Table 1.

With these thresholds, we obtain a computational scaling
of M1.48(0.05 with respect to system size. This should be
compared to the quadratic scaling when not exploiting
screening. The scaling of M1.48(0.05 is seen to be lower than
the scaling found when using screening on zm,t or ct alone.
There is some synergistic effect when employing the two
types of screening simultaneously, but the effect is fairly
small compared to the zm,t screening alone. It is worth noting
that the time for performing one VSCF iteration is about a
half-second for the PAH24 molecule which consists of 264
modes. The unscreened active terms algorithm in comparison
took 15.4 s, while the unscreened native algorithm takes
70.0 s per iteration. The errors introduced are rather similar
to the ones found for the screening on ct alone and are
considered to be acceptable. In conclusion we may, by using
the new active terms algorithm together with different
screening strategies, bring down the VSCF iteration time very
significantly compared to the standard VSCF algorithm, 2
orders of magnitude for a 264 mode system.

In addition to screening, one may consider the combination
of operator terms as described in Theory. In Table 1 we
include the scaling, prefactor, and errors obtained when
employing this trick as well. It is evident that the compu-
tational scaling does not come out quite as favorable as in
the case where we just employ two types of screening. The

Table 1. Computational Complexity of One VSCF Iteration When Screening Is Employed in the Active Terms Algorithma

threshold(ct) threshold (zm,t) reorderb scaling prefactor max(MAD)c max(MAXAD)d

no 2.00 ( 0.00 10-3.67 ( 0.01

10-12 no 1.89 ( 0.04 10-3.68 ( 0.08 1.3 × 10-4 5.8 × 10-3

10-10 no 1.79 ( 0.05 10-3.70 ( 0.10 7.5 × 10-3 3.5 × 10-2

10-9 no 1.82 ( 0.05 10-3.91 ( 0.10 7.2 × 10-2 3.6 × 10-1

10-8 no 1.86 ( 0.05 10-3.87 ( 0.10 1.1 × 10-8 7.4 × 10-8

10-6 no 1.79 ( 0.03 10-4.01 ( 0.07 4.4 × 10-6 1.6 × 10-5

10-5 no 1.84 ( 0.04 10-4.14 ( 0.07 8.3 × 10-4 1.3 × 10-4

10-4 no 1.57 ( 0.04 10-3.94 ( 0.09 3.2 × 10-2 2.1 × 10-1

10-9 10-5 no 1.71 ( 0.05 10-4.09 ( 0.11 8.0 × 10-2 3.6 × 10-1

10-9 10-4 no 1.48 ( 0.05 10-3.79 ( 0.10 9.4 × 10-2 4.4 × 10-1

10-9 10-4 yes 1.80 ( 0.04 10-4.29 ( 0.12 8.4 × 10-2 3.7 × 10-1

a The CPU time is assumed to be proportional to the number of modes to some scaling power multiplied by a prefactor. The scaling
powers and the prefactors are listed in the table, given in terms of 10A and B; see eqs 32-33. The errors (cm-1) introduced are listed as
well. b Specifies whether reordering of the operator terms has been used. c Largest value among the MAD for all molecules; see text for
details. d Largest value among the MAXAD for all molecules; see text for details.
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reason for this is the fact that lower fractions of the zm,t

coefficients are screened away when employing the combi-
nation of operator terms. This trick generates more operator
terms, and evidently more of these have nonnegligible
contributions. For PAH10, the percentages of terms screened
away with and without combination of operator terms are
70 and 84%, respectively, for the VSCF ground state.

4.4. ADGA PESs. The PESs constructed with the ADGA
are particularly suitable for larger systems since, as discussed
above, the ADGA is able to provide a more compact
representation of weak couplings compared to a static grid
approach. In this section we examine the performance of
VSCF using these PESs. As stated in a previous section, a
given two-mode MC may be approximated by as few as four
terms in the most favorable case. In Figure 5 we present the
distribution of operator terms per MC. Interestingly, the
percentage of MCs which are represented by only four terms
in the operator increases with increasing system size. This
is of course intimately related to the savings in the number
of single-point calculations observed in ADGA as compared
to the static grid approach. For instance, only four single-
point calculations are needed in the simplest case of four

terms in a coupling term. For PAH24, the biggest system
tested, the percentage of MCs represented by four or 16 terms
amounts to more than 90%.

At this point we note that the simple computational scaling
formula, eq 32, is not strictly valid when using the ADGA,
since the polynomial degree is allowed to adjust to the
number of single-point evaluations. However, due to the very
simple nature of this way of analyzing the results, we choose
to use it for ADGA results as well.

The computational scaling obtained for the ADGA PESs
is shown in Figure 6. A computational scaling of M1.52(0.05

is obtained, with a significant reduction in the computational
cost. One should also note that the asymptotic standard errors
obtained in the fitting procedure are sufficiently small to
justify the use of eq 32 in the fitting. The effect of the
screening on contributions to the Fm,i matrices is shown in
Figure 6 as well. A screening threshold of 10-4 on the Fm,i

contributions changes the computational scaling to M1.37(0.05,
whereas a scaling of M1.52(0.05 was found for the unscreened
one. The prefactor also changes significantly, thus making
the ADGA in combination with screening on Fm,i contribu-
tions very fast. The mean and maximum absolute deviations
are less than 0.2 cm-1, which is satisfactory for the VSCF
method.

4.5. Predicted Important Coupling. A different method
for screening away entire mode combinations is to employ
the so-called predicted important coupling (PIC) schemes
where the coupling strength of two different normal modes
is estimated by their “atom-by-atom” overlap.22 In the
simplest of these works, and the one used by Pele et al.,22

the criteria for judging whether a MC should be kept or
neglected is based on whether the displacement vectors
representing two normal coordinates introduce movement of
the same atoms, though additional criteria may be introduced.

We tested the version of PIC in ref 22 (as well as others
including additional criteria) but found that neglecting even
a few MCs in this way resulted in large errors (mean and
absolute) compared to the unscreened results. The neglect

Figure 4. Time for a single VSCF iteration as a function of system size (log-log scale) when two kinds of screening are combined.
The broken line represents the curve fitted to the CPU times.

Figure 5. Distribution of operator terms per MC for PAH1,
PAH10, and PAH24.
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of only 0.1 and 3% of the two-mode couplings, correspond-
ing to specific coupling strength thresholds, resulted in MAD
(MAXAD) of 0.14 (1.4) and 4.58 (40.8) cm-1, respectively,
for the PAH2 molecule. For a larger system represented by
PAH4, neglecting 0.04 and 7% of the two-mode couplings
resulted in MAD (MAXAD) of 0.16 (3.94) and 2.19 (12.5)
cm-1, respectively. These deviations are perhaps not too
severe in comparison to the other approximations introduced,
but, for these low thresholds, the computational gain in
constructing the potentials as well as in the subsequent
vibrational wave function calculations are rather limited.

There are certainly some nice features of the PIC schemes
in terms of potentially lowering the computational scaling
with respect to the number of modes. However, such intuitive
schemes did not work well for the presented cases. How to
remove MCs in an efficient, general, and accurate way is
still an open issue.

We note that other ways of neglecting MCs are possible,
for example the one advocated by Benoit.23 Within this
approach, the full PES must be calculated at a lower level
of theory after which a measure of the coupling strengths
are computed. On the basis of these coupling strengths MCs
may be kept or neglected accordingly. The advantage of this
method is that it provides a firmer measure of the coupling
strengths; the drawback is that the full PES must be
calculated in advance, although at a lower level of theory.
This method has not been pursued in this work.

4.6. Duplicated PAH7 Molecules as a Model System.
In this section we investigate the computational scaling
of the VSCF algorithm for a model system consisting of
noninteracting PAH7 molecules described by the ADGA
potential. Within the individual subsystems, all operator
terms are maintained; i.e., we do not exploit screening.
The Hamiltonian thus consists of all one-mode terms and
all two-mode terms in each subunit, i.e., no terms in the
Hamiltonian couple modes belonging to different mono-

mers. In this case the number of terms in the Hamiltonian
is given by (as follows we assume a static grid potential
for simplicity, but the same arguments may be applied to
an ADGA Hamiltonian),

where Nsu and Msu denote the number of subunits and the
number of modes in each subunit, respectively. The total
number of modes is given by M ) MsuNsu, and hence the
total number of terms is

The number of terms thus scales linearly with the total
number of modes in the system. By the scaling arguments
used in the discussion of the native and active terms
algorithms (section 2.3), one may thus expect quadratic
scaling of the VSCF iteration times for the native algorithm,
while linear scaling should be obtained for the active terms
algorithm.

Figure 7 shows the computational scaling of one VSCF
iteration as a function of the number of duplicates. The plot
yields a slope of 1.01 ( 0.00 in perfect agreement with linear
scaling. We note that similar calculations using the native
algorithm confirm the expected quadratic scaling (results not
shown). In connection with this we note that the VSCF
iteration time for the largest system studied here (106 modes)
is extrapolated to be more than 2.5 CPU years using the
native algorithm. In comparison, the VSCF iteration time
for the active terms algorithm is just under 2 h. It is
comforting to see that MidasCpp runs VSCF calculations
including more than 1 million modes without having to
introduce any special treatments. This aspect of the active
terms algorithm is important for efficiency also in other than

Figure 6. Time for a single VSCF iteration as a function of system size when ADGA PESs are used (log-log scale). Data both
with and without screening are shown. The deviations of the screened results are provided on the right-hand scale. The broken
and dotted lines represent the curves fitted to the CPU times of the screened and unscreened results.

NT ) Nsu(DMsu + 1
2

Msu(Msu - 1)D(D - 1)) (34)

NT ) M(D + 1
2

(Msu - 1)D(D - 1)) (35)
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the present simple case. The computational cost of the active
terms algorithm thus reflects the actual anharmonic coupling
network.

4.7. Correlated Calculations. In a previous section it was
shown how the use of ADGA PESs reduces the scaling of
VSCF calculations. Though correlated calculations are not
the focus of this paper, it is worthwhile to investigate whether
the same is true for these kinds of calculations. For this
purpose, we have used the VCC[2] algorithm reported in
ref 12. For further details on basic VCC theory see ref 33.
We note that the trick of combining terms in the Hamiltonian,
discussed in section 2.6, is implicitly used by this algorithm.
Furthermore, screening has been implemented but the details

are different from those of the VSCF algorithm since it is
based primarily on the cluster amplitudes instead of the
Hamiltonian terms; see ref 12 for details.

In the calculations reported here, all 13 optimal VSCF
modals are included in the VCC part for each mode. Figure
8 shows the scaling of the VCC[2] algorithm applied to the
series of PAHs in three different cases: Using a static grid
based PES, the scaling is M3 as previously reported.12 More
interestingly, the use of an ADGA-based PES reduces the
scaling to M2.35. The number of amplitudes in this calculation
naturally remains the same as when using the static grid
based PES, and the reduction is therefore simply due to the
lower scaling of the number of terms in the potential part of

Figure 7. log-log plot of the CPU time for a single VSCF iteration as a function of the size of the system (number of modes)
for duplicated PAH7 (see text).

Figure 8. Scaling of the VCC[2] algorithm when applied to PAH systems described by static grid and ADGA based PESs with
and without screening of the cluster amplitudes.
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the Hamiltonian with respect to the system size; see Figure
2. Finally, a calculation with a screening threshold of 10-20

(see ref 12) shows that the screening method implemented
in the VCC algorithm does not reduce the scaling but more
generally improves performance. In this case the improve-
ment is approximately 33%.

In conclusion, it is encouraging that correlated quantum
mechanical calculations can be carried out for systems as
large as PAH24. Furthermore, the ADGA is, also for
correlated calculations, a very promising method for larger
molecules.

5. Summary and Outlook

We have presented an efficient active terms algorithm for
VSCF calculations. It has been demonstrated how the core
part of the algorithm appears naturally by deriving the
VSCF theory in second quantization formalism. It has
further been demonstrated that the implementation allows
for calculations on systems with many degrees of freedom.
With up to a few hundred explicitly coupled degrees of
freedom, a computational scaling of order M1.5 per VSCF
iteration per state was found together with a very low
prefactor including two mode couplings in the Hamilto-
nian. The computational scaling was found to be as low
as M1.37 when using ADGA potentials in combination with
screening. Sample calculations for model systems with
up to 1 million degrees of freedom are reported, illustrating
linear scaling when each mode interacts only with a
limited set of other modes.

Even though the systems considered here are simple from
some perspectives, the fact that such quantum mechanical
calculations on systems of this size are possible is encourag-
ing. In discussions of quantum methods versus classical
methods it seems often to be assumed that quantum methods
are inherently costly and only possible for small systems.
Indeed, in many circumstances where classical mechanics
is used today it is presently the only realistic option. Though
there are many different bottlenecks that must be overcome
in various areas of applications, this general statement need
not be a valid standard assumption in the future. At least
the presented very fast VSCF implementation in combination
with the ADGA procedure provides a powerful tool and
suggests that at least some of the conceived limitations can
be removed. We will continue to work on many of the other
bottlenecks of many mode quantum dynamics.

In this paper we have used normal coordinates throughout.
For weakly anharmonic systems the normal coordinate
harmonic oscillator description is a good reference point.
However, standard normal coordinates will be a rather poor
starting point for many floppy molecules, and their deter-
mination nontrivial for systems with thousands of atoms.
Furthermore, it should be noted that normal coordinates, by
construction, are nonlocal. True linear scaling, as observed
when duplicating PAH7, may thus not be easily obtained in
general using normal coordinates. The use of more local
coordinates in combination with the present scheme is
certainly a very attractive perspective for future research.
One line of research here could be the use of internal
coordinates, though complicated due to the cumbersome form

of the kinetic energy operators. Another interesting perspec-
tive is the localization of normal coordinates, as suggested
recently by Jacob and Reiher.34

The predicted importance coupling approach attempts to
predict mode couplings which are not strongly coupled and
neglect the suggested weakly coupled ones accordingly using
only the form of the normal coordinates. This approach,
however appealing, was found not to work for the molecules
used in this study.

Correlation effects may also be considered in the
construction of approximate wave function going beyond
the single Hartree product description of VSCF. In
particular, the VCC approach has the promise of maintain-
ing the same accuracy for large systems compared to small
systems, when the same level of wave function ap-
proximation is used. Some of the tricks employed in this
paper also led to improvements in the scaling of VCC.
Furthermore, the new active terms VSCF implementation
fulfills that it is well below an optimal VCC implementa-
tion in computational scaling, which is in fact not quite
the case with the native VSCF algorithm.
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Abstract: Uracil is a commonly occurring pyrimidine derivative found in RNA where it base
pairs with adenine. Rationalizing the electronic properties of uracil in both gas phase and aqueous
solution is of fundamental importance because of the significant biological role played by this
molecule. This paper presents accurate predictions of the solvatochromic shifts of the lowest π
f π* and n f π* vertical electronic excitation energies in uracil due to an aqueous solution.
The calculations are conducted using a recently developed combined quantum mechanics/
molecular mechanics (QM/MM) method, and nuclear dynamical effects are accounted for through
molecular dynamics simulations. The electronic structure is described using either density
functional theory employing the CAM-B3LYP exchange-correlation functional or the coupled
cluster singles and approximate doubles (CC2) method. The predicted solvatochromic shifts
using CAM-B3LYP/MM and CC2/MM are -0.12 ( 0.01 eV and -0.20 ( 0.01 eV, respectively,
for the π f π* transition and 0.42 ( 0.03 eV and 0.43 ( 0.03 eV, respectively, for the n f π*
transition. Our best estimate of the solvatochromic shifts are derived using a self-consistent
polarizable model in both the MD and QM/MM simulations and are -0.29 ( 0.01 eV and 0.45
( 0.03 eV for the π f π* and n f π* transitions, respectively. The estimate is based on CC2
with electrostatic corrections defined from CAM-B3LYP and dispersion corrections derived from
CC2 model system calculations. These solvatochromic shifts are in excellent agreement with
experimental data, indicating the importance of explicit inclusion of polarization effects in MD-
based QM/MM methods.

1. Introduction

Predictions of solvatochromic shifts have for a long time
been a very active and important research area in theoretical
chemistry. Because the polarities of the ground and excited
states of a chromophore generally are different, a change in
the solvent polarity will lead to a differential stabilization
of the ground and excited states and thereby to a change in
the energy difference between these two states. Consequently,
variations in the position, intensity, and shape of the

absorption spectra can be a direct measure of the specific
interactions between the solute and solvent molecules.

Accurate predictions of molecular properties of large
molecular samples, e.g., a solute in a solvent, represent one
of the greatest challenges to modern quantum chemistry. The
simplest approach would be to neglect all specific interactions
between the solute and the solvent. This is the strategy
followed in the dielectric continuum models.1 However, these
models may become too crude, and predictions of solvato-
chromic shifts should be based on more advanced models.
The complexity met when facing the condensed phase is
tackled very effectively by combining classical and quantum
mechanics (QM/MM) along with molecular dynamics (MD)
simulations. For the description of the excited states, the use
of quantum mechanics is mandatory. On the other hand, the
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part of the system not directly involved in the electronic
processes can be described effectively, e.g., using classical
mechanics. Even though linear scaling techniques are
becoming more advanced and may be used to describe the
total solute-solvent system, the question of conformational
sampling still persists. This means that formulation of
accurate effective Hamiltonian methods becomes of crucial
importance. In fact, in order to pursue a direct comparison
with experimental data it is mandatory to include the effects
of nuclear dynamics. In the present work this issue is covered
by performing classical molecular dynamics simulations.
Here we proceed in a sequential manner, i.e., we first perform
the MD simulations and then, using an appropriate number
of solute-solvent configurations extracted from the classical
MD simulations, simulate the electronic transitions. In this
respect we neglect the effect of the electronic structure on
the configurations, and the accuracy of our approach relies
first of all on the use of an accurate classical potential to be
used for the MD simulations.

The inclusion of explicit polarization into solvent models
have received much attention in the past few years.2

Generally, it is now recognized that polarization may
contribute significantly to the specific solvation process. For
example, polarization causes an up to 70% increase in the
dipole moment of a water molecule in the liquid state and
may in addition constitute as much as 50% of the total
interaction energy.3 The conventional, and indeed most easy,
way of accounting for polarization is implicitly, i.e., through
an artificial enhancement of the electrostatic pairwise model
parameters so as to include polarization in an averaged
fashion. By definition, this way of proceeding completely
neglects the dynamical responses in the mutual interaction
between the solute and solvent electronic densities caused
by electric fields and changes in the chemical environment.
For a molecule in its electronic ground state interacting only
weakly with its local environment, it might be a reasonable
approximation to neglect dynamical responses, e.g., explicit
polarization. However, when considering electronic transi-
tions, the electronic density in the active part of the system
might undergo significant changes and dynamical solute-
solvent response might be mandatory to include in the
predictions. In addition, because of the Franck-Condon
principle only the electronic polarization can be assumed to
relax instantaneously to the excited state thereby leading to
a nonequilibrium situation.

In this study we apply different QM/MM approaches4-7

for the prediction of the solvatochromic shifts of the lowest
nf π* and πf π* transitions in uracil due to water solvent.
These QM/MM models are based on either Density Func-
tional Theory (DFT) or Coupled Cluster (CC). Solvent
polarization is included by means of the polarizable point-
dipole model, and dynamical effects are included through
MD simulations. Uracil is a commonly occurring pyrimidine
derivative found in RNA where it base pairs with adenine
and is replaced by thymine in DNA translation. Rationalizing
the electronic properties of uracil in both gas phase and
aqueous solution is thus of great importance because of the
biological role played by this molecule, and the electronic
spectrum of uracil has indeed been the subject of several

previous papers.8-22 Uracil is capable of performing several
hydrogen bonds to a protic solvent, and this must be reflected
in the solvent model used for the rationalization. In the QM/
MM approach this is naturally tackled by treating uracil
quantum mechanically while the solvent, or at least the major
part of it, is described using a discrete (yet polarizable)
solvent model. The experimental electronic spectrum of uracil
in aqueous solution is characterized by a large peak around
4.8 eV and a second peak above 6.0 eV.23-26 The first peak
is due to a strongly absorbing π f π* transition and is red-
shifted as compared to the corresponding transition in the
isolated uracil.24 All calculations in this paper refer to the
diketo form of uracil because this conformer has previously
been found to be the dominant one (see, for example, the
discussion in ref 21).

2. Computational Details

The solvatochromic shifts are calculated as the difference
between vertical excitation energies in uracil in aqueous
solution and in vacuum. The QM/MM results were obtained
using a development version of the Dalton quantum chem-
istry program27 at the DFT and CC levels of theory.4-7 The
MD simulations were performed with the Molsim program28

and the interface between Dalton and Molsim is provided
by the Whirlpool program.29 Geometry optimizations were
done using the Gaussian 03 program.30 Because of a
difference in the implementation of the B3LYP31-34 exchange-
correlation (xc) functional in Gaussian 03 and Dalton, we
denote the implementation of B3LYP in Gaussian 03 by
B3LYP(G) and the corresponding implementation in Dalton
by B3LYP. Furthermore, we used Gaussian 03 and the
MOLCAS program35 to calculate certain force-field param-
eters (specified below) needed for the MD simulations.

2.1. MD Simulations. We conducted classical MD simu-
lations of a rigid uracil molecule and 511 rigid water
molecules (see Figure 1). The solvated geometry of uracil
was obtained from a geometry optimization at the B3LYP(G)/-
aug-cc-pVTZ/PCM1,36-38 level of theory. The default PCM
settings were used as implemented in Gaussian 03 except
for the RMin and OFac parameters which were set to 0.5
and 0.8, respectively. The RMin parameter sets the minimum
radius in angstroms for added spheres, and the OFac
parameter specifies the overlap index between two interlock-
ing spheres. Changing these parameters from the default to
the specified values results in fewer added spheres between
atoms. The cavity was built using the united atoms (UA0)
model. We performed simulations using either a polarizable
or a nonpolarizable force field. The nonpolarizable force field
for water is the standard TIP3P39 water model, and the
polarizable force field is provided by Ahlström et al.40 For
uracil, we calculated the nonpolarizable force field param-
eters, i.e., the partial point charges, by employing the
CHELPG procedure,41 which fits the atomic charges to
reproduce the molecular electrostatic potential, at the
B3LYP(G)/aug-cc-pVTZ/PCM level using Gaussian 03. In
addition, the charges were constrained to reproduce the
electric dipole moment. For the polarizable force field, we
used the B3LYP(G)/aug-cc-pVTZ based CHELPG point
charges calculated in vacuum together with the constraint
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on the dipole moment. We calculated the atomic polariz-
abilities at the B3LYP/aug-cc-pVTZ level using the LoProp
approach42 implemented in MOLCAS which is a method
for obtaining localized properties. Nonelectrostatic intermo-
lecular interactions were modeled with a 6-12 Lennard-Jones
potential and Lorentz-Berthelot mixing rules. The Lennard-
Jones parameters used for uracil were obtained from ref 43.

The MD simulations were performed in a cubic box within
the NVT ensemble at a temperature of 298.15 K. The box
length was set to 24.934 Å in order to reproduce the
experimental density of liquid water. We employed periodic
boundary conditions together with a spherical cutoff distance
for the electrostatic interactions at half box length. To account
for the long-range and polarization interactions, a reaction-
field correction was used. The initial equilibration was carried
out for 360 ps with a time step of 2 fs followed by the
production run of 1.2 ns. The configurations were dumped
every 10 ps in order to ensure that they were statistically
uncorrelated. Thus, we obtained 120 molecular configurations
to use in the subsequent QM/MM calculations.

2.2. Vacuum Calculations. The vacuum geometry of
uracil was optimized at the B3LYP(G)/aug-cc-pVTZ level
of theory. The vertical excitation energies were calculated
with the CAM-B3LYP,44,45 B3LYP,31-34 B3PW91,46

PBE047,48 xc-functionals, and CC249 together with the aug-
cc-pVDZ basis set.36,37 We used the frozen core approxima-
tion in the CC2 calculations. The CC2 method was used as
a reference in gauging the accuracy of the considered xc-
functionals. Furthermore, we calculated the excitation ener-
gies using Dunning’s augmented correlation consistent basis
sets of double- and triple-� quality36,37 with the CAM-
B3LYP xc-functional.

2.3. QM/MM Calculations. Excitation energies were
calculated using the CAM-B3LYP xc-functional and the CC2
method with frozen core. The QM/MM implementation used
for the calculations presented in this study allows for the
use of either a nonpolarizable or an isotropically polarizable
force field. We performed calculations using both types of

potentials allowing an examination of the importance of
explicit treatment of polarization. The force fields for water
were the same as the ones used in the MD simulations. We
used a spherical solute-solvent cutoff distance of 12 Å which
includes approximately 240 water molecules. This has
previously been shown to be adequate.50 However, calcula-
tions with cutoffs at 10 and 14 Å were performed to verify
the convergence.

It has been shown that it might be necessary to include a
number of explicit water molecules in the QM region to get
accurate excitation energies.6,50 This is especially important
in the case of πf π* transitions as these are very sensitive
to nonelectrostatic intermolecular interactions.50 Therefore,
a series of calculations with increasing number of water
molecules in the QM region were performed. The first step
includes the hydrogen bonding water molecules and subse-
quent steps include those water molecules which are closest
to the π electronic system of uracil.

It is well-known that DFT has difficulties in describing
intermolecular interactions related to dispersion. In order to
investigate the significance of this issue, we constructed a
model system consisting of uracil and two water molecules.
The entire system was geometry optimized at the B3LYP(G)/
aug-cc-pVTZ level of theory. This leads to a structure where
each water molecule appears to be hydrogen bonded twice
to uracil, one through hydrogen to a carbonyl oxygen and
one through oxygen to a hydrogen in a N-H group. We
then proceeded with excitation energy calculations using the
same methods as in the vacuum case. This was done on the
complete system and also a single QM/MM calculation with
the two water molecules confined to the MM region.

The reported excitation energies are averages over all the
QM/MM calculations carried out on all the configurations
extracted from the MD simulations. Therefore, it is appropri-
ate to present the results with uncertainties which we define
as 1.96SE. The standard error of the mean, SE, is defined as
SE ) s/n1/2, where s is the sample standard deviation and n
is the number of samples, i.e., the number of configurations

Figure 1. The structure of uracil (a) and an example of a molecular configuration with uracil in water extracted from a MD
simulation (b).
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in our case. This definition of uncertainty approximates a
95% confidence level.

3. Results and Discussion

A previous theoretical study of the nucleic acid bases by
means of coupled cluster theory found that CC2 in combina-
tion with the aug-cc-pVDZ basis set provides very reasonable
results.12 This is attributed to the fact that the effects of larger
basis counter the effects obtained from including higher
levels of dynamic correlation, e.g., CC3. Our CC2/aug-cc-
pVDZ results, shown in Table 1, are slightly higher than
those reported in this study, but this is most likely related to
differences in geometry. This is confirmed by a recent study
of uracil by Krylov et al.20 which reports 5.0 and 5.3 eV for
the lowest n f π* and π f π* transitions, respectively,
using CR-EOM-CCSD(T)/aug-cc-pVTZ on a geometry
optimized at B3LYP/6-311G(2df,2pd) level. We predict
almost identical results, about 4.9 and 5.4 eV (Table 1), using
a very similar geometry; hence, what we observe is exactly
the previously mentioned cancelation effect. Therefore, we
expect our CC2/aug-cc-pVDZ results to be of high accuracy.

The excitation energies calculated with DFT and CC2 are
listed in Table 1. The B3LYP and B3PW91 functionals give
very similar results that are underestimated by about
0.25-0.30 eV compared to CC2. PBE0 performs better and
underestimates the energies by about 0.15 eV. The best
performance is exhibited by the CAM-B3LYP xc-functional
which provides very good agreement with the corresponding
CC2 results. The π f π* transition is underestimated by
about 0.02 eV while the n f π* transition is overestimated
by about 0.12 eV. The same tendencies are observed in our
condensed phase model system (see Table 2), although all
the xc-functionals predict a larger increase in the n f π*
transition than CC2 compared to vacuum. Thereby it seems
that the PBE0 xc-functional performs better for this transition
as compared to CC2; however, the shifts of the excitation
energies, compared to vacuum, in the model system are
comparable for all xc-functionals. Thus, we conclude that
CAM-B3LYP provides the best quality results and is
therefore our xc-functional of choice for the large scale QM/
MM calculations.

The results from the calculations on the model system are
presented in Table 2. As expected from the DFT calculations,
we do not see any substantial change in the π f π*
excitation energy when the two water molecules are included
in the QM calculation, whereas the CC2 method lowers it
by a relatively large amount. We see that the error made in

the CAM-B3LYP/MM calculation is about 0.01 eV while
the CC2/MM calculation is off by about 0.06 eV. Thus, the
CC2 method recovers about 0.05 eV compared to CAM-
B3LYP. This clearly shows that it is necessary to include
water molecules in the QM region and also that DFT is not
fully capable of describing certain intermolecular interactions.
Calculations using CC2 with many water molecules in the
QM region quickly become prohibitively expensive using
our large scale MD-QM/MM scheme and, thus, the most
viable solution is to use DFT. From the analysis of the model
system we find that CAM-B3LYP will underestimate the
solvatochromic shift of the π f π* transition by at least
0.05 eV, mainly because of the lack of dispersion interactions.

A comparison of the vacuum and QM/MM (with the
polarizable force field) excitation energies calculated with a
series of basis sets of increasing size is presented in Table
3. Digits written in subscript are insignificant and are shown
for the sake of a more detailed comparison. There is a slight
dip in the excitation energies when an extra set of diffuse
functions is added. This is most evident in the augmented
double-� basis sets while this effect is very small in the
augmented triple-� basis sets. This indicates that we are close
to the basis set limit with respect to the excitation energies
in question. In addition, the vacuum excitation energies
calculated with the augmented double-� basis are very close
to the results calculated with the doubly augmented triple-�
basis and, on top of that, there is also a cancelation of errors
when we calculate the solvatochromic shifts. The conclusion
is therefore that the errors due to incomplete basis are
negligible.

To further assess the quality of our results, we need to
inspect certain aspects of the MD-QM/MM calculations, i.e.,
cenvergence with respect to the number of included molec-
ular configurations, how many water molecules should be
included in the MM region, the need to include water
molecules in the QM region, and the effects of a polarizable
force field. First, we address the question of convergence
with respect to the number of molecular configurations.
Previous studies have shown that around 100 molecular
configurations are adequate to get converged excitation
energies,50 and this is indeed confirmed by our study. Figure
2 contains two plots made from the results from one of the
MD-QM/MM calculations. The first plot (2a) shows the
fluctuations of the excitation energies in each configuration,
and the second (2b) shows the convergence of the average
excitation energy as the number of molecular configurations
increases. We see that the fluctuations of the n f π*
transition are much larger in magnitude than the π f π*
excitation energies which is reflected in the higher uncertainty
of the former. This is mainly due to the fact that the nf π*
transition is much more sensitive to the strength and
orientation of the hydrogen bonds to water than the πf π*
transition because the nf π* transition leads to a significant
weakening of the hydrogen bond. From the second plot we
observe that the excitation energies are well converged with
respect to the number of molecular configurations.

The second aspect is the number of water molecules
needed in the MM region, i.e., at which cutoff distance are
the excitation energies converged. Although the differences

Table 1. The Lowest π f π* and n f π* Vertical
Excitation Energies in Isolated Uracil Calculated with
Different xc-Functionals and (frozen-core) CC2a

method ∆Evac
π f π* (eV) ∆Evac

n f π* (eV)

B3LYP 5.139 4.655
B3PW91 5.163 4.641
PBE0 5.253 4.784
CAM-B3LYP 5.384 5.052
CC2 5.406 4.933

a The aug-cc-pVDZ basis set and B3LYP(G)/aug-cc-pVTZ
geometry was used.
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are very small, and certainly negligible considering the
uncertainties, we observe the largest differences between the
cutoffs of 10 and 12 Å, namely -0.002 and 0.008 eV for
the π f π* and n f π* transitions, respectively. The
improvement from an increased cutoff of 14 Å is vanishingly
small, -0.001 and 0.002 eV for the π f π* and n f π*
transitions, respectively; hence, we can conclude that a cutoff
of 12 Å is fully adequate.

Excitation energies can be more or less sensitive to the
nonelectrostatic interactions with the surrounding solvent.
However, QM/MM interactions are purely electrostatic, and
it may therefore be necessary to include a number of solvent
molecules in the QM region. A hydrogen bond analysis on
the molecular configurations extracted from the MD simula-
tion using the polarizable force field shows that on average,
six hydrogen bonds are formed between uracil and the
surrounding water molecules. A previous study of uracil in
aqueous solution arrived at the same conclusion by means
of Car-Parrinello molecular dynamics.51 We used geometric
criteria to define hydrogen bonds that were derived from an
analysis of the radial and angular distribution functions.

Adding water molecules to the QM region decreases the
π f π* excitation energy (see Table 4). A comparison of
the π f π* excitation energy from both force fields and
with no water molecules in the QM region shows that the
polarizable force field performs much better. This is evident,
first of all, when comparing the π f π* excitation energies
without any QM water molecules but also when comparing
the change in the energy as water molecules are added to
the QM region. Using the nonpolarizable force field, it drops
by about 0.05 eV while it only drops by 0.01 eV when using
the polarizable force field. This shows that calculations using
the polarizable potential capture a large part of the solvent
interactions that are missing in the nonpolarizable force field.
The πf π* transition exhibits very slow convergence with
respect to the number of QM water molecules, showing the
necessity of a good description of nonelectrostatic interac-

tions. With 12 QM water molecules the energy seems to be
converged within the given uncertainty. The n f π*
excitation energy calculated using the polarizable force field
is more or less unaffected as the number of QM water
molecules increases, indicating that this transition is not very
sensitive to nonelectrostatic interactions and that the hydro-
gen bonds are well described already at the MM level. This
is not the case with the nonpolarizable force field where the
n f π* excitation energy increases as we add QM water
molecules, again showing that it is inadequate for modeling
solvatochromic shifts. A comparison between the CAM-
B3LYP/MM and CC2/MM results without any QM water
molecules and using the polarizable force field shows that
both the π f π* and n f π* transitions are in reasonable
agreement with the CC2/MM result. This is moreso for the
π f π* transition as it was in the vacuum case. Our best
result for the excitation energies calculated with CAM-
B3LYP is obtained with the polarizable potential and 12 QM
water molecules, i.e., 5.23 ( 0.01 and 5.49 ( 0.03 eV for
the π f π* and n f π* transitions, respectively.

In the following, we will only consider calculations where
the polarizable potential was used unless stated otherwise.
A comparison of the solvatochromic shifts (see Table 5)
shows that our CAM-B3LYP/MM results are in fairly good
agreement with the shifts predicted by CC2/MM. In fact,
the shift of the nf π* transition is essentially identical while
the shift of the π f π* transition is too low in magnitude,
i.e., -0.12 ( 0.01 eV compared to -0.20 ( 0.01 eV for
CC2/MM.

Both CAMB3LYP/MM and CC2/MM underestimate the
shift of the π f π* transition compared to experiment (see
Table 6). The shift calculated with CC2/MM is off by 0.10
eV while CAM-B3LYP/MM is off by 0.18 eV; however,
adding 12 QM water molecules lowers the error to 0.14 eV.
This was expected based on the analysis of the model system
because QM water molecules are needed to describe the π
f π* transition correctly and because DFT does not include
dispersion effects which are important for this particular
transition.

From the CAM-B3LYP/MM results presented in Table 5
we find that inclusion of 12 water molecules into the QM
region modifies the shifts by -0.04 and 0.02 eV for the π
f π* and n f π* transitions, respectively. Adding this
correction, that is mainly due to nonelectrostatic effects, to
the CC2/MM predictions in Table 5, we arrive at our best
estimates for the solvatochromic shifts of the πf π* and n
f π* transitions of -0.24 and 0.45 eV, respectively. Since
solute-solvent dispersion is fairly short-ranged in nature,
an estimate of this contribution to the specific excitation

Table 2. Results from the DFT and (frozen core) CC2 Calculations on the Model System (uracil + 2H2O)a

QM(uracil)/MM(2H2O) QM(uracil+2H2O) relative error

method ∆Eπfπ* (eV) ∆Enfπ* (eV) ∆Eπfπ* (eV) ∆Enfπ* (eV) ∆Eπfπ* (eV) ∆Enfπ* (eV)

B3LYP 5.027 4.840 5.022 4.826 -0.005 -0.014
B3PW91 5.051 4.827 5.046 4.816 -0.005 -0.011
PBE0 5.138 4.970 5.131 4.963 -0.007 -0.007
CAM-B3LYP 5.258 5.242 5.250 5.239 -0.008 -0.003
CC2 5.264 5.052 5.204 5.051 -0.060 -0.001

a The relative error is defined as the difference between EQM(uracil+2H2O) and EQM(uracil)/MM(2H2O).

Table 3. The Lowest π f π* and n f π* Vertical
Excitation Energies in Uracil in Vacuum and in Water
(polarizable force field) Calculated with CAM-B3LYP and
Increasing Basis Set Sizea

basis set
∆Evac

π f π*

(eV)
∆Evac

n f π*

(eV)
∆Esol

π f π*

(eV)
∆Esol

n f π*

(eV)

aug-cc-pVDZ 5.384 5.052 5.269 ( 0.01 5.476 ( 0.03
d-aug-cc-pVDZ 5.378 5.047 5.261 ( 0.01 5.471 ( 0.03
aug-cc-pVTZ 5.387 5.057 5.271 ( 0.01 5.484 ( 0.03
d-aug-cc-pVTZ 5.386 5.055 - -

a The geometry was optimized at the B3LYP(G)/aug-cc-pVTZ
level of theory.
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energies may be derived from the analysis of the model
systems. Thus, based on the results for the model system a
further decrease of 0.05 eV (due to solute-solvent disper-
sion) could be added to the shift affiliated with the π f π*
transition, thereby arriving at a final estimate of -0.29 eV

for this shift and leading to results for both the π f π* and
n f π* shifts in very good agreement with experimental
findings. We note, however, that there is no convincing
experimental value for the shift of the n f π* transition
available; however, other theoretical studies have assumed
a shift of about 0.5 eV, and this is confirmed by our study
as well.

In this study we have presented the most complete
description of the solvatochromic shifts of the two lowest
vertical excitations in water solvated uracil, wherein we have
taken into account nuclear dynamical effects, electrostatic
interactions, polarization, dispersion, nonelectrostatic repul-
sion, and electron correlation. There are several theoretical
studies of the solvatochromic shifts in uracil11,13,14,20,22 some
of which are listed in Table 6 together with our best results.
Gustavsson et al.13 reported -0.09 and 0.35 eV for the shifts
of the π f π* and n f π* transitions, respectively, using

Figure 2. Fluctuations in the excitation energies in water-solvated uracil (a) and the average of the excitation energy as a
function of the number of included molecular configurations in the averaging procedure (b). The results are obtained using
CAM-B3LYP/aug-cc-pVDZ and the polarizable Ahlström water potential.

Table 4. The Lowest π f π* and n f π* Vertical
Excitation Energies in Solvated Uracil Calculated with
CAM-B3LYP and (frozen core) CC2 Using Either a
Polarizable (Ahlström) or Nonpolarizable (TIP3P) Force
Field and the Indicated Number of QM Water Moleculesa

method
no. QM
water

MM
potential ∆Esol

π f π* (eV) ∆Esol
n f π* (eV)

CAM-B3LYP 0 TIP3P 5.32 ( 0.01 5.53 ( 0.02
6 5.28 ( 0.01 5.57 ( 0.02

CAM-B3LYP 0 Ahlström 5.27 ( 0.01 5.48 ( 0.03
6 5.25 ( 0.01 5.48 ( 0.03
8 5.24 ( 0.01 5.49 ( 0.03

10 5.23 ( 0.01 5.48 ( 0.03
12 5.23 ( 0.01 5.49 ( 0.03

CC2 0 Ahlström 5.20 ( 0.01 5.37 ( 0.03

a The aug-cc-pVDZ basis set and B3LYP(G)/aug-cc-pVTZ
geometry was used. The results are statistical averages over all
molecular configurations extracted from MD simulations.

Table 5. The Solvatochromic Shifts of the Lowest π f π*
and n f π* Vertical Excitation Energies in Uracil Due to
Water Solvent Calculated with CAM-B3LYP and (frozen
core) CC2 Using Either a Polarizable (Ahlström) or
Nonpolarizable (TIP3P) Force Field and the Indicated
Number of QM Water Moleculesa

method
no. QM
water

MM
potential ∆Eshift

π f π* (eV) ∆Eshift
n f π* (eV)

CAM-B3LYP 0 TIP3P -0.06 ( 0.01 0.47 ( 0.02
6 -0.11 ( 0.01 0.51 ( 0.02

CAM-B3LYP 0 Ahlström -0.12 ( 0.01 0.42 ( 0.03
6 -0.13 ( 0.01 0.43 ( 0.03
8 -0.14 ( 0.01 0.44 ( 0.03

10 -0.15 ( 0.01 0.43 ( 0.03
12 -0.16 ( 0.01 0.44 ( 0.03

CC2 0 Ahlström -0.20 ( 0.01 0.43 ( 0.03

a The aug-cc-pVDZ basis set and B3LYP(G)/aug-cc-pVTZ
geometry was used. The results are statistical averages over all
molecular configurations extracted from MD simulations.

Table 6. The Solvatochromic Shifts of the Lowest π f π*
and n f π* Vertical Excitation Energies in Uracil Due to
Water Solvent from Our Study and Other Theoretical
Studies as well as Experimental Dataa

method ∆Eshift
π f π* (eV) ∆Eshift

n f π* (eV)

CAM-B3LYP/MM -0.12 ( 0.01 0.42 ( 0.03
CAM-B3LYPb/MM -0.16 ( 0.01 0.44 ( 0.03
CC2/MM -0.20 ( 0.01 0.43 ( 0.03
CC2/CAM-B3LYP/MM -0.29 ( 0.01 0.45 ( 0.03
PBE0/PCM13 -0.09 0.35
PBE0c/PCM13 -0.12 0.47
B3PW91d/PCM11 -0.17 0.59
INDO/CIS11 -0.19 0.50
PMM/B3LYP14 -0.18 0.38
PMM/CCSD14 -0.12 0.34
EOM-CCSDt(II)e/MM20 0.07 0.44
MRCI2/MM22 -0.05 0.41
FMO-MCSCF22 -0.19 0.44
experimentf 23-26 -0.30 ( 0.02 -

a The CC2/CAM-B3LYP/MM is a best estimate based on CC2
with electrostatic corrections defined from CAM-B3LYP and
dispersion corrections derived from CC2 model system
calculations. b Uracil and 12 water molecules. c Uracil and 4 water
molecules. d Uracil and 9 water molecules. e (10,10) active space,
i.e., 10 electrons in 10 orbitals. f The quoted experimental value is
an average over values obtained from 4 different studies.
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PBE0 exchange correlation functional and PCM to model
the solvent effects. Adding four explicit water molecules
improved the shifts yielding -0.12 and 0.47 eV for the π
f π* and nf π* transitions, respectively. This is consistent
with other studies, e.g., Ludwig et al.11 reported shifts of
-0.17 and 0.59 eV using B3PW91 and PCM with nine
explicit water molecules. Here we see the need for a quantum
mechanical treatment of at least the first solvation shell, i.e.,
the shift of the π f π* transition improves with increasing
number of QM water molecules. Although it seems that the
shift in the n f π* transition also tends to increase with
increasing number of QM water molecules which we also
observed when using a nonpolarizable force field, it does
not change significantly when using the polarizable force
field, indicating that it provides a good description of the
hydrogen bonding. Ludwig et al. also report shifts that are
calculated using the semiempirical INDO/CIS method on
uracil and 200 water molecules which predicted shifts of
-0.19 and 0.50 eV for the π f π* and n f π* transitions,
respectively. The perturbed matrix method (PMM) used with
the B3LYP functional and CCSD method yields shifts of
-0.18 and -0.12 eV, respectively, for the πf π* transition
and 0.38 and 0.34 eV, respectively, for the n f π*
transition.14 Krylov et al.20 predict a blue-shift of the π f
π* transition using an active space EOM-CCSDt/MM
method whereas our CC2 results actually are in good
agreement with experiment. Thus, the specific blue-shift
based on CC cannot, as detailed in our investigation, be
related to a less satisfactory performance of CC in prediction
of solvatochromic shifts. Kistler and Matsika22 employed the
fragment molecular orbital (FMO) method in combination
with MCSCF to benchmark MRCI2/MM calculations of the
shifts. The MRCI2/MM results again show the need for QM
treatment of the surrounding water molecules, because the
predicted shift in the π f π* transition is only -0.05 eV.
FMO-MCSCF predicts the shifts to be -0.19 and 0.44 eV
for the π f π* and n f π* transitions, respectively, which
is very similar to our CC2/MM results.

4. Conclusions

The solvatochromic shifts of the lowest π f π* and n f
π* vertical electronic excitation energies in uracil due to an
aqueous solution were calculated using a polarizable MD-
QM/MM method. The electronic structure calculations were
performed using either density functional theory through the
CAM-B3LYP xc-functional or CC2. Using CC2 as a
benchmark, we found CAM-B3LYP to provide reliable
results for the excited states considered. The CAM-B3LYP/
MM method predicts solvatochromic shifts of -0.12 ( 0.01
eV and 0.42 ( 0.03 eV for the π f π* and n f π*
transitions, respectively, while CC2/MM predicts -0.20 (
0.01 eV 0.43 ( 0.03 eV. An analysis of a condensed phase
model system, uracil with two hydrogen bonded water
molecules, allowed for a quantification of the errors made
by DFT due to incorrect description of dispersion interac-
tions. We find that a polarizable force field is important for
a complete description of the electrostatic solute-solvent
interactions. Furthermore, a correct description of the π f
π* transition requires nonelectrostatic solute-solvent inter-

actions to be included by quantum mechanical calculations.
Presently, this is only viable through DFT, and converged
results were found by adding 12 water molecules in the QM
region. Thus, our best estimate of the solvatochromic shifts
are -0.29 ( 0.01 eV and 0.45 ( 0.03 eV for the π f π*
and nf π* transitions, respectively, in excellent agreement
with experimental data.
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Abstract: First-principle many-body Green’s function theory (MBGFT) has been successfully
used to describe electronic excitations in many materials, from bulk crystals to nanoparticles.
Here we assess its performance for the calculations of the excited states of biological
chromophores. MBGFT is based on a set of Green’s function equations, whose key ingredients
are the electron’s self-energy Σ, which is obtained by Hedin’s GW approach, and the
electron-hole interaction, which is described by the Bethe-Salpeter equation (BSE). The GW
approach and the BSE predict orbital energies and excitation energies with high accuracy,
respectively. We have calculated the low-lying excited states of a series of model biological
chromophores, related to the photoactive yellow protein (PYP), rhodopsin, and the green
fluorescent protein (GFP), obtaining a very good agreement with the available experimental
and accurate theoretical data; the order of the excited states is also correctly predicted. MBGFT
bridges the gap between time-dependent density functional theory and high-level quantum
chemistry methods, combining the efficiency of the former with the accuracy of the latter: this
makes MBGFT a promising method for studying excitations in complex biological systems.

I. Introduction

The photoactive yellow protein (PYP) and rhodopsin are
photoreceptors that transform light into biological signals.
Their photocycles are initiated by the photoinduced trans/
cis isomerization of their chromophores, which leads to
successive conformational changes of the overall protein
structure and ultimately produces the biological response.1

PYP was first found in the halophilic purple bacterium
Ectothiorhodospira halophila and is linked to the negative
phototaxis to blue light; the chromophore of PYP is a
deprotonated p-coumaric acid (pCA), linked to a cysteine
in the protein via a thioester bond. The chromophore of
rhodopsin is retinal in the protonated Schiff base form; light
absorption induces isomerization of 11-cis-retinal to all-trans-
retinal and initiates the visual cycle. The green fluorescent
protein (GFP) was first isolated in the jellyfish Aequorea
Victoria; its chromophore is p-hydroxybenzylideneimida-

zolinone (p-HBDI)2 in its neutral or anionic form. GFP is
widely used as a biological label, since it can be implanted
into host proteins without affecting their normal properties;
the host proteins, however, become fluorescent and can be
detected in living cells and organisms.

Understanding the photochemical processes in photoactive
proteins has attracted much interest in both experiments and
theory. A wealth of work has been accomplished to investigate
optical spectra, the isomerization processes of chromophores,
and the role of solution and protein environment in the electronic
excitations. Recent measurements of the optical absorption of
chromophores in the gas phase provide an experimental
benchmark for theoretical methods.3-10

Ab initio calculations for biological chromophores have
been performed extensively at various levels of quantum
chemistry theory. The methods used include time-dependent
density functional theory (TDDFT),4,6,11-14 second-order
approximate coupled cluster singles and doubles model
(CC2),15,16 equation of motion coupled cluster theory
(EOM-CCSD),4,5,13,15,17,18 complete active space with second-
order perturbation theory (CASPT2),18-22 and the augmented
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version of the multiconfigurational quasi-degenerate pertur-
bation theory (aug-MCQDPT2):10,23 both accuracy and
computational cost progressively increase from TDDFT,
through CC2, EOM-CCSD, CASPT2 up to aug-MCQDPT2.
Recently quantum Monte Carlo has also been used for
evaluating excited states.24,25

Semiempirical methods, like ZINDO, also can give good
approximations for the excited states of biological chro-
mophores at a reduced computational cost,14 but they might
be less transferable to a wide range of systems than ab initio
methods.

In spite of many efforts, the accurate calculation of the
excited states in relative large molecules remains a challenge.
In fact, highly reliable methods such as EOM-CCSD,
CASPT2, and aug-MCQDPT2 can only be applied to small
systems because of their large computational cost. In the last
2 decades, CASPT2 has been regarded as the standard ab
initio method for calculating accurate excited-state properties
of organic molecules;26 however, the quality of CASPT2
excitation energies decreases if the complete active space
self-consistent field (CASSCF) function is not a good
reference and/or the basis set is not sufficiently large.27 The
average accuracy of EOM-CCSD is generally considered to
be of 0.2-0.4 eV.28,29 As an approximation to CCSD, the
typical error in CC2 is within the range of 0.3-0.5 eV.28,29

EOM-CCSD and CC2 can get good results for singlet excited
states that are dominated by single-electron transitions.26

Recent aug-MCQDPT2 calculations provided very good
estimations (within 0.1 eV) for the lowest π f π* excited
state of some chromophore models;23,27,30 however, the
general performance of aug-MCQDPT2 for other excited
states is still unknown, which prevents a systematic com-
parison with other quantum chemistry approaches. TDDFT
is the fastest quantum chemistry method for calculating
excited states of medium- and large-sized molecules of up
to 200 second-row atoms. However, with the commonly used
approximations, TDDFT yields substantial errors for excited
states of molecules with extended π-systems, as well as for
nonlocal electronic transitions such as charge-transfer excita-
tions and excited states with little single-excitation charac-
ter.11,31,32 The order of the states and the oscillation strengths
are also important factors to test the reliability of a method:
at present there is no consensus on these for PYP chro-
mophores, for example.5 In summary, the applicability of
quantum chemistry approaches depends strongly on the
system under investigation.

In response to the limitations of traditional quantum
chemistry methods, here we propose and test the use of
many-body Green’s function theory (MBGFT)33-35 for the
study of biological chromophores. We demonstrate that
MBGFT can compute accurate excitation energies for
chromophores that are in excellent agreement with experi-
ments with a reasonable computational cost. MBGFT is well-
known in the physics and materials science community to
predict orbital and excitation energies with high accuracy.
It has been widely and successfully used for describing
opticalexcitationsinmanysystems, includingbulkcrystals,36-38

clusters,39 polymers,40,41 inorganic molecules (e.g., SiH4,
39

CO,42 NH3
42) and organic molecules40,43 (e.g., benzene and

naphthalene). The typical error for the excitation energies is
within 0.1-0.2 eV.

Here, we present the calculations of the excitation energies
of several chromophore models related to PYP, rhodopsin,
and GFP, for which experimental data are available, to test
the applicability of MBGFT method for biological chro-
mophores. To the best of our knowledge, this work is the
first that applies MBGFT method to biological chromophores.

II. Chromophore Models

The 12 chromophore models studied in this work are shown
in Figure 1 (PYP chromophore models), Figure 2 (rhodopsin
chromophore models), and Figure 3 (GFP chromophore
models).

Optical absorption spectra have been measured for the
chromophore models related to PYP: p-coumaric acid

Figure 1. PYP chromophore models studied in this work: (a)
pVP, (b) pCA, (c) pCA-′, (d) pCA-′′, (e) pCA2-, (f) TMpCA-,
and (g) pCT-. Carbon, hydrogen, oxygen, and sulfur atoms
are represented in cyan, gray, red, and yellow, respectively.

Figure 2. Retinal chromophore models studied in this work:
(a) all-trans protonated Shiff base of retinal (PSBT); (b) 11-
cis protonated Schiff base of retinal (PSB11).
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(pCA),44 the methyloxy ester of pCA (OMpCA),5 deproto-
nated p-coumaric acid (pCA-),8,10,44 the double-anionic form
of p-coumaric acid (pCA2-),8,44 deprotonated thiomethyl
p-coumaric acid (TMpCA-)20 and deprotonated thiophenyl
p-coumarate (pCT-);8 the chromophore modes of rhodopsin:
all-trans protonated Schiff base of retinal (PSBT)3,9 and 11-
cis protonated Schiff base of retinal (PSB11);9 and the GFP
chromophore p-HBDI in different charged states (anionic
p-HBDI-,7 neutral p-HBDI45) plus a cationic form of the
GFP chromophore,6 which we simply denote here as
p-HBDI+, shown in Figure 3c.

For pCA- the deprotonation can occur either at the phenol
site or at the carboxyl site as shown in Figure 1c and d,
respectively; we denote the two cases as pCA-′ and pCA-′′,
respectively. The absorption spectrum of p-vinylphenol
(pVP), formed from pCA by thermal decarboxylation during
the experiment, is also available.4,46

III. Methods and Computational Details

The ground-state geometries of the chromophore models are
optimized within density functional theory (DFT) using the
SIESTA code,47 employing the PBE generalized gradient
approximation (GGA)48 for the exchange and correlation
energy and norm-conserving Troullier-Martins pseudopo-
tentials49 to describe the interaction between the ion cores
and the valence electrons. A double-� plus polarization (DZP)
basis set made of atomic orbitals is used for the geometry
optimization and gives converged structures. In fact, bond
length differences between DZP basis set and a larger triple-�
plus polarization basis set are smaller than 0.004 Å. The PBE
exchange and correlation functional is widely used for
materials and chemical systems. In comparison with results
obtained with other popular functionals, e.g., BLYP25 and
the hybrid B3LYP,17,50-52 the bond lengths calculated with
PBE are on average longer by about 0.01-0.02 Å. Such
differences in geometry influence the MBGFT excitation
energy by less than 0.1 eV, which makes PBE geometries a
reasonable starting point for excitation energy calculation
within MBGFT. However, the influence of the DFT exchange-
correlation functional on the MBGFT excitation energies
deserves further studies.

The excited states of the ground-state geometries obtained
as described above are then calculated within MBGFT. At
variance from the geometry optimization where basis sets
constructed by atomic orbitals were used, the basis set for

all steps of the MBGFT calculations is made by atom-
centered Gaussian orbitals which have the form

The same exchange and correlation functional and pseudo-
potentials are used. Four decay constants (R) are used for
C, N, O, and S atoms (0.2, 0.5, 1.25, and 3.2 in atomic units
(a0

-2)), whereas three decay constants are used for H atoms
(0.1, 0.4, and 1.5 in atomic units). Gaussian orbitals with s,
p, d, and s* symmetry are included for each atom. The
number of Gaussian orbitals for each atom is 40 for C, N,
O, S and 30 for H, respectively. The decay constants have
been tested to give converged orbital and excitation energies.
They are adjusted so that orbital energies calculated by the
Gaussian orbital basis set reproduce (within 0.1 eV) those
obtained by a well-converged plane-wave basis set. A larger
basis set, which, besides the atom-centered Gaussian orbitals
discussed above, contains additional Gaussian orbitals cen-
tered above and below the plane of the molecule to give a
better description of the π and π* orbitals, modifies the
lowest excitation energy of pCA- by only 0.03 eV. This
shows that the basis set with only atom-centered Gaussian
orbitals is able to give converged excitation energies and is
suitable to study the selected chromophore models.

In DFT, one needs to solve the Kohn-Sham equation

where Vps and VH are the pseudopotentials describing the
electron-ion interaction and the Hartree potential, respec-
tively, and Vxc is the exchange-correlation potential. Ap-
proximation to the exchange-correlation potential in DFT
makes it fail to predict correctly the orbital energies. In
MBGFT, accurate orbital energies can be obtained within
the GW approximation (GWA), proposed by Hedin and
Lundqvist.33 An accurate prediction of the orbital energies
is an essential prerequisite for the further excited-state
calculation in MBGFT. GWA has been successfully applied
to compute band structures of a large number of solids53

and orbital energies of many molecules42,43 including organic
molecules.43 Within GWA, Vxc in DFT is replaced by a
nonlocal, energy-dependent self-energy operator Σ(r, r′, E),
which fulfills the GW equation54

The self-energy operator Σ(r, r′, E) can be evaluated by

where G and W are the one-body Green function and the
dynamically screened Coulomb interaction, respectively. G
and W are in the forms

Figure 3. GFP chromophore models studied in this work: (a)
p-HBDI-, (b) p-HBDI, and (c) p-HBDI+. Nitrogen atoms are
represented in blue.

φijk(r) ) Aijk xiyjzke-Rr2
(1)

{- p2

2m
∇2 + Vps(r) + VH(r) + Vxc(r)}ψn

DFT(r) )

En
DFTψn

DFT(r) (2)

{- p2

2m
∇2 + Vps(r) + VH(r)}ψn

GWA(r) +

∫Σ(r, r′, En
GWA)ψn

GWA(r′) dr′ ) En
GWAψn

GWA(r) (3)

Σ(r, r′, E) ) i
2π ∫ e-iω0+G(r, r′, E - ω)W(r, r′, ω) dω

(4)
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and

respectively, where ε and υ are the dielectric function and
the bare Coulomb interaction, respectively. µ is the chemical
potential. G and W are evaluated based on the ground-state
wave functions and energies obtained from eq 2. ε is
calculated within the random-phase approximation.54 Usu-
ally, the GWA orbital energies are evaluated perturbatively
to first order by

based on the assumption that the DFT wave function in eq
2 agrees well with the GWA wave function in eq 3 in most
cases.56 Zn is the renormalization constant to take into account
the energy dependence of the self-energy56

where Σn(E) ) 〈ψn
DFT|Σ(E)|ψn

DFT〉.
By applying GWA, the original occupied orbitals within

DFT are shifted down while the unoccupied orbitals are
raised up, as shown in Figure 4 and discussed in the
following section for pCA and pCA-′. In some cases the
order of energy levels may change from DFT to GWA; for
example, in pCA HOMO - 1 in DFT becomes HOMO - 2
in GWA, while HOMO - 2 in DFT turns out to be HOMO
- 1 in GWA.

If an electron is excited into a higher state it leaves a hole
in its old state. The excited electron and the hole cannot be
treated separately, since the electron feels the presence of
the hole. Due to the Coulomb interaction between the excited
electrons and holes, optical electron-hole excitations cannot
be described by an effective one-particle picture. Instead, it
is necessary to consider two-particle (electron and hole) states
which can be described as

where AR� and BR� are resonant (occupied f virtual) and
antiresonant (virtualf occupied) electron-hole amplitudes,
respectively, and R and � denote the one-particle occupied
and virtual orbitals, respectively. The motion of the
electron-hole pair, well-represented by the two-particle
Green’s function, can be rigorously described by the
Bethe-Salpeter equation (BSE).34,35 For singlet-to-singlet
excitations, the generalized BSE takes the form34

with R ) D + 2KR,x + KR,d, C ) 2KC,x + KC,d, and D )
Eocc

GWA - Evirt
GWA.35 R and -R* are the Hamiltonians corre-

sponding to the resonant and antiresonant parts of the
transitions, respectively, whereas C and -C* are the coupling
terms between resonant and antiresonant transitions. D is the
free interlevel transition energy between occupied and virtual
orbitals. Ω is the excitation energy, i.e., the energy difference
between the excited state and the ground state within the
Franck-Condon approximation. KR,x (KR,d) is the bare
exchange term (screened direct term) of the electron-hole
interaction kernel for the resonant transition, whereas KC,x

(KC,d) are corresponding terms for the coupling terms.
The procedure to compute the optical spectrum with

MBGFT is that first, conventional DFT (here within PBE-
GGA) is performed to calculate the ground-state orbital
energies and wave functions; then, accurate orbital energies
are computed within GWA with the ground-state orbital
energies and wave functions as input parameters; finally, BSE
is solved with the GWA orbital energies and ground-state
wave functions (used to construct the excited state in eq 9)
as input parameters. Indicatively, a GW + BSE calculation
for one of the chromophore models studied in this work can
usually be completed within half a day with a single CPU.

MBGFT calculations of the excitation energies for crystals,
clusters, nanotubes, and polymers are usually done within
Tamm-Dancoff approximation (TDA),34 i.e., the coupling
term C in eq 10 is omitted. The coupling term C is in fact
nearly zero for these systems, and TDA only influences the
excitation energy by about 0.1 eV. However, for the
chromophores studied here, we find that the magnitude of
the coupling term C is comparable to that of the resonant
transition R in eq 10 so that the coupling term cannot be
neglected, and we have to solve the full BSE. TDA only
influences the excitation energy related to the π f π*
transitions. For example, for the lowest π f π* transitions
in all the chromophore models, TDA overestimates the
excitation energy by at least 0.4 eV. In contrast, TDA has
very weak influence on the energy for the nf π* excitations.

G(r, r′, E) ) ∑
n

ψn(r)ψn*(r′)

E - En + i0+ sgn(En - µ)
(5)

W ) ε-1υ (6)

En
GWA ) En

DFT + Zn〈ψn
DFT|Σ(En

DFT) - Vxc|ψn
DFT〉 (7)

Zn ) 1 - [∂Σn(E)

∂E |
E)En

GWA
]-1

(8)

�(re, rh) ) ∑
R

occ

∑
�

virt

[AR�ψ�(re)ψR*(rh) + BR�ψR(re)ψ�*(rh)]

(9)

( R C
-C* -R* )(A

B ) ) Ω(A
B ) (10)

Figure 4. Energy levels (four occupied and two unoccupied)
of pCA and pCA-′ calculated within DFT and GWA. H and L
denote the highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO), respectively.
The energy levels in DFT and the corresponding ones in GWA
are connected by dotted arrow lines. In both chromophore
models, the energies of the highest occupied orbitals (H)
within DFT are set to zero.
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Chromophores are quasi-zero-dimensional systems. The
distribution of the excited electron and the hole is highly
localized. It is the huge exchange interaction between the
excited electron and the hole that makes the resonant-anti-
resonant coupling not negligible. When the dimension of the
system increases, such as in polymers, nanotubes, and bulk
solids, the excited electron and hole becomes delocalized
and the influence of TDA decreases gradually.

We also include dynamical screening effects in the
electron-hole interaction. In comparison to the results from
calculations with only static screening, we find that the
influence of dynamical screening on the excitation energies
is about 0.1 eV for the lowest π f π* transitions, but for
the lowest n f π* transitions the influence is larger, up to
0.25 eV.

IV. Results and Discussion

IV.A. Neutral PYP Chromophores. Ryan et al.46 tried
to measure the gas-phase optical absorption spectrum of pCA.
However, de Groot and Buma55 pointed out that the spectrum
obtained should be attributed to pVP due to the decarboxy-
lation of pCA in the experiment, which is proved by the
excitation spectrum measurement on pVP itself.4,55 The
excitation spectrum of the methyloxy ester of pCA
(OMpCA), with the hydrogen atom at the carboxyl group
replaced by a methyl group, was recently obtained by de
Groot et al.5 EOM-CCSD calculations indicate that the
influence of the methyl substituent on the excitation energies

is very small,5 which is also confirmed by our MBGFT
calculations. So the excitation energies from the OMpCA
spectrum could be regarded as a good reference for those in
pCA. The absorption spectrum of pCA was also measured
by Putschögl et al.44 in pH 1 aqueous solution, which gave
the first absorption peak in energy close to that of the gas-
phase OMpCA.

MBGFT gives excitation energies in good agreement with
experiments for pVP and pCA, with discrepancy within 0.1
eV (10 nm) and 0.2 eV (20 nm) for the first (S1) and second
(S2) excited states, respectively, as shown in Table 1.

The characters of the excitations are still an open question
for pCA. For example, most of the TDDFT, EOM-CCSD,
and CASPT2 calculations5,12,17,50 showed that S1 and S2 are
π f π* states and S3 is an n f π* state, whereas the
CASPT2 calculation by Li and Fang57 predicted that S1 is
an n f π* state and S2 is a π f π* state. On the basis of
EOM-CCSD,5,50 S1 originates from the HOMO f LUMO
+ 1 transition, whereas S2 has a dominant contribution from
the HOMO f LUMO transition.

According to the MBGFT calculations, S1 and S2 are π
f π* states and S3 is an n f π* state with the excitation
energy of 3.94, 4.20. and 4.30 eV, respectively. The oscillator
strength of S1 is larger than that of S2. In DFT within PBE-
GGA, HOMO - 2, HOMO, LUMO, and LUMO + 1 are π
states, whereas HOMO - 1 is an n state. In GWA, which
gives more accurate orbital energies, the order between
HOMO - 1 and HOMO - 2 is interchanged as shown in

Table 1. Selected Excitation Energies (in eV) of PYP, GFP, and Retinal Chromophore Models Calculated by Many-Body
Green’s Function Theory and Their Comparison with Reference Experimental Data and a Selection of Theoretical Valuesa

model experiment MBGFT other theory

pVP 4.12 (ref 4) S1 4.17 4.19 (ref 4)b, 4.57 (ref 11)c, 4.66 (ref 4)d

4.75 (ref 4) S2 4.60 4.52 (ref 4)b, 5.43 (ref 4)d

pCA 4.06 (ref 5)e, 4.00 (ref 44)f S1 3.94 3.78 (ref 12)g, 4.15 (ref 5)h, 4.20 (ref 11)c, 4.69 (ref 5)d, 4.92
(ref 17)i

4.37 (ref 5)e S2 4.20 4.58 (ref 5)h, 4.95 (ref 5)d, 5.14 (ref 17)i, 5.22 (ref 12)g

pCA-′ 2.88 (refs 8, 10) S1 2.95 2.79 (ref 10)j, 2.82 (ref 10)k, 3.10 (ref 10)l, 3.24 (ref 12)g, 3.40
(ref 10)m

pCA-′′ 4.36 (ref 8)f, 4.39 (ref 44)f S4 4.37 2.85 (ref 30)k, 4.70 (ref 10)m, 4.79 (ref 10)l, 5.17 (ref 27)j

pCA2- 3.69 (ref 8)f, 3.72 (ref 44)f S2 3.73
TMpCA- 2.78 (ref 20)n S1 2.80 2.58 (ref 20)o, 2.89 (ref 15)p, 3.18 (ref 15)q, 3.32 (ref 11)c

pCT- 2.70 (ref 8) S1 2.75 2.71 (ref 30)k, 3.01 (ref 12)g, 3.05 (ref 11)c

p-HBDI- 2.59 (ref 7) S1 2.67 2.52 (ref 30)r, 2.66 (ref 18)s,t, 2.92 (ref 25)u, 3.12 (ref 18)s,v, 2.93
(ref 25)w, 3.04 (ref 25)x

p-HBDI 3.12 (ref 45)n S1 3.17 3.46 (ref 6)y, 3.85 (ref 18)s,t, 3.58 (ref 25)u, 4.21 (ref 18)s,v, 3.20
(ref 25)w

p-HBDI+ 2.99 (ref 6) S1 2.93 3.34 (ref 6)y, 3.21 (ref 25)u, 3.21 (ref 25)w, 3.36 (ref 25)x

PSBT 2.00 (ref 9), 2.03 (ref 3) S1 2.09 2.03 (ref 30)z, 2.07 (ref 22)aa, 2.28 (ref 51)ab, 2.32 (ref 19)ac

3.22 (ref 9) S2 3.10 2.85 (ref 22)aa, 3.12 (ref 51)ab, 3.51 (ref 19)ac

PSB11 2.03 (ref 9) S1 2.04 2.07 (ref 23)z, 2.05 (ref 22)aa, 2.27 (ref 51)ab, 2.32 (ref 19)ac, 2.14
(ref 16)ad

3.18 (ref 9) S2 3.01 2.84 (ref 22)aa, 3.10 (ref 51)ab, 3.49 (ref 19)ac, 3.21 (ref 16)ad

a Details of the theoretical methodologies and basis sets used for the calculation of the excited-state energies//ground-state geometries
for the theoretical results are given. b TDDFT(BP86)/def-TZVP//DFT(BP86)/def-TZVP. c TDDFT(B3LYP)/cc-PVTZ//DFT(B3LYP)/cc-PVTZ.
d EOM-CCSD/6-31+G*//CCSD/cc-pVDZ. e OMpCA. f In solution. g TDDFT(BP86)/TZP//DFT(BP86)/PW. h TDDFT(B3LYP)/def-TZVP//
DFT(B3LYP)/def-TZVP. i EOM-CCSD/6-31G*//DFT(B3LYP)/6-31G**. j MRMP2/CASSCF(14,12)/(p-type d-aug)-cc-pVDZ//DFT(PBE0)/
cc-pVDZ. k aug-MCQDPT2/CASSCF(14,12)/(p-type d-aug)-cc-pVDZ//DFT(PBE0)/cc-pVDZ. l RI-CC2/aug-cc-pVTZ//DFT(PBE0)/aug-cc-pVDZ.
m TDDFT(CAM-B3LYP)/aug-cc-pVTZ//DFT(PBE0)/aug-cc-pVDZ. n In the protein. o MS-CASPT2/CASSCF(12,10)/ANO//CASSCF(12,10)/
ANO. p CC2/SV(P)//HF/6-31G*. q EOM-CCSD/6-31G*//HF/6-31G*. r aug-MCQDPT2/CASSCF(16,14)/(p-type d-aug)-cc-pVDZ//DFT(PBE0)/
cc-pVDZ. s A 2,3-dimethyl model. t SA-2-CAS(2,2)PT2/6-31G//SA-2-CAS(2,2)/6-31G. u CASPT2/CASSCF(14,14)/cc-pVDZ//DFT(BLYP)/
cc-pVTZ. v EOM-CCSD/6-31G//SA-2-CAS(2,2)/6-31G. w TDDFT(SAOP)/ET-pVQZ//DFT(BLYP)/cc-pVTZ. x Diffusion Quantum Monte
Carlo/cc-pVDZ//DFT(BLYP)/cc-pVTZ. y TDDFT(B3LYP)/6-311++G*//MP3. z aug-MCQDPT2/CASSCF(12,12)/(p-type d-aug)-cc-pVDZ//
DFT(PBE0)/cc-pVDZ. aa CASPT2/CASSCF(12,12)/ANO//MP2/6-31G**. ab TDDFT(B3LYP)/6-311++G(d)//DFT(B3LYP)/6-31G(d). ac CASPT2/
CASSCF(12,12)/6-31G*//CASSCF(12,12)/6-31G*. ad CC2/def2-TZVPP//MP2/TZVP.

Modeling Excited States of Biological Chromophores J. Chem. Theory Comput., Vol. 6, No. 1, 2010 261



Figure 4, with HOMO - 2 the n state and HOMO - 1 the
π state. S3 originates from HOMO - 2f LUMO transition
(in this context, when discussing results obtained within
MBGFT, orbitals are in the order computed within GWA).
Both S1 and S2 contain contributions from HOMOf LUMO,
HOMO f LUMO + 1, and HOMO - 1 f LUMO tran-
sitions, with HOMO f LUMO and HOMO f LUMO + 1
dominating S1 and S2, respectively.

For pVP, both MBGFT and EOM-CCSD4 predict a much
smaller oscillator strength for S1 than S2, which is in
agreement with experiment.4 S1 and S2 are dominated by
HOMO f LUMO + 1 and HOMO f LUMO transitions,
respectively, according to both methods.

IV.B. Anionic PYP Chromophores. IV.B.1. pCA-

and pCA2-. Electrospray ionization (ESI) is routinely used
to produce gas-phase compounds, including PYP chro-
mophores,8 retinal chromophores,3,9 and tyrosine.58,59 Most
of these species, such as pCA and tyrosine, have more than
one acidic site, so the structure produced in electrospray
technique is unclear. For pCA the carboxylic acid site is more
acidic than the phenolic one in solution, so the gas-phase
absorption spectrum of pCA- was originally attributed to
the model pCA-′′,8,30 as illustrated in Figure 1d in which
the carboxylic group is deprotonated, similarly to the case
in solution. Recent experiments on tyrosine58,59 find that
deprotonation in the gas phase occurs preferentially at the
phenolic site if the compound was sprayed from a methanol
solution through ESI. The gas-phase pCA- used in the
experiment was also produced from a methanol solution,8

which makes the assignment of the absorption peak at 430
nm (2.88 eV) to pCA-′′ questionable. In neutral aqueous
solution, pCA- preferentially exists in the form of pCA-′′
as discussed above, so the absorption peak of pCA-′′ in
aqueous solution can be determined to be around 4.36 eV,
according to the experiments performed by Nielsen et al.8

and Putschögl et al.44 In alkaline aqueous solution, pCA-′′
transforms to pCA2-, which was observed to have an
absorption maximum around 3.70 eV.8,44 Very recently
pCA- was also experimentally studied in vacuo, together
with two methyl derivatives of it, which allowed for the study
of the phenoxide and carboxylate forms.10 The absorption
maximum for all three chromophores was again 430 nm (2.88
eV), suggesting that both the phenoxide and carboxylate
forms might have the same absorption properties. However,
the analysis of the photodissociation pathways of pCA-

suggested that only the phenoxide isomer was present in a
substantial amount, and the presence of pCA-′′ could not
be verified.10 DFT and RI-CC2 calculations also showed that
pCA-′ is more stable than pCA-′′ in vacuo.10

According to the MBGFT calculations, the absorption
maxima of pCA-′, pCA-′′, and pCA2- are predicted at 2.95,
4.37, and 3.73 eV, respectively. If the gas-phase absorption
peak measured by Nielsen et al.8 and Rocha-Rinza et al.10

is attributed to pCA-′ rather than pCA-′′, our result is in
very good agreement with the experiment as shown in Table
1. The absorption maximum in vacuo we obtained for pCA-′′
is very close to those measured in solution.8,44

The excitations in pCA-′ are simple, with S1 (2.95 eV)
dominated by the HOMO f LUMO (π f π*) transition

and S2 (3.32 eV) dominated by the HOMO - 1 f LUMO
(nf π*) transition, with no reordering of the energy levels
within GWA as shown in Figure 4. The situation in pCA-′′
is more complex. With DFT within PBE-GGA, HOMO and
HOMO - 1 are n states, HOMO - 2 and HOMO - 3 are
π states, LUMO and LUMO + 2 are π* states, whereas
LUMO + 1 is a Rydberg-type orbital with appreciable
electron density beyond the frame of the molecule. Within
GWA, the highest four occupied orbitals are reordered, with
the original HOMO - 3 in DFT becoming HOMO, while
the order of the other three occupied orbitals remains. The
energies of the lowest four excited states within MBGFT
are calculated to be 3.47, 3.63, 3.87, and 4.37 eV. S1 and S2

are n f π* excitations mainly induced by transitions from
the highest two n orbitals to the lowest two π* orbitals; S3

and S4 are π f π* excitations mainly induced by HOMO
f LUMO and HOMO f LUMO + 2 transitions, with S3

dominated by HOMO f LUMO and S4 by HOMO f
LUMO + 2 transitions. The absorption peak observed in
the experiments originates from S4, which has the strongest
oscillator strength.

Within GWA, for pCA2-, HOMO is a π state with electron
density mainly localized at the phenolic oxygen, HOMO -
1 and HOMO - 2 are n states with electronic density
localized on the two carboxylic oxygens, LUMO and LUMO
+ 2 are π* orbitals, whereas LUMO + 1 is a Rydberg-type
orbital. The lowest two excited states S1 and S2 are of π f
π* character, with energies of 3.37 and 3.73 eV, respectively.
Both these states have contribution from HOMOf LUMO
and HOMO f LUMO + 2 transitions. S3 and S4 are n f
π* excitations, and S5 is a πf Rydberg excitation. S2, with
the highest oscillator strength, is responsible for the absorp-
tion maximum (∼3.70 eV) observed in experiments.

MRMP2 (multireference second-order Møller-Plesset
perturbation theory) and aug-MCQDPT2 have been used to
study pCA-′′ by Nemukhin et al.30 and Andersen and
Bochenkova;27 however, the calculated energies are quite
different, 5.17 eV by the former and 2.85 eV by the latter.
The results from TDDFT and CC2 are close to that from
MRMP2 but deviate from the aug-MCQDPT2 value by
around 2.0 eV;10 MCQDPT2 results support the idea that
pCA-′ and pCA-′′ have very similar absorption properties,10

whereas all the other theoretical methods, including MBGFT,
suggest that pCA-′ is the isomer present in vacuo; if present
in vacuo, pCA-′′ would have an absorption peak similar to
that measured in solution.

IV.B.2. TMpCA- and pCT-. The optical absorption maxi-
mum of pCT- in vacuo was measured by Nielsen et al. to
be 2.70 eV.8 pCT- should have similar excitation properties
to the chromophore in the protein. Comparison of its
absorption maximum in vacuo with that in the protein at
2.78 eV8,60 shows only a small influence (∼0.08 eV) of the
protein environment on the absorption spectrum. Until now,
there is no measurement on the absorption spectrum of
TMpCA- in vacuo besides the absorption spectrum in the
protein which gives two excitation energies at 2.78 and 3.14
eV,61 respectively. If the protein effects are small as
concluded by Nielsen et al.,8 these energies could be
reasonable references for excitation energies of TMpCA-
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in vacuo, which should also not differ substantially from
those of pCT-.

The first absorption peaks of pCT- and TMpCA- have
been attributed to π f π* excitations. aug-MCQDPT2
obtained this excitation energy in excellent agreement with
experiment for pCT-.30 For TMpCA-, the excitation energies
calculated with CC2,15 EOM-CCSD,15 and CASPT220 devi-
ate from experimental values by 0.1, 0.4, and 0.2 eV,
respectively. However, the excitation energy at 2.89 eV by
CC2 for TMpCA- given in Table 1 is the second excited
state, with the lowest excited state being an n f π* state at
the energy of 2.84 eV.15 The experimental 3.14 eV excitation
is thought to initiate an alternative route for PYP excitation
photocycle and was considered to involve an excited state
different from the lowest π f π* excitation in TmpCA-.61

S2 computed by CASPT2 is an n f π* state at the energy
of 2.95 eV and is regarded as the origin of the excitation at
3.14 eV observed in the experiment.20 EOM-CCSD predicts
an n f π* state as the second excited state with the energy
of 3.82 eV, deviating from the experimental value by 0.68
eV.

With MBGFT, the characters of S1 and S2 in TMpCA-

and pCT- are similar to those of S1 and S2 in pCA-′ since
the electronic density involved in these two states does not
exceed the carboxyl group in both compounds. S1 is a π f
π* state dominated by the HOMO f LUMO transition,
whereas S2 is an n f π* state dominated by the HOMO -
1f LUMO transition. The energies of S1 for TMpCA- and
pCT- are calculated to be 2.80 and 2.75 eV, respectively,
deviating from the experimental values by 0.02 and 0.05 eV,
respectively. The energy of S2 for TMpCA- is calculated to
be 3.19 eV, which is very close to the experimental excitation
energy at 3.14 eV. Assuming that the protein effects are
small, the agreement with the experiments is excellent.

IV.C. GFP Chromophores. GFP chromophores exhibit
two absorption maxima at 3.12 and 2.60 eV in the protein,7

which are attributed to the neutral (p-HBDI) and anionic (p-
HBDI-) forms shown in Figure 3, respectively. The absorp-
tion maximum of the neutral form has a weak dependence
on the environment, e.g., protein and solvent.62,63 The
excitation energy of the neutral form in vacuo should
therefore be very close to 3.12 eV. The absorption maximum
of the anionic form in vacuo was measured to be at 2.59
eV,7 also close to that in the protein, which indicates that
the protein environment has little disturbance on the elec-
tronic structure of the chromophore.64 Lammich et al. also
measured in vacuo the spectrum of a cationic form of the
GFP chromophore shown in Figure 3c, here simply denoted
as p-HBDI+, which exhibits an absorption peak at 2.99 eV.6

Within MBGFT, the absorption maxima for the neutral,
anionic, and cationic forms of GFP chromophore are 3.17,
2.67, and 2.93 eV, deviating from the experimental data by
at most 0.07 eV, respectively. All these excitations have
HOMO f LUMO character.

GFP chromophores models have been theoretically studied
with a range of techniques including TDDFT, CASPT2,
EOM-CCSD, SOS-CIS(D), MRMP2, aug-MCQDPT2, and
quantum Monte Carlo,6,13,18,21,25,30 and comparison between
the results obtained with different methods and approxima-

tions has been recently discussed;13,25 a selection of these
results is shown in Table 1.

IV.D. Retinal Chromophores. Successful measurement
of the optical absorption spectra of isolated PSBT and PBS11
molecules in vacuo has stimulated a large number of quantum
chemistry studies.16,19,22,23,30 The computational requirement
of TDDFT is the least; however, excitation energies calcu-
lated through TDDFT depend drastically on the exchange-
correlation functional used51 and they are not accurate.52 In
comparison to experimental values, CASPT2 calculations by
Sekharan et al.22 gave a good results for S1, but the energies
of S2 was underestimated by 0.3-0.4 eV. Other CASPT2
calculations by Cembran et al.19 overestimated the energies
of both S1 and S2 by 0.3 eV. Recent high-level aug-
MCQDPT2 calculations predicted good excitation energies
for S1;

23,30 however, its performance on S2 is unknown. It is
somehow surprising that the lower-level CC2 method suc-
ceeded in computing energies of both S1 and S2 for PSB1116

with high accuracy, and the origin of this success needs to
be further clarified.

With MBGFT, we get excellent S1 excitation energies for
both PSBT and PSB11, with accuracy at the same level as
aug-MCQDPT2. The performance of MBGFT on S2 is also
good, with deviation from experimental results by 0.17 eV
at most, which is about half the typical error of CASPT2
for S2. In both PSBT and PSB11, S1, which has mainly
HOMOf LUMO character (90%), has an oscillator strength
stronger than that of S2, which has mainly HOMO - 1 f
LUMO (75%) character complemented by HOMOf LUMO
+ 1 (15%) contribution.

V. Conclusions

In this work, we have applied for the first time MBGFT to
the study of the excited states of PYP, rhodopsin, and GFP
chromophores. Its performance has been extensively tested
on several chromophore models, including both neutral and
charged ones. Excellent agreement with the available experi-
ments are obtained for the excitation energies for all the
models, with errors within 0.1 eV (10 nm) for the lowest
absorption maximum with πf π* character excitations and
n f π* excitations, whereas the accuracy for the second π
f π* excitations is within 0.2 eV. The order of the states is
also reproduced correctly. More accurate prediction (within
an error of 0.1 eV) of the second π f π* state may require
consideration of double excitations,27 which is beyond the
ability of the current MBGF method.

With respect to other theoretical methods, whose ap-
plicability depends drastically on the specific chromophore
models, MBGFT has the advantages of high accuracy, good
transferability, and reasonable computational cost, which
become important for relatively large chromophores, like the
protonated Schiff base of retinal. An important feature of
MBGFT is the possibility to incorporate at minimal cost
polarizability and screening effects outside the object under
consideration, which may affect the excited states because
of nonlocal correlation effects, in terms of the screened
Coulomb interaction. This is particularly relevant for biologi-
cal chromophores, where the protein environment tunes and
catalyzes the photoreaction. Moreover, progress in the
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calculation of forces in the excited state within MBGFT has
recently been made,42,65 opening the way to the study of
isomerization processes and excited-state dynamics. All these
features make MBGFT a very promising tool for the
investigation of photoactive proteins.

We also find necessary to go beyond the Tamm-Dancoff
approximation for the application of MBGFT in chro-
mophores. The influence of the resonant-antiresonant
transitions coupling on the absorption maximum is larger
than 0.4 eV for chromophores, which is quite different
from that in crystals and clusters. This provides guidelines
for further applications of MBGFT to similar low-
dimensional systems.
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M. J. Am. Chem. Soc. 2005, 127, 11534.

(65) Ma, Y.; Rohlfing, M. Unpublished work (2009).

CT900528H

Modeling Excited States of Biological Chromophores J. Chem. Theory Comput., Vol. 6, No. 1, 2010 265



An Improved Self-Consistent-Charge Density-Functional
Tight-Binding (SCC-DFTB) Set of Parameters for

Simulation of Bulk and Molecular Systems Involving
Titanium

Grygoriy Dolgonos,* Bálint Aradi, Ney H. Moreira, and Thomas Frauenheim

Bremen Center for Computational Materials Science, UniVersity of Bremen,
Am Fallturm 1, 28359 Bremen, Germany

Received August 12, 2009

Abstract: A new self-consistent-charge density-functional tight-binding (SCC-DFTB) set of
parameters for Ti-X pairs of elements (X ) Ti, H, C, N, O, S) has been developed. The
performance of this set has been tested with respect to TiO2 bulk phases and small molecular
systems. It has been found that the band structures, geometric parameters, and cohesive
energies of rutile and anatase polymorphs are in good agreement with the reference DFT data
and with experiment. Low-index rutile and anatase surfaces were also tested. For molecular
systems, binding and atomization energies close to their DFT analogues have been achieved.
Large errors, however, have been found for systems in high-spin states and/or having
multireference character of their wave functions. The correct performance of SCC-DFTB for
surface reactions has been demonstrated via the water splitting on anatase (001) surface. The
current SCC-DFTB set is a suitable tool for future in-depth investigation of chemical processes
occurring on the surfaces of TiO2 polymorphs as well as for other processes of physicochemical
interest.

1. Introduction

Among 3d transition metals, titanium is the second most
abundant element after iron that occurs in the Earth’s crust.1

It has plenty of interesting physical and chemical properties
(i.e., low density, high thermal and mechanical strength,
insensitivity to corrosion) that makes it the metal of choice
for the construction of jet engines of many airplanes, of tanks,
and of autoclaves for chemical processing, or even to create
lustrous and exotic jewelry. In addition, titanium and its
alloys serve as excellent dental implants due to their
biocompatibility and corrosion resistance as well as due to
the strong attachment of the implant to the bone (osseointegra-
tion).2,3 Titanium also plays an important role in catalysis
as its compounds (Ziegler-Natta catalysts) serve as coor-
dination centers upon polymerization of R-olefins leading
to stereoregular products.4

The major technologically important titanium compound
is titanium dioxide, which is mainly used as a white pigment
in many products ranging from paint and paper to ceramics
and toothpaste. Moreover, titanium dioxide has also been
shown to exhibit unique characteristics5 suitable for gas
sensing,6,7 solar cells,8 water photolysis,9 and photocatalytic
decomposition of organic and inorganic pollutants.10-12

Given these exciting applications, it becomes necessary not
only to synthesize such solid-state and molecular systems
but also to reliably model their properties at an appropriate
size and time scale.

Apparently, on the theoretical side, we are still limited to
using the main electronic structure theoriessHartree-Fock
(HF) or density-functional (DFT) onessas the usage of
highly correlated methods for large periodic/molecular
systems is not feasible. However, even within a DFT
framework, the results may sometimes suffer from incom-
plete treatment of electron correlation leading to underesti-
mation of band gaps of TiO2 polymorphs (rutile and
anatase)13 or to incorrect treatment of weakly bound (hy-
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drogen-bonded and van der Waals) molecular systems.14,15

Nevertheless, DFT usually provides acceptable results for
the ground-state properties, which are in better agreement
with experiment than HF ones. On the other hand, DFT-
quality results can be also achieved by applying an ap-
proximate self-consistent-charge density-functional tight-
binding (SCC-DFTB) method16,17 provided that the cor-
responding Hamiltonian and respective integral tables have
been thoroughly derived and tested. Due to its tight-binding-
like nature, this method allows one to gain up to 2 orders of
magnitude in speed compared to standard DFT without a
significant loss of accuracy.18 Therefore, SCC-DFTB serves
as a computationally efficient method to investigate elec-
tronic, structural, and energetic properties of both molecules
and bulk periodic systems.

Formerly, a SCC-DFTB parametrization for the pairs of
elements involving titanium and carbon, hydrogen, nitrogen,
and oxygen was created.19 This parametrization has been
directed mainly toward molecular systems and complexes,
and according to our benchmark results, is not fully ap-
plicable to periodic systems such as respective solids and
related surfaces. The aim of the current work is to remedy
this shortcoming and to develop a new, widely transferable,
SCC-DFTB data basis, which could be applied for both
molecular and periodic structures. Since the main interest is
concentrated on simulation of TiO2 systems, a special accent
in parametrization has been made on the reproducibility of
rutile and anatase bulk structures and surfaces. Additionally,
we also developed parameters for titanium-sulfur interac-
tions as sulfur is one of the elements of great importance
for the photocatalytic applications of TiO2.

This paper is organized as follows. Section 2 contains a
brief overview of the SCC-DFTB formalism and the
parametrization details as well as the details of the reference
DFT methodology. In section 3, a validation of the newly
derived SCC-DFTB parameters is presented, and the conclu-
sions follow in section 4.

2. Computational Methodology

2.1. SCC-DFTB Method. The SCC-DFTB method is
based on the second-order expansion of the Kohn-Sham
total energy with respect to charge density fluctuations (for
a more detailed description, see refs 16-18 and 20). In other
words, the total energy expression includes not only the
standard tight-binding (TB) “band structure” EBS and short-
range repulsive terms Erep, but also an electrostatic-interaction
term E2(n, ∆n) that accounts for the charge fluctuations:

Etot ) EBS + Erep + E2(n, ∆n) ) ∑
i

occ

ni〈ψi|Ĥ
0|ψi〉 +

Erep + 1
2 ∑

a,b

M

γab∆qa∆qb (1)

The first term of eq 1 is the sum over the occupied electronic
eigenstates ψi of the effective Kohn-Sham Hamiltonian Ĥ0,
derived under the approximation that the initial electronic
density of the many-atom system can be represented as a
superposition of corresponding neutral atomic charge densi-
ties. The Hamiltonian Ĥ0 depends only on this properly

chosen reference density. The second term Erep accounts for
the energy difference between the electronic part of the
(SCC-)DFTB method and DFT for a given reference system
and comprises a summation over the Coulombic and
exchange double counting terms as well as the ion core-core
repulsion. Finally, the second-order term E2(n, ∆n) is
represented by atomic charge fluctuations ∆qa and ∆qb (based
on Mulliken charges) together with an analytical interpolating
function γab. This term becomes important for the systems
bearing atoms with different electronegativities leading to
the formation of covalent polar or ionic bonds.

Further, the SCC-DFTB method relies on the following
assumptions:

1. Only valence electrons are treated explicitly.
2. Kohn-Sham orbitals are expanded within the LCAO

approximation using minimal localized pseudoatomic Slater
orbitals, which include the confinement harmonic potential
(r/r0)2 for the orbital localization (where r0 is called a “wave
function confinement radius”).

3. The effective one-electron Kohn-Sham potential of
many-atom system is constructed using a superposition of
unperturbed neutral (pseudo)atomic densities (obtained with
PBE functional21) which are confined by an analogous
(r/r0)2 potential (with r0 as a “density confinement radius”).

4. The nondiagonal Hamiltonian matrix elements are
derived on the basis of a two-center approximation, whereas
the diagonal elements correspond to the calculated atomic
orbital energies.

5. The repulsive term is approximated as the sum over all
pairs of atom-atom potentials, which in turn are determined
as a difference between the SCC-DFTB electronic energy
and DFT total energy as a function of interatomic distance
for properly chosen reference systems.

The computational efficiency of the SCC-DFTB method
originates from the use of tabulated values of Hamiltonian
and overlap matrix elements over a large number of
interatomic distances that allows one to obtain interpolated
values at any distance and to skip the computationally
intensive explicit evaluation of two-center integrals. In
addition, repulsion profiles are validated to be transferable,
leading to DFT-quality results for the ground-state properties
of typical organic molecules and solid-state systems while
retaining at the same time the speed of common semiem-
pirical methods.18

2.2. SCC-DFTB Parametrization Procedure. The suc-
cessful SCC-DFTB parametrization implies that the main
properties of reference systems are well reproduced with
respect to DFT. This can be achieved by adjusting the wave
function and density confinement radii (see above) for a given
element as well as by accurate construction of repulsion
profiles for all Ti-X diatomic cases.

In our previous SCC-DFTB parametrization of zinc-related
systems,22 it was found that the density confinement radius
plays a marginal role on the quality of the obtained
parameters whereas the wave function confinement radius
is mainly responsible for the quality of band structures for
periodic systems. Therefore, we have used the previous19

value of 14 bohr for the former parameter but have checked
the influence of the latter one on the Ti hexagonal-close-
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packed (hcp) band structure. Early investigations on the
DFTB parametrization of first-row elements and hydrogen17

suggested that the wave function confinement radius should
be approximately 2 times larger than the covalent radius of
a given element (although this rule is not absolute for other
elements). Therefore, after varying the value of the wave
function confinement radius from 3 to 5 bohr, we have
observed the best Ti band-structure reproducibility at 4.3 bohr
and used this value throughout this study. It should be noted
that this value is however slightly larger than the previously
chosen one of 3.6 bohr.19

In the case of other elements (C, H, N, O, S), we have
employed the same initial atomic parameters as have been
reported earlier.16 This ensures the applicability and transfer-
ability of our newly derived parameters among different
molecular and periodic structures.

Repulsion profiles for Ti-X (X ) Ti, C, H, N, O, S) pairs
were generated by fitting with cubic splines the difference
of DFT total energy and the electronic DFTB energy versus
distance upon stretching Ti-X bonds in simple reference
molecules. Different Ti-X repulsion profiles are character-
ized by different cutoff values indicating the distance at
which the repulsion energy approaches zero. Table 1 gives
an overview of parametrization details used for the generation
of Ti-X repulsion profiles. It should be noted that in some
cases (cf. Table 1, Ti-N and Ti-C pairs) the repulsion curve
has to be shifted toward higher energies to reduce the errors
associated with significant overbinding of reference systems.

All the reported parameters (set name “tiorg”) can be
downloaded from the DFTB webpage (see http://www.dftb.
org/parameters/download).

2.3. Reference DFT Calculations. For molecular sys-
tems, we have employed the same methodology as was
originally proposed by Zheng et al.:19 all potential-energy-
surface scans as well as geometry optimizations were
performed using the hybrid Becke’s three-parameter ex-
change functional with the Lee-Yang-Parr correlation
functional (B3LYP)23-25 in conjunction with a mixed SDD+
basis set. This basis set consists of a Stuttgart/Dresden
SDD26,27 effective core potential and basis set for titanium
and Pople-style double-� 6-31G(d)28 basis set for other
elements. All these calculations were performed using the
Gaussian 03 program package.29

For periodic systems, we have performed DFT calculations
using Perdew, Burke, and Ernzerhof (PBE)21 functional with
double-� basis set including polarization functions as imple-
mented in the SIESTA code.30,31 The Troullier-Martins32,33

scheme was employed to generate two types of pseudopo-

tentials assuming 3s23p63d24s2 (PP I) and 3d24s2 (PP II)
valence electronic configurations for titanium atom. The
valence electronic configuration of oxygen was always 2s22p4

throughout this study. The k-point sampling was performed
in the same manner as for the SCC-DFTB calculations (see
below). In the case of anatase, we have also carried out
reference DFT calculations using the screened Hartree-Fock
hybrid exchange-correlation (HSE06) functional34,35 with
projector-augmented plane wave (PAW)36,37 potentials and
treating Ti 3p electrons as valence ones. These calculations
were performed with the Vienna Ab initio Simulation
Package (VASP 5.2)38-41 using an energy cutoff of 420 eV.

2.4. SCC-DFTB Calculations. Single-point SCC-DFTB
calculations and geometry optimizations were carried out
with the DFTB+ program.42,43 In the latter case, the
conjugate gradient algorithm44 with the maximum force
component of 10-4 au was employed. Bulk titanium, rutile,
and anatase structures were simulated with the 8 × 8 × 4,
4 × 4 × 8, and 10 × 10 × 4 Monkhorst-Pack45 grids for
k-point sampling, respectively. The optimal lattice parameters
were obtained after looking for a minimum-energy value
from numerous single-point calculations having different c/a
ratios, volumes, and internal u (for TiO2 polymorphs)
parameters. The rutile and anatase surfaces were modeled
on the basis of periodic slabs for supercells having vacuum
regions (>120 Å) and one k-point along the surface-normal
directions. Cohesive, atomization, and binding energies were
computed as the energy difference with respect to individual
spin-polarized fragments (atoms). The mio-set16,17 SCC-
DFTB diatomic pairs involving carbon, hydrogen, oxygen,
nitrogen, and sulfur were employed throughout this study.

3. Results and Discussion

In the following, our current parametrization results for some
model systems involving Ti-X (X ) Ti, C, H, N, O, S)
Slater-Koster pairs will be presented in comparison to
previous SCC-DFTB parametrization of Zheng et al.,19 to
DFT, and to available experimental data.

3.1. Ti-Ti Interactions: Ti hcp Structure. As mentioned
earlier in section 2.2, we have found the best SCC-DFTB
band-structure representation of Ti hcp phase using a titanium
wave function confinement radius of 4.3 bohr. The corre-
sponding band structure is depicted in Figure 1 together with
the reference GGA-DFT one. One can easily see that the
most of SCC-DFTB bands are compressed in comparison
to their DFT analogues while retaining their shape. Such a
behavior is typical for the SCC-DFTB method due to the
minimal basis set employed and is commonly observed in
the case of other elements.22

The equilibrium geometric parameters together with
cohesive energies of Ti hcp bulk phase obtained using
different SCC-DFTB parametrization sets, using DFT, and
taken from experiment are given in Table 2. As seen from
these data, the SCC-DFTB parametrization set of Zheng et
al.19 leads to the much shorter values of lattice constants a
and c (although the c/a ratio is quite accurate) as a result of
the strong overbinding of the Ti hcp phase. This trend may
indicate that there is not enough contribution from the
repulsion Ti-Ti energy near equilibrium bulk values. With

Table 1. Reference Molecular Systems and Cutoff Values
Used To Generate Ti-X (X ) Ti, C, H, N, O, S) Repulsion
Profiles

Ti-X pair
reference
system

cutoff value,
bohr

shift of
repulsion curve

Ti-Ti (singlet) Ti2 5.68 no
Ti-O TiO2 5.49 no
Ti-H TiH4 3.60 no
Ti-C Ti(CH3)4 5.78 upward by 0.7 eV/bond
Ti-N Ti(NH2)4 6.60 upward by 0.5 eV/bond
Ti-S TiS2 7.48 no
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the current SCC-DFTB set, we observe a much closer
agreement of investigated properties with experiment: the a
value lies within 0.06 Å to experiment or PBE, whereas the
c value is more overestimated (by 0.21 and 0.17 Å to PBE
and experiment, respectively). It should be noted however
that the Ti hcp cohesive energy is now equal to 6.49 eV
(and is overestimated by only 1.6 eV to experiment), which
is comparable to DFT with local density approximation
(LDA) values (6.29,46 6.4247 eV). This result is quite
satisfactory taking into account the general overestimation
trend of the SCC-DFTB method itself.

3.2. Ti-O Interactions. Since the main aim of the current
parametrization is to properly reproduce the properties of
periodic systems involving titanium, the performance of this
parametrization set for the two main TiO2 polymorphs, rutile
and anatase, and their surfaces is presented below.

3.2.1. Properties of Rutile and Its Low-Index Surfaces.
The band structures of bulk rutile calculated with the current
SCC-DFTB method and with GGA-DFT are shown in Figure
2. It is well-known that pure LDA and GGA functionals
usually yield much smaller band gap values whereas hybrid
functionals tend to overestimate this quantity.13 In accord
with this finding, our GGA results lead to band gap values
of 1.7-2.0 eV, which are lower by more than 1 eV than the
experimental one. Interestingly enough, in the case of the

SCC-DFTB method we have found the minimal band gap
at Γ of 3.13 eV that lies very close to the experimental value
of 3.0 eV.48,49 This presumably originates from the fortunate
error cancellation associated with the minimal basis set used
and other approximations of the SCC-DFTB method. How-
ever, the SCC-DFTB band structure differs significantly in
the valence bands near the Γ-point from that obtained with
DFT because of limitations of the SCC-DFTB method (cf.
Figure 2c). This discrepancy cannot be cured by applying
different wave function confinement radii for the oxygen
atom nor by shifting the value of the oxygen 2s on-site
energy.

Table 3 summarizes the main geometric and energetic
characteristics of rutile bulk structure obtained with different
DFT approaches and SCC-DFTB. We estimate the cohesive
energy of rutile at 0 K by using the most recent CRC values1

for the standard heats of formation of crystalline rutile and
atomic oxygen as well as the cohesive energy of Ti hcp.50

All less contributing terms such as thermal corrections and
zero-point vibration energy of TiO2 have been neglected. In
general, all DFT methods overestimate the cohesive energy
of rutile with hybrid functionals coming closer to the
experimental value. Although SCC-DFTB also suffers from
this deficiency, we managed to significantly reduce this
overbinding trend in comparison to the previous set of Zheng
et al.19 and to bring down this property to 22.5 eV/TiO2,
which lies close to the PBE result of Lazzeri et al.51 of 21.44
eV/TiO2.

A comparison of rutile lattice parameters obtained with
DFT and SCC-DFTB (see Table 3) indicates that, among
GGA functionals, PBE generally reproduces the experimental
values quite well whereas BLYP leads to larger a and c
values. The previous SCC-DFTB set of Zheng et al.19 gives
too high a value of lattice constant a, while leading to the
almost exact value of c. As a result, the corresponding c/a
value is very low. The current SCC-DFTB parametrization
overcomes this discrepancy and leads to a better agreement
with experiment (though the c value is now only slightly
overestimated). However, the bulk modulus of rutile is now
determined less accurately (i.e., by ∼50 GPa lower to BLYP
or PBE values and by ∼80 GPa to experiment) than the same
property obtained using the parametrization set of Zheng et
al.19 (see Table 3).

To further validate our Ti-O parameters, we have also
investigated the energetic characteristics of main low-index
rutile surfaces. Table 4 gives the surface energies of (001)
and (100) rutile calculated with SCC-DFTB in comparison
to different DFT functionals within the slab approach. The
surface energy Esurf is defined as the energy difference
between the total energy of the slab (Eslab) and that of the
regular crystal having the same number (n) of TiO2 formula
units (Ebulk) divided by twice the surface area (A) of the slab:
Esurf ) (Eslab - nEbulk)/2A. The calculated SCC-DFTB surface
energy of the least stable (001) surface converges to 2.01
J/m2 with the slab thickness that is slightly larger than the
LDA result of Labat et al.13 For the (100) surface, we observe
small oscillations of the surface energy with the slab
thickness reaching the final value of 1.192 J/m2 that almost
coincides with its LDA counterpart.13 It should be noted that

Figure 1. Titanium hcp band structures calculated with (a)
GGA-DFT and (b) SCC-DFTB.

Table 2. Comparison of the Main Geometric and Energetic
Parameters of Ti hcp Structure Calculated with SCC-DFTB
and Obtained from Experiment

SCC-DFTB DFT

parameter
set of

Zheng et al.19
current

set LDAa LDAb PBEb exptc

a, Å 2.380 2.998 2.866, 2.925 2.87 2.94 2.9508
c, Å 3.828 4.855 4.547, 4.666 4.526 4.642 4.6855
V, Å3 18.78 37.80 32.34, 34.57 32.28 34.75 35.33
c/a 1.608 1.619 1.586, 1.595 1.577 1.579 1.588
Ecoh, eV 11.58 6.49 6.42,d 5.20 6.70 5.87 4.85

a Linearized augmented plane-wave (LAPW) results of Lu et
al.47 using exchange-correlation potentials of Hedin-Lundqvist
and exchange-only XR (R ) 2/3), respectively. b Full-potential
LAPW results of da Silva et al.84 c See ref 47 and references
therein. For cohesive energy, see also ref 50. d Slightly smaller
LDA value of 6.29 eV has been reported by Philipsen and
Baerends46 calculated using an experimental Ti hcp geometry.
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the corresponding surface geometries agree well with their
DFT analogues.

3.2.2. Properties of Anatase and Its Low-Index
Surfaces. Figure 3 depicts the band structures of bulk anatase
calculated with the hybrid HSE0634,35 functional and SCC-
DFTB. The indirect Γ f X band gap was found to be 3.7
and 3.2 eV with HSE06 and SCC-DFTB, respectively. The
latter result is in a very close agreement with experimental
band gap values of 3.2-3.3 eV.52 The overall overestimation
of band gaps with DFT using hybrid functionals is not
surprising and was also reported earlier by Labat et al.53 for
the PBE054 functional. Unlike the rutile case, the SCC-DFTB
band structure, apart from its compressed shape, reproduces
well the main features of DFT band structure and is also in
perfect agreement with experiment.

The main structural features and cohesive energies of bulk
anatase calculated with DFT and SCC-DFTB together with
experimental values are summarized in Table 5. With the
current SCC-DFTB parametrization set, we obtain the
cohesive energy of 22.3 eV/TiO2. This value lies between
the PBE result of Lazzeri et al.51 of 21.5 eV and the hybrid
HSE0634,35 result of 22.9 eV. It should be noted that,

according to experimental observations,53,55,56 rutile is the
most stable TiO2 polymorph and anatase should lie by up to
0.06 eV higher in energy than rutile. However, DFT
functionals usually do not reproduce this stability order
(except for LDA53). Surprisingly, the SCC-DFTB method
gives the correct trend in stability with anatase being by 0.2
eV less stable than rutile and giving at the same time the

Figure 2. TiO2 rutile band structures calculated with DFT-GGA using (a) PP I pseudopotential and (b) PP II pseudopotential,
and (c) with current SCC-DFTB. For the description of PP I and PP II please refer to section 2.3.

Table 3. Comparison of the Geometric and Energetic
Parameters of Bulk TiO2 Rutile Structure Calculated with
Different DFT Functionals, with SCC-DFTB Using Two
Different Parametrization Sets, and Obtained from
Experiment

SCC-DFTB

property LDAa PBEa BLYPa
set of

Zheng et al.19
current

set exptb

Ecoh, eV 24.44 21.44 20.27 28.7 22.5 19.79
B0, GPa 249 204 200 223 148 230 ( 20c

Vo, Å3/TiO2 30.2 31.8 32.7 33.0 32.8 31.217
a, Å 4.546 4.634 4.679 4.723 4.677 4.5936
c, Å 2.925 2.963 2.985 2.958 2.999 2.9587
c/a 0.643 0.639 0.638 0.626 0.641 0.6441
u 0.304 0.305 0.305 0.300 0.301 0.3048

a Literature values from ref 51; similar values were also
reported by Labat et al.13,53 for LDA and PBE functionals.
b Structural parameters are taken from ref 85; cohesive energy
Ecoh is estimated on the basis of ∆Hf°(TiO2,cr,298.15 K) ) -9.78
eV,1 ∆Hf°(O,g,298.15 K) ) 2.58 eV,1 and cohesive energy
Ecoh(Ti,hcp) of 4.85 eV (cf. Table 2) as Ecoh(TiO2) ) Ecoh(Ti) +
2∆Hf°(O,g,298.15K) - ∆Hf°(TiO2,cr,298.15K). c Literature value
from ref 86.

Table 4. Comparison of the Energetics of Different
Low-Index Surfaces of Rutile TiO2

a

(a) (001) surface

Esurf for (001-13L) surface with
other methods,b J/m2

n
Esurf(SCC-DFTB),

J/m2 HF LDA PBE B3LYP PBE0

4 1.887
2.077 1.876 1.393 1.452 1.5878 2.003

16 2.010

(b) (100) Surface

Esurf for (100-5L) surface with
other methods,b J/m2

n
Esurf(SCC-DFTB),

J/m2 HF LDA PBE B3LYP PBE0

4 1.193
1.128 1.197 0.694 0.699 0.8338 1.176

16 1.192

a Each slab contains n unit cells. b Literature values from ref 13.

Figure 3. TiO2 anatase band structures calculated with (a)
HSE06 DFT functional and (b) SCC-DFTB with current
parameters.
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values of cohesive energy much closer to experiment than
those from LDA calculations.

As concerns geometric parameters, LDA geometries
reported by Lazzeri et al.51 are the most accurate among the
listed pure DFT functionals and GGA functionals tend to
provide slightly larger lattice parameters of anatase. Much
better results can be obtained if one utilizes a screened
Hartree-Fock hybrid exchange-correlation functional, for
instance, HSE06,34,35 for which the lattice parameters differ
from experiment by only 0.032 and 0.063 Å for a and c,
respectively. Current SCC-DFTB parametrization results in
an accurate value of a (see Table 5), though the c value is
by 1.8% smaller than its experimental counterpart. The
corresponding internal u parameter, which represents the ratio
of apical Ti-O bond length to c, slightly exceeds the
experimental value. Similar to the rutile case, the bulk
modulus calculated with current SCC-DFTB parameters is
underestimated by approximately 40-50 GPa to DFT and
experiment but outperforms the set of Zheng et al.,19 which
gives a too low B0 value (Table 5).

If one compares the surface energies of low-index anatase
surfaces (see Table 6), one can easily see that the current
SCC-DFTB parametrization yields the corresponding values
of at least LDA quality: in the case of (001) surface, the
SCC-DFTB result is between the LDA and PBE ones

whereas for the (100) surface the SCC-DFTB result coincides
with its LDA counterpart. The DFT stability order of these
surfaces is also retained with SCC-DFTB.

3.2.3. Properties of Small Titanium Oxide Molecules. In
the final step of verification of our SCC-DFTB Ti-O
parameters with respect to DFT and to previous SCC-DFTB
parameters of Zheng et al.,19 we have investigated the
geometric and energetic characteristics of small (TiO)n and
(TiO2)n molecules (n ) 1, 2). The corresponding equilibrium
geometries are given in Figure 4, whereas the total atomi-
zation energies are collected in Table 7.

The TiO molecule is the most well-characterized of all
the systems presented in Figure 4, both experimentally and
theoretically. It has a triplet (3∆) ground state with an
experimental bond length of 1.6202 Å1 and atomization
energy (D0) of 158.4 ( 1.5 kcal/mol57 that, after inclusion
the zero-point-energy (ZPE) correction based on the experi-
mental value of vibrational Ti-O frequency of 1009 cm-1,1

leads to the electronic atomization energy (De) value of 159.8
( 1.5 kcal/mol. Both B3LYP and SCC-DFTB slightly
underestimate the equilibrium bond length for the same state
with the maximum error of 0.033 Å to experiment while
the same geometric parameter for the singlet state is
described with SCC-DFTB more accurately (within 0.01 Å
to DFT and 0.02 Å to experiment (1.602 Å)).58 The cal-

Table 5. Comparison of the Geometric and Energetic Parameters of Bulk TiO2 Anatase Structure Calculated with Different
DFT Functionals, with SCC-DFTB Using Two Different Parametrization Sets, and Obtained from Experiment

SCC-DFTB

property LDAa PBEa BLYPa HSE06b
set of

Zheng et al.19
current

set exptc

Ecoh, eV 24.46 21.54 20.39 22.90 28.41 22.3 19.73
B0, GPa 199 176 178 - 60 133 179 ( 2d

Vo, Å3/TiO2 33.25 34.89 35.83 33.72 35.70 33.75 34.06
a, Å 3.735 3.786 3.828 3.752 3.914 3.801 3.7842
c, Å 9.534 9.737 9.781 9.578 9.322 9.346 9.5146
c/a 2.553 2.572 2.555 2.552 2.382 2.459 2.5143
u 0.207 0.206 0.206 0.206 0.216 0.214 0.2081

a Literature values from ref 51; similar values were also reported by Labat et al.13,53 for LDA and PBE functionals. b This work.
c Structural parameters are taken from ref 87; cohesive energy Ecoh is estimated to be by up to 0.06 eV smaller than that of rutile (Table 3)
after taking into account the difference in binding energies of rutile and anatase reported by Labat et al.53 (or from the difference in their
standard heats of formation55). d Literature value from ref 88.

Table 6. Comparison of the Energetics of Different Low-Index Surfaces of Anatase TiO2
a

(a) (001) Surface

Esurf for (001-6L) surface with
other DFT models,b J/m2

n
Esurf (SCC-DFTB),

J/m2
LDA

unrelaxed/relaxed
PBE

unrelaxed/relaxed

2, 4, 8 1.10 1.46/1.38 1.12/0.98

(b) (100) Surface

Esurf for (100-6L) surface with
other DFT models,b J/m2

Esurf for (100-8L) surface with
other methods,c J/m2

n Esurf (SCC-DFTB), J/m2
LDA

unrelaxed/relaxed
PBE

unrelaxed/relaxed HF LDA PBE B3LYP PBE0

2 0.97
1.90/0.96 1.59/0.58 1.024 0.971 0.625 0.666 0.7324 0.96

8 0.97

a Each slab contains n unit cells. b Literature values from ref 51. c Literature values from ref 13.

SCC-DFTB Set of Parameters for Ti-X Systems J. Chem. Theory Comput., Vol. 6, No. 1, 2010 271



culated SCC-DFTB atomization energies suffer from severe
overbinding with the current parametrization leading to a
by almost 0.8 eV lower value (9.17 eV) for 3TiO in
comparison to the set of Zheng et al.19 (9.94 eV). The current
SCC-DFTB atomization energy of 3TiO is however compa-
rable to the SVWN, SP86, and SLYP results reported
earlier.59 Interestingly, the excitation energies to the lowest-
lying closed shell singlet (1Σ+) state of TiO are determined
much closer to experiment with SCC-DFTB than with
B3LYP leading to 0.89 eV (with both parametrization sets)
and 1.15 eV, respectively, compared to the experimental
value of 0.70 eV (5650 cm-1).60

TiO2 in its singlet ground state is known experimentally
to have a bond length of 1.62 ( 0.08 Å (as quoted by
Ramana and Philips61) and a bond angle of 110 ( 15°62

from early IR measurements refined later to be 113 ( 5°.63

The current SCC-DFTB parametrization reproduces well
these geometric features of TiO2 with an absolute error to
DFT of 0.029 Å and 2.9° for the Ti-O bond length and
O-Ti-O bond angle, respectively. It should be noted that,
according to the recent high-level coupled-cluster CCSD/
LANL2DZ calculations of Qu et al.64 and CCSD(T)/aug-
cc-pVTZ-PP ones of Li et al.,65,66 the equilibrium bond

length should be rather longer (1.672 and 1.666 Å, respec-
tively) than the values commonly obtained by DFT using
various functionals,59 but the bond angle (112.6 and 112.4°)
almost coincides with the best experimental estimate (see
above) and is within 1° of our reference B3LYP value. The
experimental D0(TiO2) was reported to be 301.1 ( 2.967 and
304.0 ( 2.8 kcal/mol.57 Because of lack of experimental
values of the vibrational frequency for the O-Ti-O bending
mode, it is not possible to calculate ZPE directly; therefore,
a theoretical B3LYP/SDD+ ZPE correction of 3.4 kcal/mol
is employed here leading to electronic atomization energies
of 304.5 ( 2.9 and 307.4 ( 2.8 kcal/mol. Our reference
DFT value of the TAE (300.1 kcal/mol) lies a few kilocalo-
ries per mole below the experimental estimates but agrees
perfectly with the complete-basis-set extrapolated CCSD(T)
value of 299.08 kcal/mol.66 As in the case of TiO species,
SCC-DFTB strongly overbinds TiO2 with the current set
being almost 90 kcal/mol above the reference DFT value.

Another TiO2 isomer, cyclic peroxide Ti(O2), has been
investigated only theoretically. Our reference DFT Ti-O
bond length (1.776 Å) and O-Ti-O bond angle (49.3°) are
in a good agreement with previous BLYP/6-311+G* results
of Uzunova et al.68 (1.785 Å and 48.8°, respectively) but lie
slightly below the B3LYP/LANL2DZ results of Qu et al.64

(1.814 Å and 50.9°). SCC-DFTB with current parameters
reproduces well the geometric features of Ti(O2): the bond
length deviates by 0.025 Å to DFT and the bond angle
deviates by only 1.6°. The SCC-DFTB relative energies of
singlet Ti(O2) with respect to the ground-state TiO2 are
determined however less accurately: B3LYP/SDD+ leads
to the value of 4.35 eV (in accord with previous DFT results
of 4.49 eV,68 4.73 eV64), whereas both SCC-DFTB param-
etrizations give 6.2-6.4 eV, indicating a different overes-
timation degree of pure metal oxide and metal peroxide bond
energies.

According to DFT, dibridged cyclic Ti2O2 can exist as a
planar D2h or nonplanar (“butterfly”) C2V isomer with the
latter being the global-minimum structure in agreement with
previous calculations and experiment.63,69,70 The SCC-DFTB
optimized geometries are determined now with slightly larger
errors when in the case of TiO and TiO2 molecules: the bond

Figure 4. Schematic view of small isomeric (TiO)n and (TiO2)n molecules (n ) 1, 2) together with their equilibrium geometric
parameters obtained with DFT (B3LYP/SDD+; without parentheses or brackets) and with SCC-DFTB using parameter set of
Zheng et al.19 (in parentheses) or using current set (in brackets).

Table 7. Total Atomization Energiesa (TAEs, in kcal/mol)
of Small Isomeric (TiO)n and (TiO2)n Molecules (n ) 1, 2)
Calculated with DFT and SCC-DFTB

SCC-DFTB

molecule
point group,
multiplicity DFTb

set of Zheng
et al.c current set

TiO C∞v, 1 135.9 208.7 190.9
C∞v, 3 162.5 229.3 211.5

TiO2 C2v, 1 300.1 428.2 389.7
Ti(O2) C2v, 1 199.7 284.5 243.0
Ti2O2 D2h, 1 353.0 572.4 440.7

C2v, 1 385.3 582.2 453.3
Ti2O4 C2v, 1 713.1 1002.8 862.5

C2h, 1 719.5 1005.8 865.2
C3v, 1 702.7 1015.8 825.5

a Total atomization energies refer to the energies of Ti and O
atoms in their ground spin (triplet) states. b B3LYP/SDD+ (see
section 2.3) calculations; this work. c Using the SCC-DFTB
parameters of Zheng et al.;19 this work.
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length can differ by up to 0.05-0.06 Å to B3LYP whereas
bond angles may vary by (3° to the same functional. It
should be mentioned that our reference B3LYP geometric
parameters depend also on the basis set size and the effective-
core-potential versus all-electron approach, as exemplified
by the B3LYP/6-311+G* Ti-O bond length in the D2h

isomer of 1.846 Å69 that reduces the SCC-DFTB vs DFT
bond length error to 0.042 Å. Although SCC-DFTB gives
the correct stability order for these two Ti2O2 isomers, the
actual SCC-DFTB relative energies are too low in compari-
son to our reference DFT value with the largest error of 22.5
kcal/mol represented by the set of Zheng et al.19 Nevertheless,
the current parametrization set now gives closer to DFT at-
omization energies per Ti-O bond (with the energy difference
of about 17-22 kcal/mol) compared to TiO2 (44.8 kcal/mol).

Three main isomeric structures were proposed for Ti2O4:
cis dibridged (C2V), trans dibridged (C2h), and tribridged (C3V)
(cf. Figure 4)swith the lowest-energy isomer corresponding
to the trans dibridged (C2h) structure.64,65,71,72 SCC-DFTB
optimization with current parameters leads to a good agree-
ment of geometric characteristics of these isomers with
reference DFT data: the maximum error is 0.039 Å in bond
lengths and 2.7° in bond angles. In addition, our reference
DFT bond lengths agree within 0.023 Å to the recent
CCSD(T)/aug-cc-pVTZ-PP results of Li et al.65 The SCC-
DFTB parametrization set of Zheng et al.19 usually tends to
give more open structures for these isomers with the bond
angles much larger (up to 6°) compared to reference DFT
values. In addition, the same set does not reproduce the
correct stability order of Ti2O4 isomers (see Table 7), leading
to C3V isomer as the most stable one. The current param-
etrization set overcomes this discrepancy, but the relative
SCC-DFTB energies of Ti2O4 isomers still differ significantly
from their reference DFT and high-level ab initio counter-
parts: the cis dibridged (C2V) lies by 2.7 kcal/mol higher in
energy above the global minimum (compared to 6.4 kcal/
mol with B3LYP/SDD+ or to 5.5 kcal/mol with CCSD(T)/
CBS65), whereas the tribridged (C3V) isomer is higher by
almost 40 kcal/mol (compared to 16.8 kcal/mol with B3LYP/
SDD+ or to 12.8 kcal/mol with CCSD(T)/CBS65). The total
atomization energy of trans dibridged (C2h) isomer derived
experimentally at 0 K is 721.1 ( 11.2 kcal/mol73 that, after
including the ZPE (B3LYP/SDD+) correction of 9.1 kcal/
mol, leads to the electronic atomization energy of 730.2 (
11.2 kcal/mol. Our reference DFT value for the same isomer
lies close to the lower bound of experimental estimate. The
SCC-DFTB atomization energies are overestimated in all
cases, but the overestimation degree of the current set is
almost twice as low compared to that of Zheng et al.19

Overall, the current SCC-DFTB parametrization gives an
acceptable description of small titanium molecules with
geometric characteristics lying close to their DFT analogues.
The total atomization energies are however overestimated
for all the systems, and the relative energies between different
isomers may vary significantly from their DFT analogues
and should be treated with caution, especially if an unusual
spatial arrangement of atoms is present.

3.3. Ti-H Interactions. As stated in Table 1, we have
generated the repulsion profile of Ti-H interactions on the

basis of the titane (TiH4) molecule in its Td symmetry using
the cutoff value of 3.60 bohr. Table 8 lists total atomization
energies together with equilibrium bond lengths and angles
of TiHx (x ) 1-4) and dibridged C2V Ti2H2 species. An
inspection of these data reveals that the SCC-DFTB geom-
etries of low-spin states are described quite accurately leading
to the maximal Ti-H bond length error of 0.041 Å (for the
singlet Ti2H2 case). Bond angles and dihedral angles are,
however, the most sensitive parameters and may deviate up
to 9.4° (for the singlet TiH2 case) for low-spin systems in
comparison to DFT values. This discrepancy usually origi-
nates from the very floppy profile of potential energy surfaces
(PESs) associated with bending an angle or twisting a
dihedral angle, on the one hand, or multireference character
of the wave function that cannot be handled by single-
reference methods without electron correlation, on the other.
For example, the experimental value of the H-Ti-H angle
of the ground (3B1) state of TiH2 was found to be 145 (
5°,74 which is very far from our reference DFT and SCC-
DFTB results. Moreover, its CISD/TZP(f,d) equilibrium
geometry75 is characterized by r(Ti-H) ) 1.790 Å and
R(H-Ti-H) ) 142.1°, i.e., close to the experimental value.
Demuynck and Schaefer76 have predicted 10 possible
electronic configurations of triplet TiH2 in C2V symmetry,
some of which are low-lying. State-averaged CASSCF
calculations of Kudo and Gordon77 for the bent 3B1 state
lead to r(Ti-H) ) 1.863 Å and R(H-Ti-H) ) 140.7°,
showing at the same time the corresponding floppy bending
PES. A similar discrepancy is found for the lowest singlet

Table 8. Equilibrium Geometries and Total Atomization
Energiesa (TAEs) of Small Titanium Hydrides Calculated
with DFT and SCC-DFTB Methods (r in Å, R and φ in deg,
TAE in kcal/mol)

SCC-DFTB

molecule
spin

multiplicity parameter DFTb
set of

Zheng et al.c
current

set

TiH 2 r 1.723 1.678 1.690
2 TAE 49.5 51.4 49.2
4 r 1.760 1.698 1.701
4 TAE 59.5 83.2 81.2

TiH2 1 r 1.696 1.690 1.696
1 R 111.8 102.6 102.4
1 TAE 98.1 117.7 113.2
3 r 1.755 1.694 1.698
3 R 121.9 104.8 105.1
3 TAE 125.9 137.9 133.6

TiH3 (D3h) 2 r 1.725 1.699 1.748
2 TAE 185.8 197.8 172.1

TiH4 (Td) 1 r 1.685 1.688 1.695
1 TAE 242.1 271.9 263.5

Ti2H2
(dibridged)

1 r(Ti-Ti) 1.988 2.082 1.967

1 r(Ti-H) 1.868 1.865 1.827
1 R(Ti-Ti-H) 57.9 56.1 57.4
1 φ(H-Ti-Ti-H) 90.5 101.9 98.0
1 ΤΑE 152.1 261.9 229.5
3 r(Ti-Ti) 2.020 2.096 1.975
3 r(Ti-H) 1.875 1.836 1.812
3 R(Ti-Ti-H) 57.4 55.2 56.9
3 φ(H-Ti-Ti-H) 126.3 139.8 133.7
3 ΤΑE 154.0 260.5 224.0

a Total atomization energies refer to the energies of Ti and H
atoms in their ground spin states (triplet and doublet, respectively).
b B3LYP/SDD+ (see section 2.3) calculations; this work. c Using
the SCC-DFTB parameters of Zheng et al.;19 this work.
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1A1 state of the bent TiH2 with the CASSCF values of
r(Ti-H) ) 1.899 Å and R(H-Ti-H) ) 168.4°,77 i.e., very
different from our DFT and SCC-DFTB results. These
observations clearly point out that our SCC-DFTB param-
etrization may not give the right answers in terms of
geometries of triplet and singlet TiH2 states as well as other
high-spin states of titanium hydrides, having many low-lying
electronic states and floppy bending PES profiles. It is
interesting tonote,however, that theSCC-DFTBtriplet-singlet
splitting (i.e., the energy difference between singlet and
triplet) in TiH2 was calculated to be 20.5 kcal/mol in
excellent agreement with the state-averaged CASSCF result
of 20.9 kcal/mol.77

For the total atomization energies (TAEs), the current
SCC-DFTB parametrization generally yields more reasonable
values close to their DFT analogues than the previous SCC-
DFTB set.19 In some cases, the SCC-DFTB TAEs however
may differ by more than 1 eV from DFT as exemplified by
the quartet TiH and both singlet and triplet Ti2H2 species.
In addition, for planar TiH3 radical we observe a different
behavior of SCC-DFTB TAEs calculated with different
parametrization sets with respect to the reference DFT one:
the set of Zheng et al.19 tends to overestimate TAE whereas
our set underestimates TAE by almost the same amount as
a result of different steepnesses of repulsion Ti-H profiles.

By comparing the high-spin f low-spin excitation ener-
gies (or splittings), one can see the correct performance of
SCC-DFTB for TiH (4 f 2) and TiH2 (3 f 1) species but
the reverse behavior for the dibridged Ti2H2 (3f 1) isomer,
which is known to be triplet in its ground state.78 This again
indicates that the SCC-DFTB investigation of spatially
strained systems, especially in their high-spin states, should
be performed with caution.

3.4. Ti-C Interactions. As mentioned earlier, the Ti-C
parameter set has been generated by using atomic parameters
of carbon from the mio-set16,17 and by applying a repulsion
curve shift of 0.7 eV per Ti-C bond. To verify the
applicability of this set for titanium-carbon compounds, we
have performed a comparative investigation of the geometries
and binding energies of one saturated Ti(CH3)4, one unsatur-
ated Ti(CH3)2 molecule, and one complex of catalytic
importance, Ti(C2H4)+. The corresponding geometric char-
acteristics together with total binding energies with respect
to separate fragments (ligands) are presented in Table 9. The
equilibrium geometry of Ti(CH3)4 agrees within 0.024 Å to
DFT, and the binding energy is overestimated by 43.9 kcal/
mol per four Ti-C bonds. Similar overestimation trends are
also observed for Ti(CH3)2 species. However, new SCC-
DFTB parameters result in much lower binding energies of
Ti(C2H4)+ complexes in comparison to their DFT analogues
and to results of Zheng et al.19 due to a much stronger
contribution of repulsion energy to the total SCC-DFTB
energy. Preliminary investigations indicate that it is possible
to achieve the DFT-quality results for Ti(C2H4)+ by applying
smaller values for the repulsion curve shift; however, in such
a case, the TAEs of covalently bound Ti(CH3)4 and Ti(CH3)2

systems will be overestimated by more than 1 eV per Ti-C
bond that exceeds typical SCC-DFTB overbinding values

found for other Ti-X systems as well as for test systems of
mio-set.16,17

It is worth noting that the SCC-DFTB high-spin f low-
spin excitation energy for the Ti(C2H4)+ complex has an
opposite sign with respect to the DFT value. Such a result
again confirms that the treatment of high-spin systems may
not be adequate within the SCC-DFTB framework. Never-
theless, the current parametrization generally leads to an
acceptable description of covalently bound titanium-carbon
systems and may be applied further to molecules and bulk
systems but may not give the right answer for charged
coordination complexes, particularly, in their high-spin states.

3.5. Ti-N and Ti-S Interactions. Ti-N SCC-DFTB
parametrization exemplifies another case where there was a
need to shift the repulsion curve toward higher energies to
diminish the degree of overbinding of reference systems (see
Table 1). Table 10 contains the reference DFT and SCC-
DFTB equilibrium geometries and binding energies of some
small titanium-nitrogen-containing molecules. We can see

Table 9. Equilibrium Geometries, Binding Energiesa (BEs),
and High-Spin f Low-Spin Excitation Energies of Small
Titanium-Carbon Compounds Calculated with DFT and
SCC-DFTB Methods (r in Å, R in deg, BE in kcal/mol)

SCC-DFTB

molecule
spin

multiplicity parameter DFTb
set of

Zheng et al.19
current

set

Ti(CH3)4 1 r 2.072 2.034 2.096
1 BE 242.7 419.4 286.6

Ti(CH3)2 1 r 2.038 2.033 2.096
1 R 113.7 110.1 110.2
1 BE 98.1 192.4 125.4
3 r 2.100 2.040 2.103
3 R 122.1 117.6 118.4
3 BE 118.2 209.9 143.0
3 f 1 ∆E 20.1 17.5 17.6

Ti(C2H4)+ 2 r 2.029 1.993 2.015
2 BE 68.0 99.9 35.0
4 r 2.337 2.276 2.259
4 BE 76.2 93.6 32.4
4 f 2 ∆E 8.23 -6.26 -2.6

a BEs are defined as follows: for Ti(CH3)n, BE ) E(Ti) +
nE(CH3) - E(Ti(CH3)n); for Ti(C2H4)+, BE ) E(Ti+) + E(C2H4) -
E(Ti(C2H4)+). b B3LYP/SDD+ (see section 2.3) calculations; this
work.

Table 10. Equilibrium Geometries and Binding Energiesa

(BE) of small Titanium-Nitrogen Compounds Calculated
with DFT and SCC-DFTB Methods (r in Å, R in deg, BE in
kcal/mol)

SCC-DFTB

molecule
spin

multiplicity parameter DFTb
set of

Zheng et al.19
current

set

Ti(NH2)4
(S4 symm)

1 r 1.899 1.874 1.902

1 BE 358.9 383.5 361.6
H3TiNH2 1 r 1.846 1.859 1.898

1 BE 91.6 104.5 118.0
HNdTidNH 1 r 1.707 1.692 1.703

1 R 114.8 114.2 114.7
1 BE 91.7 124.1 113.3

a BEs are defined as follows: for Ti(NH2)4, BE ) E(Ti) +
4E(NH2) - E(Ti(NH2)4); for H3TiNH2, BE ) E(TiH3) + E(NH2) -
E(H3TiNH2); for Ti(NH)2, BE ) E(Ti) + E(N2H2) - E(Ti(NH)2).
b B3LYP/SDD+ (see section 2.3) calculations; this work.
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that the current SCC-DFTB results almost coincide now with
their DFT counterparts for the reference Ti(NH2)4 molecule.
However, for another saturated compound, H3TiNH2, the
current set gives a slightly larger Ti-N equilibrium bond
length and binding energy. On the other hand, for the
unsaturated Ti(NH)2 compound, the current set is coming
closer to the DFT values than the previous set.19 Therefore,
the current Ti-N set should be considered as generally
applicable to model such systems and should not cause
significant errors.

Finally, we have also performed the new SCC-DFTB
parametrization of Ti-S interactions. Unlike the Ti-N case,
for this pair of elements it was possible to apply a relatively
large cutoff value in order to avoid the usage of the repulsion
energy shift. The resulting SCC-DFTB parameters were
tested against a few gas-phase titanium sulfides, and the
obtained results are given in Table 11. It has been found
that the reference TiS2 molecule is characterized by only
marginal Ti-S bond elongation as well as a small decrease
of bond angle using the SCC-DFTB method in comparison
to DFT. For other titanium sulfides tested, a small decrease
in bond lengths (up to 0.028 Å) is observed. Concerning the
total binding energies, the largest overbinding (of 36.2 kcal/
mol) is found for the TiS2 molecule whereas other sulfides
are described with smaller absolute energy differences.
Hence, the new SCC-DFTB set for titanium-sulfur interac-
tions should yield relatively accurate equilibrium geometries
of such sulfur-containing systems while slightly overbinding
these compounds.

3.6. Water Splitting on (001) Anatase Surface: Test
Case. It has been well established in the literature that the
high reactivity of anatase nanoparticles should be associated
with the minority (001) anatase surface,79 which exhibited
an unusually strong tendency to cause spontaneous water
dissociation.80,81 In turn, this high reactivity also originates
from an unusual structural feature and high strain of the (001)
surface, having two inequivalent Ti-O bonds and a large
Ti-O-Ti bond angle.51

Vittadini et al.81 have found three different adsorption
modes for water adsorption on the (001) surface based on
GGA calculations: dissociative, molecular, and mixed. Figure
5 depicts the corresponding local-minimum structures of
adsorbed water on (001) anatase obtained with SCC-DFTB
and DFT. Although we did not perform preliminary molec-

ular dynamics simulations using different orientations of
water molecules near the (001) surface in order to find more
energetically preferable structures, but rather relied on the
SCC-DFTB optimization itself, we were able to locate the
main structures for these three modes with geometric
characteristics close to their DFT analogues. The largest
deviation in bond lengths has been found for the hydrogen-
bonded -O · · ·H distances that exceeded sometimes 0.4 Å
in comparison to DFT ones, indicating that the corresponding
potential energy surface may contain many close-lying
minima not easily obtained through a simple energy
minimization.

If one compares the energetic characteristics, i.e., adsorp-
tion energies per H2O molecule, for different adsorption
modes and capacities (shown in Table 12), one can also see
a satisfactory agreement with DFT results of Vittadini et al.81

SCC-DFTB also confirms that at coverages θ below 0.5 the
dissociative mode is preferred over other modes whereas at
θ > 0.5 the mixed mode is more energetically favorable.

Table 11. Equilibrium Geometries and Total Binding
Energiesa (BEs) of Titanium Sulfides Calculated with DFT
and SCC-DFTB Methods (r in Å, R in deg, BE in kcal/mol)

molecule
spin

multiplicity parameter DFTb SCC-DFTBc

TiS2 (C2v) 1 r(Ti-S) 2.079 2.107
1 R(S-Ti-S) 112.9 109.3
1 BE 199.7 235.9

Ti2S3 (D3h) 1 r(Ti-S) 2.297 2.269
1 BE 416.3 428.3

TiS (C∞v) 1 r(Ti-S) 2.021 2.007
1 BE 82.6 113.8

a Total binding energy is calculated with respect to the energies
of separate Ti and S atoms in their ground spin states.
b B3LYP/SDD+ (see section 2.3) calculations; this work. c Current
SCC-DFTB parametrization set.

Figure 5. Structures of (001) anatase surfaces with adsorbed
water molecules via (a) molecular, (b) dissociated, and (c)
mixed adsorption modes. Bond lengths (in Å) without paren-
theses refer to SCC-DFTB ones obtained with current pa-
rametrization set, whereas those with parentheses are DFT
values taken from Vittadini et al.81 Titanium atoms are shown
in blue, oxygen atoms are in red, and hydrogen atoms are in
green. Hydrogen bonds are denoted with black dashed lines.
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Given the limitations of SCC-DFTB methods, on the one
hand, and the difference in geometries for our SCC-DFTB
and Vittadini et al.’s81 DFT structures, on the other, the
energy differences of 0.3 eV and smaller between SCC-
DFTB and Vittadini et al.’s81 corresponding DFT values
should be considered as acceptable.

4. Conclusions

A new improved SCC-DFTB parametrization for titanium
and its interactions with carbon, hydrogen, nitrogen, oxygen,
and sulfur has been developed in order to get the best possible
description of periodic and molecular systems involving these
elements. This new SCC-DFTB set has been shown to give
accurate values of the band gaps of the main TiO2 poly-
morphs: rutile and anatase. The corresponding energetic and
structural SCC-DFTB parameters of these bulk phases and
their low-index surfaces are also in a good agreement with
experimental and reference DFT results, outperforming the
previous set of Zheng et al.19 In addition, the careful
generation of repulsion profiles for each pair of interacting
elements allowed us to achieve much better binding (and/or
atomization) energies of small molecular systems that
generally lie close to their DFT counterparts and do not suffer
from significant overbinding. However, it should be empha-
sized that the current SCC-DFTB set may rather not be
applicable to small molecular systems in their high-spin states
and with floppy potential energy surfaces or to systems
whose wave functions exhibit significant multireference
character. Nevertheless, the current set should serve as an
excellent tool for the preliminary investigation of the
adsorption of small molecules on rutile and anatase surfaces
using considerably less computational resources as would
be the case with ab initio methods.

When this work was finished, another SCC-DFTB param-
etrization involving titanium has been published by Lus-
chtinetz et al.,82 reporting structural and electronic charac-
teristics of rutile and anatase bulk phases in a close agreement
with our results. However, our set relies on the previously
derived SCC-DFTB parameters for the first-row elements
(mio-set) that have been shown16-18,83 to perform well for
many organic molecules and, therefore, this work should be
considered as an attempt to generate the most suitable mio-
based Ti-X (X ) Ti, C, H, N, O, S) set to be applied to
metal-organic compounds, to periodic (mainly, TiO2)
systems, and to systems involving small molecular adsorbates
on rutile and/or anatase surfaces.
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Abstract: A fully dynamical approach using ab initio molecular dynamics (AIMD) simulations
is applied to the investigation of CO oxidation on O-covered Au(111). We investigate how the
activity of gold depends upon temperature, oxygen coverage, and surface structure. On clean
Au(111) at 500 K, CO binds transiently on top of Au atoms, spending a small fraction (∼7%) of
the total simulation time adsorbed on the surface. The presence of O on the surface increases
the residence time for CO by more than 4 times on a surface containing 0.22 ML of O. On the
other hand, the probability for CO adsorption decreases with oxygen coverage from 31% at
0.22 ML of oxygen to 15% at 0.55 ML of oxygen. Our simulations show that the activity for CO
reaction with O to yield CO2 decreases with increasing oxygen coverage. We attribute this
decrease of activity to (1) the decrease in the CO adsorption probability as the oxygen coverage
increases and (2) the decreasing amount of reactive chemisorbed oxygen (oxygen bound in a
3-fold site) with increasing total oxygen coverage. We show that oxygen bound in sites of local
3-fold coordination (chemisorbed oxygen) is nearly 2 times more reactive than other oxygen
species observed on the surface, namely, surface and subsurface oxide. Our work demonstrates
the value and feasibility of using AIMD to study surface reactions.

I. Introduction

Since the discovery1–8 that gold nanoparticles supported on
reducible metal oxides are catalytically active for many
processes, including CO oxidation,9 there is renewed interest
in the potential use of gold as a material for low-temperature
selective oxidation catalysis. The detailed understanding of
the interaction of adsorbed oxygen and CO with the Au(111)
surface is important because oxidized Au(111) is a model
system for understanding chemical processes relevant to
heterogeneous catalysis. While the oxidation of CO on gold
has been studied extensively both experimentally10–20 and

theoretically,21–39 there are still unanswered questions re-
garding the activity of gold. One specific issue is how the
local bonding of oxygen affects the activity for CO oxidation.
It is, therefore, critical to determine the oxygen species and
structure that prevail under different conditions.

Previous experimental studies16 showed that ozone ef-
ficiently dissociates to form atomic oxygen on Au(111) and
that the local bonding and surface morphology depend on
the surface temperature during exposure to O3. In turn, the
state of the surface has a significant effect on the activity
for CO oxidation. Scanning tunneling microscopy (STM)
studies revealed differences in the surface morphology
depending on the temperature used for oxidation or the
coverage of atomic oxygen.11 High-resolution electron energy
loss and X-ray photoelectron spectroscopies also showed that
the local bonding of oxygen depends on the oxidation
temperature and the oxygen coverage. Detailed studies of
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the activity for CO oxidation on O-covered Au(111) sug-
gested that the activity for CO oxidation varies significantly
for different types of oxygen (chemisorbed versus a surface
oxide).

In addition to local bonding of O, the structure of the Au
is thought to play a role in determining reactivity. Liu et
al.,26 using density functional theory (DFT) calculations,
reported that the energy barrier for CO oxidation depends
on the crystal face of the stepped surface. Recently, we also
found differences in the calculated energy barrier, depending
on the type of surface defect used, for the reaction of propene
with atomic oxygen on Au(111).40 Structure also plays a vital
role for oxide-supported Au nanoparticles, since the size41,42

and the particle shape43 have a substantial effect on the
reactivity, with rate constants differing by as much as 2
orders of magnitude.32 It is clear that the oxygen surface
species and surface morphology, which are strongly cor-
related for the Au-O interaction, play an important role in
the reactivity of the gold surface.

While experimental studies clearly show that atomic O
bound to Au is highly active for CO oxidation, there is still
controversy about the types of oxygen that react with the
CO. Clearly, atomic O is very active for CO oxidation;
however, O2 dissociation is required. A second reaction
scenario involves molecular O2 adsorption followed by CO
adsorption and reaction to make a peroxo-like, OC · · ·O2

complex, which leads to CO2 and residual atomic oxygen.
Criticism of the first mechanism is based on the fact that
the dissociation rate of O2 on gold surfaces is low, consistent
with DFT calculations that find a high energy barrier for O2

dissociation even on small clusters,26,44–46 and on recent work
showing the role of molecular O2 in oxidation.13,47 In contrast
to other transition-metal surfaces, there is no appreciable O2

dissociation on extended single crystals of Au.48 As a result,
experimental studies use other sources of oxygen to produce
atomic oxygen on the surface.49–53 Nevertheless, atomic
oxygen is ultimately formed even in the scenario where O2

reacts directly with CO; thus, it is important to understand
the reactivity of O on gold.

Temperature is an important factor in determining the
morphology and ultimately the reactivity of the surface.
Treatment of surface temperature is a major challenge for
theoretical studies, and for this reason, previous theoretical
investigations of CO oxidation on Au surfaces have generally
used static, zero-temperature DFT calculations. Kinetic
Monte Carlo (kMC) is a popular theoretical technique for
modeling the dynamical temperature dependence on the
reactivity of a surface54 and has been effectively used to
model CO oxidation on RuO2(110).55 Unfortunately, kMC
methods presume prior knowledge of all the events important
to the dynamics of the system. Furthermore, the spatial
degrees of freedom of the system are typically reduced to a
simple lattice. The interaction of oxygen with Au is complex
because of the role of defects and metal atom release.
Therefore, it is impossible to know all the important events
a priori and it is unrealistic to confine these events within
the context of a lattice. Ideally, one wants to capture all the
relevant effects in a fully atomistic molecular dynamics

simulation with accurate forces between ions and under
realistic external conditions (temperature and oxygen con-
centration).

Molecular dynamics is an important tool for simulating
reactions and other dynamical chemical behavior for a variety
of systems, including surfaces.56 Classical force fields, which
can be derived from many sources including first-principle
methods or empirical observations, are used to describe the
interaction of atoms and have been used in many applica-
tions. These force fields can be useful because they are
computationally cheap, giving the ability to simulate large
systems for long time scales (easily thousands of atoms for
nanoseconds). The disadvantage of these force fields is their
poor accuracysclassical or course-grained methods often do
not capture complex chemical behavior, including bond
breaking and formation. Ab initio molecular dynamics
(AIMD), that is, using first-principles for calculating forces,
provides a more accurate alternative to classical methods and
has been used in many situations to understand surfaces.57,58

Typically, AIMD calculations employ the Born-Oppenheimer
approximation, but it is important to point out that for
catalytic reactions on surfaces there are some cases where
there is electronic nonadiabatic coupling, making the
Born-Oppenheimer approximation invalid.59,60 Other im-
portant molecular dynamics methods that could be useful
for understanding the dynamics of surfaces include (but are
not limited to) Car-Parrinello dynamics61 or Ehrenfest
dynamics.62,63 The challenge in performing AIMD simula-
tions is the restriction to short time scales because the
calculations are computationally expensive.

Recently, we have developed the ability to use AIMD
simulations to model the dynamic restructuring of the
Au(111) surface due to the adsorption of atomic oxygen and
have obtained results that are in agreement with vibrational
spectroscopy experiments.64 We find that the morphology
and fraction of various O bonding configurations depend on
the coverage and temperature at the tested coverages of 0.22,
0.33, and 0.55 monolayers (ML), and at 200, 500, and 800
K.64 We categorized oxygen into three different types:
chemisorbed oxygen, surface oxide, and subsurface oxide,
as illustrated in Figure 1. These three types represent,
respectively, an oxygen atom bound on top of the surface in
a 3-fold hollow site, an oxygen atom bound to a gold atom
that has been pulled out of the surface, and an oxygen atom
buried below the first layer of gold. At low oxygen coverage
(<0.33 ML) or temperature (200 K), the Au(111) surface is
smooth and contains mostly chemisorbed oxygen, while at
higher coverage (>0.33 ML) or temperature (500, 800 K), it
is oxidized, containing a higher concentration of surface and
subsurface oxide. By matching calculated vibrational spectra
with the experimental results under conditions that produce
the most reactive surface for CO and olefin oxidation (low
coverage and low temperature), we suggested that chemi-
sorbed oxygen was the more reactive type of oxygen for
CO oxidation on Au(111).

Herein, we report a detailed study of CO oxidation on
O-covered Au(111) using AIMD. We directly confirm that
chemisorbed oxygen, i.e., O bound to sites of local 3-fold
coordination, is most reactive. We also discuss the underlying
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physical reasons for this different reactivity and place it in
a broader context of using AIMD to model the dynamics of
surface reactions.

II. Calculational Details

We performed the AIMD simulations in the canonical
ensemble,65 with a time step of 2 fs, for the reaction of carbon
monoxide with atomic oxygen covered Au(111) in the
framework of density functional theory using the VASP
code66 with the GGA-PW9167 functional and ultrasoft
pseudopotentials.68,69 We used a plane-wave cutoff energy
of 300.0 eV, an electronic convergence tolerance of 10-3

eV, and 2 × 2 × 1 Monkhorst-Pack reciprocal space (k-
point) sampling. The surface is modeled by a slab consisting
of four layers in the (111) direction, with a 3 × 3 supercell
in the lateral directions; the three uppermost layers of the
slab were allowed to relax, with the bottom layer fixed at
the ideal bulk positions.

We considered four different conditions: clean Au(111)
and Au(111) with O coverages of 0.22, 0.33, and 0.55 ML
at 500 K. The simulation temperature of 500 K represents

an optimal balance of adsorption and reaction, thus minimiz-
ing the total simulation time needed to observe important
events in the system. The surfaces were prepared as
follows:64 oxygen was randomly placed above an equilibrated
Au(111) substrate and the system then simulated at 500 K
for 2 ps to allow for adsorption and rearrangement of the
surface. To model the reaction of CO with these substrates,
one CO molecule (0.11 ML coverage) was introduced to each
system with a zero initial velocity, ∼3 Å above the surface.
For this reason, we are unable to find a sticking probability
to compare with experiment, defined as the ratio of the
adsorption rate to impingement rate,70 since for a molecular
beam or a background gas there would be molecules hitting
the surface with either a nonzero constant velocity or
Maxwell-Boltzmann distribution of velocities. In contrast,
our simulations are limited to CO molecules with a zero
initial velocity above the surface so as to increase the
probability of adsorption, thus significantly overestimating
the true sticking probability.

At each oxygen coverage, 100 independent simulations
were performed, each lasting 8 ps. All results are obtained
after a sufficient equilibration time, as evaluated by the point
in time at which fluctuations in the average energy, temper-
ature, and other measurable quantities were small (<5%).
For example, the average C-O distance during adsorption
of CO(a) was found by averaging the distance at each time
step during adsorption, excluding steps that were less than
600 fs after adsorption and before desorption. If the lifetime
of CO(a) on the surface was not long enough to provide
sufficient statistics (<1600 fs), the MD run was not used for
calculating the C-O distance. We defined a process as
adsorption (desorption) if the carbon from CO was within
(greater than) 2.7 Å of the closest gold atom for a minimum
of 300 fs.

III. Results

A. Simulations of CO Adsorption on Oxygen-Free
Au(111). The adsorption of CO on clean Au(111)-(1 × 1)
is weak and leads to a short surface lifetime. The adsorption
of CO was simulated on clean Au(111) at 500 K using a
p(3 × 3) unit cell and an unreconstructed Au(111) surface
as the starting point. The clean (1 × 1)-Au(111) surface is
used in contrast to the herringbone reconstructed surface for
two reasons: first, the experimentally observed herringbone
reconstruction of the clean Au(111) surface is often lifted
upon adsorption, and second, the difference in surface energy
between the ideal (1 × 1) surface and the surface with the
herringbone reconstruction is actually quite small, ∼0.02 eV
per surface Au atom.71 At 500 K, CO should have a very
short lifetime on the surface due to its weak adsorption:
experimental72 and theoretical73 adsorption energies are ∼0.4
and 0.34 eV, respectively. For example, CO adsorption is
not detected experimentally at 300 K on Au(111) until high
pressures (>0.5 Torr).74,75 No measurable adsorption of CO
at low pressures on Au(110)15 is detected above 125 K or
above 100 K on the oxygen-covered Au(111) surface.10 We
observe qualitatively similar behavior in our simulations: a
CO molecule spends only ∼7% of the total simulation time

Figure 1. Model (top view) of three oxygen types: (a)
chemisorbed, (b) surface oxide, and (c) subsurface oxide
(labeled by an asterisk). Yellow and red spheres represent
gold and oxygen atoms, respectively.
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(8 fs) on the surface. Of the 100 independent runs, each of
duration 8 fs, CO adsorbs at some point during the simulation
for 40% of the runs but quickly desorbs, spending an average
of only 861 fs on the surface per adsorption event, resulting
in a short overall surface lifetime.

Carbon monoxide preferentially binds to top sites on the
(1 × 1)-Au(111) surface, with the carbon interacting with
the surface. This is in agreement with experimental73 and
theoretical findings,76 although one theoretical study finds
the 3-fold site to be preferred for CO binding.26 In our work,
we find that the C-O bond is slightly elongated during
adsorption, with the gas phase C-O bond of 1.144 Å
extending to 1.151 Å during adsorption. These bond distances
agree with experimental estimates and static DFT calcula-
tions. The experimental gas phase C-O distance77 is 1.128
Å, while the DFT calculated distance is 1.142 Å in the gas
phase and 1.149 Å during adsorption.63 This elongation is
attributed to a slight weakening of the C-O bond, which
can be understood as the transfer of electrons from the σ
state of CO to the gold surface and back-transfer of electrons
from the metal to the π* state of CO.78 The C-O bond will
increase in length as the binding of CO to gold becomes
stronger due to surface defects.79

B. CO Adsorption on Oxygen-Covered Au(111). Pread-
sorption of O on the Au(111) surface increases the surface
lifetime of CO and leads to reactive events. Simulations of
CO adsorption and oxidation to CO2 were performed on
oxygen-covered Au(111) at three different O coveragess0.22,
0.33, and 0.55 MLsat 500 K. In all cases, CO spends much
more time bound to the oxygen-covered surface compared
to clean Au(111). For example, CO spends 31% of the total
simulation time on the 0.22 ML oxygen-covered surface
(Figure 2), compared to 7% of the total simulation time spent
adsorbed on the clean surface.

Although lower coverages of O increase the surface
lifetime, an increase in the O coverage decreases the
residence time of CO compared to adsorption on lower
oxygen coverages, to 18% for an O coverage of 0.55 ML.
We find the average time CO spends on the surface per
adsorption event increase from 861 fs on the clean surface
to 2662 fs on 0.22 ML of oxygen on Au(111). Interestingly,
this residence time increases to 2903 fs for 0.33 ML of
oxygen but then decreases to 2398 fs for 0.55 ML oxygen.

The preferred binding site for CO on the oxygen-covered
Au(111) surface is the top site of a gold atom with the CO
molecule binding perpendicular to the surface, similar to the
clean surface. This configuration clearly predominates for
low oxygen coverage (<0.33 ML), since gold adatoms are
not as readily formed. Figure 3 and Table 1 illustrate the
observed binding sites and distribution of these sites at each
coverage.

Figure 2. The ratio of time CO spends adsorbed on the
surface (tadsorbed) to the total simulation time (ttotal) at different
oxygen coverages.

Figure 3. Models of adsorption sites for CO on the oxygen-
covered surface, used for the classification of reactions; in
the actual simulations, small variations and combinations of
these idealized situations are encountered. Brown, gold, blue,
and red spheres represent the first layer of gold atoms, a gold
adatom lifted out of the first layer of the surface, a carbon
atom, and oxygen atom, respectively. In site E, a CO molecule
binds on the same gold atom opposite an oxygen atom
adsorbed on the surface, causing the gold atom to be lifted
from the surface with the CO not bound perpendicular to the
surface.

Table 1. Ratio of CO Adsorption Sites at Each Oxygen
Coveragea

CO site 0.22 ML 0.33 ML 0.55 ML

A 0.63 0.24 0.25
B 0.17 0.11 0.16
C 0.21 0.47 0.00
D 0.00 0.02 0.52
E 0.01 0.16 0.07

a The sites are illustrated in Figure 3.
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At higher O coverage, there is a transition in the preferred
binding site for CO, partly due to an increase in the number
of binding sites around the surface oxide, because this species
is more prevalent under these conditions. A transition in CO
adsorption sites occurs, changing from sites A and C to site
D (Figure 3), as the oxygen coverage increases from 0.33 to
0.55 ML. This corresponds to a change in adsorption from
around the AuO2 surface oxide complex to the site on top
of the surface oxide. This is most likely the result of site
blocking around the surface oxide complex by oxygen, which
leaves only the top of the complex as available binding sites.
We also find that CO can pull gold atoms from the surface.
Site E (Figure 3) illustrates an adsorption geometry in which
a CO molecule binds on a gold atom, which is also bound
to an adsorbed oxygen atom. Upon adsorption, this gold atom
is lifted from the surface, creating a chain starting with the
adsorbed oxygen, a gold adatom, the carbon of the CO, and
finally the oxygen from the CO. This configuration has many
variations, depending on the type of oxygen surrounding the
chain, and it is clear from the wide variation of systems we
observed that the coadsorbed system is quite complex and
dynamical in nature.

Our calculations also show that there is a strong depen-
dence on the reactivity of oxygen as a function of coverage,
in agreement with experiment. Min et al.16 showed that the
reactivity of CO depends on the oxygen coverage: Au(111)
oxidized by dosing ozone at 200 K is most reactive at a
coverage of ∼0.5 ML, with the reactivity decreasing almost
linearly with coverage, for either higher or lower oxygen
coverage in a classic Langumuir-Hinshelwood behavior.
Qualitatively, similar behavior is exhibited in our simulations.
For example, reactivity is highest for 0.22 ML oxygen, with
about 26% of the independent simulation runs resulting in
CO2 formation. The reactivity decreases to 12% conversion
at 0.33 ML and to 8% at 0.55 ML of atomic oxygen
coverage.

An ensemble of oxidation reaction pathways exist, with
all observed reactions following the Langmuir-Hinshelwood
mechanism in which CO adsorption is followed by subse-
quent reaction, in agreement with the experimental observa-
tions of Lazaga et al.10 Lazaga found a negative activation
energy for CO oxidation on Au(111) that was independent
of oxygen coverage or CO pressure. The negative activation
energy ruled out the possibility of a single elementary
reaction step, indicating that CO oxidation does not proceed
via an Eley-Rideal mechanism, in which a reaction would
occur without CO first adsorbing on the surface. Experi-
mental studies of CO oxidation on Au(111) also are
consistent with a Langmuir-Hinshelwood mechanism when
O is deposited at low temperature.16 For clarification, we
did occasionally observe CO reaction immediately following
adsorption, especially for reaction pathway A2 in Figure 4,
but in all cases CO spends at least a few (>5) vibrational
lifetimes on the surface; thus, we define all observed reactions
as Langmuir-Hinshelwood. It is important to point out that
because of our unphysical initial introduction of CO into the
simulation (with zero velocity), we cannot absolutely rule
out the possibility of the Eley-Rideal mechanism. However,
many adsorption and desorption events occurred during each

run, allowing at least the possibility for such a reaction to
proceed which we did not observe, in agreement with
experimental conclusions.

Reactions that involve chemisorbed oxygen atoms proceed
primarily through the pathway labeled A1 in Figure 4. In
this pathway, a CO molecule is bound on top of a gold atom
neighboring a 3-fold site. During reaction, the CO molecule
migrates to the bridge site and toward the oxygen. At the
same time, the O atom moves toward the CO through
the same 2-fold site. The C of the CO molecule meets the
adsorbed oxygen atom, forming CO2, which then desorbs
from the surface since the interaction of CO2 with the surface

Figure 4. Snapshots (top and side views) of reaction
pathways for CO oxidation to CO2 on oxygen-covered Au(111)
surfaces. Yellow, blue, and red spheres represent gold,
carbon, and oxygen atoms, respectively. The first column
represents the “start” of the reaction, while the second column
is approximately the transition state. These defined reaction
pathways are used in Table 2. Reactions E1 and E2 differ in
that CO reacts with a chemisorbed oxygen in the former, while
CO reacts with a surface oxide in the latter.
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is extremely weak.10 A second, less frequent pathway (see
Table 2) for CO reaction with chemisorbed oxygen, labeled
A2 in Figure 4, occurs when CO binds to a gold atom to
which oxygen is also bound in a neighboring 3-fold site.
The reaction following adsorption is fast due to the instability
of the system and because the CO molecule can easily find
the adsorbed oxygen atom. Oxidation pathways involving
an adsorbed surface oxide complex are initiated in the easiest
way from adsorption site C (see Figure 3). A reaction occurs
when the CO molecule diffuses toward the adsorbed oxygen.
Other reactions involve adsorption site E and occur when
the carbon reacts with chemisorbed oxygen (E1) or the
surface oxide or subsurface oxide (E2). Table 2 lists the ratio
of each reaction pathway by coverage. At lower oxygen
coverage, reaction pathways involving chemisorbed oxygen
(A1 and A2 in Figure 4) are dominant; at 0.22 ML of oxygen,
chemisorbed oxygen accounts for 88% of the observed
reactions. At higher coverages (0.33 and 0.55 ML), reactions
with the subsurface oxide and other complicated pathways
occur as is commented on in more detail in the Discussion.

IV. Discussion

Using AIMD, we identify two main factors that control the
reactivity of CO on oxygen-covered Au(111): (1) the ability
of CO to adsorb on the surface and (2) the local binding of
the adsorbed oxygen. Our simulations are in general agree-
ment with experiment and prior static DFT calculations. We
find that the structure of the oxygen-covered surface and the
oxygen coverage affect the CO oxidation pathways that
contribute. CO oxidation was studied in a number of static
DFT calculations; Su et al.25 found a barrier of 0.29 eV for
the oxidation on the Au(111) surface, while Liu et al.26 found
a barrier of 0.25 eV for the same reaction on the Au(221)
surface. The careful recent DFT work of Wang et al. also
showed how the barrier and rate for CO oxidation could
strongly depend on surface structure and coordination of gold
atoms.80 We find similar trends, but importantly, we find
the most reactive surface to be the one with 0.22 ML of
oxygen, which contains oxygen mostly bound in 3-fold sites.

We attribute the increased binding of CO to the oxygen-
covered surface to the presence of under-coordinated gold
atoms that form upon adsorption of oxygen. Earlier theoreti-
cal64 and experimental81 work has shown that the gold
surface becomes rough upon adsorption of oxygen, leading
to a higher concentration of under-coordinated surface gold
atoms as the O concentration increases. Under-coordinated
Au atoms have been proposed to enhance the activity for

O2 dissociation for a variety of systems, including supported
Au nanoparticles32,39,76,82,83 and Au clusters on Au(111).46,80

The increasing roughness of the surface with oxygen
coverage is expected to increase the binding strength of CO,
based on studies by Wang et al.,80 who found that the CO
adsorption strength was inversely proportional to the coor-
dination of the gold atom to which the CO is bound. In fact,
by analyzing the average bond length of the carbon atom
within CO to the gold atom on the surface to which it is
bound, we observe a slight, but systematic, decrease in the
bond length with increasing oxygen coverage (Figure 5),
suggesting that CO adsorption is stronger on the rougher
surface, which contains a larger number of under-coordinated
gold. However, at O coverages greater than 0.22 ML, we
observe a decrease in the CO surface lifetime, in agreement
with previous experimental observations.17 This suggests that
while the binding of CO to the surface is stronger at higher
oxygen coverage, the additional adsorbed oxygen is blocking
sites for adsorption.

Since the reaction follows the Langmuir-Hinshelwood
mechanism, adsorption of CO is an important first step to
reaction. We find a strong correlation between the CO surface
lifetime and the rate of oxidation. Despite the stronger CO
adsorption at higher oxygen coverage, due to site blocking,
the CO spends less time adsorbed on the surface. Since CO
spends less time on the surface, there is less probability to
react, leading to a lower oxidation rate.

It is important to understand the role of the type of oxygen
involved in the reaction, that is, whether oxygen is chemi-
sorbed or takes the form of a surface or subsurface oxide.
The probability of CO adsorption alone cannot explain the
reactivity trends, since the reaction rate decreases as a
function of coverage, even when the reaction probability is
normalized by the fraction of time CO spends adsorbed on
the surface. We also expect that the reaction energy barriers
and the availability to attack should significantly differ,
depending on the oxygen species.

Table 2. Fractional Contribution of Reaction Pathways as
a Function of Oxygen Coverage

reactiona 0.22 ML 0.33 ML 0.55 ML

A1 0.77 0.42 0.00
A2 0.08 0.08 0.50
B1 0.04 0.00 0.00
C1 0.12 0.17 0.00
E1 0.00 0.33 0.00
E2 0.00 0.00 0.50

a The capital letter of each reaction signifies the starting
adsorption site (Figure 3) and the subscript refers to each different
reaction. Examples of each reaction are illustrated in Figure 4.

Figure 5. Average Au-C(CO) distance for adsorbed CO as a
function of oxygen coverage.
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We find chemisorbed oxygen to be the most reactive
oxygen species for CO oxidation. This effect is illustrated
in Table 3, which compares the amounts of each oxygen
type present at 0.22 and 0.33 ML relative to the probability
that they react with CO to form CO2. At both oxygen
coverages, the chemisorbed oxygen contributes to the major-
ity of the oxidation reactions. For 0.22 ML of oxygen
coverage, initially 80% of the surface is covered with
chemisorbed oxygen while 20% is covered with surface
oxide. However, of the oxygen types responsible for oxida-
tion, 88% is chemisorbed oxygen. The same is true for 0.33
ML of oxygen coverage: the surface is covered with 60%
of chemisorbed oxygen, yet chemisorbed oxygen makes up
83% of the reactive atoms, illustrating that the chemisorbed
oxygen is the most reactive type on the surface. Table 3 also
illustrates the calculated relative reaction rate for each oxygen
type. Even when the rate is normalized to take into account
the ratio of each oxygen species on the surface (bottom line
of Table 3), the relative rate for reaction with chemisorbed
oxygen is significantly higher than surface oxide.

V. Conclusions

Realistic simulation of catalytic reactions on surfaces is an
important endeavor that requires substantial computational
resources. Generally, two key factors need to be taken into
consideration when simulating such systems: the ability to
accurately describe the important characteristics of the system
(such as the forces between nuclei, charge transfer, etc.) and
the need to minimize the computational cost of the simulation
so that the dynamics of the system can be modeled for long
time scales. Coarse-grained and lattice-based methods, such
as kMC, are capable of investigating processes over a long
time scale, but these methods must simplify the complicated
electronic and ionic system using approximations or reduce
the dimensionality of the fully atomistic system to a lattice.
For systems as complicated as the interaction of oxygen on
gold, neither of these approximations is acceptable, because
oversimplifying the system features makes the simulation
unreliable. To avoid this problem, we have used a fully
atomistic simulation with forces between nuclei accurately
calculated using DFT. This level of accuracy is computa-
tionally costly, resulting in dynamical runs that extend only
for ∼10 ps and small unit cells, which may artificially restrict
the possible structures that could be observed computation-

ally. Furthermore, we cannot model the effect of the initial
CO velocity on the reaction, since we introduced CO into
the system with a zero velocity because of computational
cost. Nevertheless, a number of useful conclusions can be
obtained from these simulations.

The oxidation of CO on Au(111) is a prototypical model
system for ab initio molecular dynamics simulations, due to
its inherent interest, involving a representative simple
molecule that can be oxidized and an originally inert solid
surface on which atomic-scale features can play an important
role in reactivity. We carried out an extensive study of this
system, using AIMD simulations. We find the highest rate
of CO oxidation for 0.22 ML of oxygen coverage, with
decreasing activity at the other two oxygen-coverage condi-
tions we considered, 0.33 and 0.55 ML. The difference in
reactivity that we found is most likely due to two factors:
the type of oxygen atoms present on the surface during
reaction and the ability of CO to adsorb on the surface. We
have identified chemisorbed oxygen as the most reactive type
of oxygen atoms. Furthermore, we observe a decrease in the
adsorption probability for CO with increasing oxygen cover-
age, despite the increase in the strength of CO adsorption.
The decrease in the probability for CO adsorption results in
a decrease in reactivity as the oxygen coverage increases.
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Abstract: Solvent modeling became a standard part of first principles computations of molecular
properties. However, a universal solvent approach is particularly difficult for the nuclear magnetic
resonance (NMR) shielding and spin-spin coupling constants that in part result from collective
delocalized properties of the solute and the environment. In this work, bulk and specific solvent
effects are discussed on experimental and theoretical model systems comprising solvated alanine
zwitterion and chloroform molecules. Density functional theory computations performed on larger
clusters indicate that standard dielectric continuum solvent models may not be sufficiently
accurate. In some cases, more reasonable NMR parameters were obtained by approximation
of the solvent with partial atomic charges. Combined cluster/continuum models yielded the most
reasonable values of the spectroscopic parameters, provided that they are dynamically averaged.
The roles of solvent polarizability, solvent shell structure, and bulk permeability were investigated.
NMR shielding values caused by the macroscopic solvent magnetizability exhibited the slowest
convergence with respect to the cluster size. For practical computations, however, inclusion of
the first solvation sphere provided satisfactory corrections of the vacuum values. The simulations
of chloroform chemical shifts and CH J-coupling constants were found to be very sensitive to
the molecular dynamics model used to generate the cluster geometries. The results show that
computationally efficient solvent modeling is possible and can reveal fine details of molecular
structure, solvation, and dynamics.

1. Introduction

NMR spectroscopy is extremely sensitive to molecular
structure, conformational, and environmental effects.1-3 Ab
initio computations of magnetic shielding4,5 and indirect
spin-spin coupling constants6 were implemented in many
software packages and have become standard tools for a more
complete interpretation of the experiment ever since. How-
ever, due to the computational cost, these computations are
still prohibitive for larger molecular systems. For solution
data, it is therefore desirable to find reasonably accurate
approximations that would allow accounting for the molec-
ular environment.

The effect of solvent on the NMR parameters is relatively
complex. It is difficult to separate the bulk medium effect

from more specific interactions.7 Both the solute and the
solvent molecules can also be polarized by electrostatic
interactions, make specific bonds involving an electron
transfer, and change the conformation in a solution.

Standard polarizable continuum models (PCM) may be
used for an estimation of molecular energies and conforma-
tions;8,9 to some extent, they also improve computed
vibrational properties.10 These methods are, however, par-
ticularly inaccurate for polar solvents where a directional
interaction, typically the hydrogen bond, influences the spectra
or conformation.11-14 Lately, a H · · ·π interaction was also
detected as an important factor for NMR of aromatic com-
pounds.15 Similarly, for modeling of properties involving
electronically excited states, explicit solvent molecules are a
better option.16-20

In theoretical modeling of NMR parameters, the PCM
methodology certainly improves the vacuum results.21-23
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Nevertheless, the discrete character of real solvents plays
an important role also for the NMR spectroscopic response,
particularly for polar systems and aqueous solutions.2,21,24-29

Previously, we found that the structure of the alanine
hydration shell was crucial for understanding the fine
chemical shift and spin-spin coupling changes caused by
molecular protonation.24 Also, other studies suggest that the
solvent effects cannot be explained on the basis of a simple
continuum approach.26,27 In this study, we analyze a larger
set of computational approaches and molecular model
systems including both polar and nonpolar compounds to
obtain a deeper physical insight into the mechanism of the
solvent action. To estimate the bulk effect, the size of the
water-alanine clusters was systematically varied, and various
solvent models quantitatively were compared in terms of their
influence on NMR spectra. The computational modeling is
extended by less polar chloroform in various organic
solvents. Solvated chloroform also proved to be a convenient
model system, as the solute is small, halomethane NMR
spectra exhibit a strong dependence on the solvent,30 and
the experiment is relatively straightforward.

Particular attention is paid to the bulk magnetizability that
has often been ignored in previous modeling. Yet, it may
cause comparatively large differences in chemical shifts with
respect to those coming from internal molecular structural
changes.31,32 For a reliable comparison, NMR shifts obtained
with different machines or conditions thus have to be
corrected for the bulk effects, including factors reflecting
shapes of the cells where the sample and the standard were
measured.33

In this work, we also qualitatively discuss the bulk
influence of isotropic and oriented solvent shells on molecular
shielding. Other effects including electrostatic and charge-
transfer interactions are analyzed in clusters of water and
alanine charged forms. The calculated chemical shifts and J
couplings are compared to the experimental values reported
previously.22 Finally, NMR data for chloroform were mea-
sured in various solvents and interpreted on the basis of
cluster ab initio computations combined with molecular
dynamics (MD) averaging. Although the precision of the
Hartree-Fock (HF) and density functional methods is
somewhat limited for NMR,34-36 we are using these ap-
proximations because they are computationally efficient and
still provide a deep physical insight into the solvation
phenomena.

The computed data agree well with observed trends for
the NMR parameter changes in various solvents. Both the
chemical shift and J-coupling values, however, were found
unexpectedly strongly dependent on the molecular dynamics
model. This suggests that a similar dependence observed for
water24 is quite general, and the NMR parameters also reflect
the fine arrangement of other solvent molecules around the
solute. Only the combined MD/ab initio strategy is thus able
to reliably include the environmental factors and provide
means for a more precise NMR determination of molecular
structures, dynamics, and interactions with the solvent.

Magnetic Continuum. To better understand the NMR
solvation effects, we find it useful to briefly recall the
behavior of a magnetic continuum. It has been recognized

that the influence of bulk on measured values of the isotropic
magnetic shielding may be very large if compared with the
differences originated in fine changes of molecular struc-
ture.31 Modern spectrometers provide various ways of how
to compensate these effects, including carefully chosen
standards and cell-shape correction factors.33 Nevertheless,
the continuum part must also be considered in the modeling.

Isotropic Continuum Magnetizability. The magnetiz-
ability of an isotropic solvent is M ) (dm)/(dV) ) FmNA/
Mw, where F [kg/m3] is the density, m [m2A] is the molecular
magnetic dipole moment, NA ) 6.022045 × 1023 is
Avogadro’s number, and Mw [kg/mol] is the molecular
weight. The bulk magnetizibility thus can be related to the
microscopic dipole m ) �B that is induced by a local
magnetic field B [T]; � [J/T2] is the (isotropic) susceptibility.

Using the definition of magnetic polarization, J ) µ0M
) �mB, we can conveniently introduce dimensionless mo-
lecular susceptibility as �m ) µ0FNA�/Mw, where µ0 ) 4π
× 10-7 [J/(mA2)] is the vacuum permeability. The local
(total) field B is related to the external field B0 via

B ) (1 + �m)B0 ) µrB0 (1)

where µr is the relative permeability.32,37

In a NMR experiment, an external field of a magnet (B0)
must be differentiated from the actual field in the solvent
(B1) and that acting on a molecule (B). As illustrative
examples, consider a cavity in a magnetic “solvent” in the
form of a sphere and a long rod (Figure 1). For the sphere,
we get a uniform magnetization31,37 B1 ) (1 + �m)/(1 +
�m/3)B0 ≈ (1 + 2�m/3)B0 and B ) (1 - 2�m/3)B1 ≈ B0,
resulting in a zero bulk shielding. Similarly, for the rod, B1

≈ (1 + �m)B0 and B ) (1 - �m/3)B0, which corresponds to
an NMR shift σ ) �m/3 induced by the solvent. Note that
the NMR spectra are typically measured in long tubes that
can be well approximated by the rod. Obviously, shapes of
generally nonspherical molecules will modify the bulk
influence in a more complicated way.

Anisotropic Solvation Shell. The continuum approxima-
tion also provides useful qualitative information about a
partially oriented solvent layer around a dissolved molecule.
In this anisotropic case, the susceptibility of the solvent
becomes a position-dependent tensor, �(r). An external
magnetic field induces in each volume element dV a magnetic
dipole of

Figure 1. Spherical cavities in a magnetizable sphere and a
rod.
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dm ) n� · BdV (2)

where n ) FNA/Mw is a particle density. For small �, we
suppose that B ≈ B0. Note the final anisotropic dimensionless
shift does not depend on the field. The magnetic field B(0)
sensed by a molecule placed at the origin is a sum of the
external field B0 and the contributions from the solvent
minute dipoles:

B(0) ) B0 +
µ0

4π ∫ 3rr · dm - r2dm

r5
(3)

For simplicity, we suppose that the solvent is oriented
radially around the solute, with corresponding radial and
angular susceptibility components, �rr and �υυ, that are
constant in a hydration shell limited by radii r1...r2. Then,
we can also decompose the induced magnetic moment, dm
) dmr + dmυ, where dmr ) nB0�rr cos(υ) dV and dmυ )
nB0�νν sin(ν) dV (Figure 2). Because of the symmetry, only
the scalar z-field components need to be considered Bz(0) )
B(0), with the ring volume element dV ) 2πr2 sin(υ) dυdr:

B(0) - B0 )
µ0

4π ∫ 3dmr cos(υ) - dmz

r3

)
µ0

4π ∫ 3dmr cos(υ) - dmr cos(υ) - dmυ sin(υ)

r3

)
µ0nB0

2 ∫ 2�rr cos2(υ) - �υυ sin2(υ)

r
sin(υ) dυ dr

)
2µ0nB0

3
(�rr - �υυ) ln

r2

r1
(4)

Using the dimensionless susceptibilities, we obtain an
NMR shift of σ ) (2/3)(�m,rr - �m,υυ) ln(r2/r1). In other words,
the orientation of the solvent molecules in the solvation
spheres may result in an additional contribution to the solvent
shift.

Normally, we can suppose that the oriented solvent layer
does not extend too far from the solute. For small molecules,
such as alanine and chloroform in the solvents studied below,
r1 ∼ 2 Å and r2 ∼ 6 Å, so that ln(r2/r1) ∼ 1. Approximating
very roughly �m,rr - �m,υυ ∼ �m/2, we thus get at least a
crude estimation of the shift as σ ∼ �m/3. That means that
the anisotropic contribution is on the same order as those
coming from the bulk. Note that the difference �m,rr - �m,υυ

can be both positive and negative, so that the orientated
solvent around can either amplify or neutralize the bulk
shielding. Indeed, this is consistent with the more quantitative
cluster computations presented in this study.

2. The Methods

Experimental Section. The experimental chemical shifts
and spin-spin coupling constants obtained for isotopically
labeled L-alanine (13C, 98%; 15N, 98%) were reported
elsewhere.22 Three NMR parameter sets for the zwitterionic
(AZW, pH ) 7), cationic (A+, pH ) 2), and anionic (A-,
pH ) 12) amino acid forms in aqueous (H2O/D2O) mixtures
were considered.

Carbon and hydrogen chemical shifts and indirect spin-spin
coupling constants in chloroform were measured in six
solvents, with the Bruker Avance II-600 spectrometer (600.1
MHz for 1H and 150.9 MHz for 13C). Pure chloroform
(CHCl3, 25 µL) was dissolved in a NMR tube with 0.5 mL
of deuterated chloroform (CDCl3), benzene, acetonitrile,
acetone, methanol, and DMSO. A capillary (∼0.2 mm in
diameter) with 30 µL of chloroform was coaxially inserted
into the tube as a standard. The 1H and 13C spectra were
acquired, and solvent-induced chemical shifts were calculated
as a difference between the chemical shifts in the solution
and those in the capillary. Alternatively, the spectrometer
solvent-correction functions were disabled, and the samples
were referenced directly to pure chloroform, which, however,
produced nearly the same results. The C-H coupling
constants were determined from the distance between 13C
satellites in the 1H NMR spectra. We estimate the accuracy
of the measured chemical shifts as ∼0.01 and 0.001 ppm
for σC and σH, respectively, and ∼0.2 Hz for the coupling.

Molecular Dynamics. Aqueous alanine (AZW) solvation
shells were modeled with the Tinker molecular dynamics
(MD) package,38 using the Amber99 force field39 that
includes the TIP3P40 water model. One alanine molecule was
placed in a (18.56 Å)3 cubic box, and the molecular dynamics
were run using the periodic boundary conditions, NVT
ensemble (T ) 295 K), and a 1 fs integration step. After 10
ps of equilibration, solvent shells were selected from the MD
snapshot each 10 ps. Additionally, an arbitrary water force
field was used for the same MD runs, where atomic partial
charges were set to zero (qO ) qH ) 0) and all other TIP3P
and Amber99 parameters were unchanged. This choice led
to solvation shells where the “water” molecules interacted
weakly, which resulted in their different (more irregular)
orientations and, consequently, different NMR parameters
of alanine.

Alternatively, a larger (37.12 Å3) cubic periodic box
containing one alanine and 1708 water molecules was used
in MD with Tinker using the same conditions. After 10 and
15 ps equilibration stages, the geometries were minimized
(Amber99/TIP3P), and solvation shells and layers of various
sizes specified below (e.g., containing water molecules closer
than rmax and farther than rmin from the solute) were selected
with our own Fortran code. Results obtained with the two
MD snapshots were very similar with respect to the size-
convergence behavior, and thus only the 10 ps case is shown.

Figure 2. Spherical hydration sphere with a nonisotropic
magnetization.

290 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Dračı́nský and Bouř



To obtain a deeper physical insight into the influence of
the solvent on the NMR calculations, we also used four
alanine/water clusters that were previously obtained with the
Car-Parrinello molecular dynamics (CPMD).24 The more
demanding CPMD simulation did not enable the inclusion
of larger clusters, but water distribution obtained by this
method is more realistic and provides NMR data more
comparable with experimental results than from the classical
MD.24,41 The ab initio dynamics were based on the BLYP42

functional and Vanderbilt43 ultrasoft pseudopotentials; an
energy cutoff of 25 Ry and a 4 au integration time step were
used under temperatures of 300 K. A shorter time step than
for the classical dynamics had to be used to allow for the
relaxation of the electronic wave function, which is per-
formed on the fly in CPMD.44 Four cluster sets were selected,
at 1.5, 5.0, 5.5, and 10 ps. Our own scripts were used to
reduce the number of water molecules to for to nine so that
hydrogen-bonded water molecules closer than 3.6 Å to the
solute were retained only.24 The distance of 3.6 Å allows to
fully include the first hydration sphere. These “smaller”
clusters were used by default. Similarly, larger clusters were
made where all water molecules up to 4.5 Å were retained.
In the resultant clusters, the alanine geometry was optimized
ab initio with a fixed geometry of the water molecules.

Similarly as for the alanine, chloroform solvation, and
solvent dependence of the NMR parameters was investigated
with the aid of clusters obtained by the Tinker38 MD and
MM345 force field. Periodic cubic boxes of chloroform (sized
35.98 Å) and chloroform in the benzene (35.99 Å), methanol
(36.00 Å), acetone (36.01 Å), acetonitrile (36.01 Å), and
dimethylsulfoxide (CH3SOCH3, DMSO, 35.52 Å) solvents
were subjected to equilibration MD runs for 10 ps. Both NVT
and NpT thermodynamical ensembles were investigated at
a temperature of 295 K and a pressure of 1 atm. For the
NpT simulations, the solvent could more easily relax and
orient itself around the solute than for NVT ensembles, but
equilibrated solvent NpT densities were lower (by ∼25%)
than the experimental ones (Table 1) due to force field
inaccuracies. A total of 10 MD snapshots at 10 ps intervals
were used to generate solvated chloroform molecules where
all solvent molecules closer than 9 Å were retained. On
average, the clusters with central solvated chloroform
contained 44 MeOH, 20 CHCl3, 18 acetone, 33 acetonitrile,
14 C6H6, and 18 DMSO molecules. Resultant clusters were
subjected to constrained normal mode optimization of the
geometry.46,47 Vibrational modes with wavenumbers within

-300 to + 300 cm-1 were fixed (imaginary frequencies were
considered as negative), so that the MD solvent distribution
could be approximately conserved, but molecular geometry,
particularly the bond lengths and angles, could relax at a
higher, BPW9148/6-31G** level.

NMR Computations and Solvent Models. The NMR
parameters were computed ab initio for simplified solvent
models that included (1) solute in the gas phase, (2) solvent
molecules explicitly included in the CPMD and MD clusters,
(3) CPMD clusters surrounded by a polarizable PCM
continuum,49 (4) clusters where the solvent molecules were
replaced by TIP3P40 partial atomic charges (qO ) -0.834,
qH ) 0.417, for water) and electrostatically fitted charges50

from Gaussian (for the nonaqueous solvents), (5) using the
same point charges surrounded by a PCM continuum, and
(6) the solute in plain PCM. To investigate the “pure”
polarizability effects (7), water molecules were also replaced
by neon atoms placed at the water oxygen positions. Finally,
(8) the nucleus-independent chemical shift (NICS)32,51 was
calculated for the CPMD and MD clusters where the solute
molecule was removed from the cluster and only its solvation
shell remained. For the ghost atoms in NICS, the J coupling
was also calculated and related to the nuclear momenta of
the substituted atoms.

Molecular magnetic susceptibilities, NMR isotropic shield-
ing, and indirect spin-spin coupling (J coupling) were
calculated with the Gaussian program.52 All four J-coupling
terms (Fermi-contact, spin-dipolar, diamagnetic, and para-
magnetic spin-orbital)6 were included. The hybrid B3LYP42

functional with 6-31G** and 6-311++G** Pople-type basis
sets was used for the susceptibilities. The default GIAO
orbitals were used4 in all calculations. Some alanine NMR
parameters were obtained for CPMD clusters from ref 24 at
the B3LYP/6-311++G** level. The Hartree-Fock (HF)/
6-31G approximation was used for the larger (MD) clusters
of alanine and water, because the DFT methods (B3LYP
and BPW91) exhibited numerical instabilities for very large
clusters. NMR shielding and J coupling in chloroform
solvated by the organic solvents were calculated with the
B3LYP and BPW91 functionals and 6-31G** basis set. Other
basis sets were also tried (IGLOII and IGLOIII, not shown)
but did not bring new insight. The accuracy of NMR
properties is known to be significantly dependent on the
quality of the basis set;2 however, in this study, similarly as
in previous works,22,24,53 other limitations, such as the
accuracy of the DFT methods, appear more important.

3. Results and Discussion

The Bulk Influence. The isotropic shielding caused by
the bulk environment (cf. eq 1) can often be suppressed by
suitable experimental conditions.33 Its detailed modeling at
the atomic level is beyond the main scope of this study;
nevertheless, we can estimate at least its approximate
magnitude from Table 1, where calculated (B3LYP/6-31G**
and B3LYP/6-311++G**) dimensionless susceptibilities, �m,
are compared to the experimental values from ref 33. Note
that for a spherical cavity in a rod (Figure 1) the bulk
shielding would be σ ) �m/3 and so forth. Such a geometry
model is appropriate for most NMR experiments with

Table 1. Calculated and Experimental Solvent Magnetic
Susceptibilities

solvent �a,b �a,c Fd �m
c,e �m

exptl f

water -220 -235 1.00 -9.9 -8.91
methanol -355 -364 0.79 -6.8 -6.91
chloroform -991 -1087 1.49 -10.3 -9.19
acetone -555 -569 0.78 -5.8 -5.67
DMSO -765 -778 1.10 -8.3 -7.81
benzene -930 -931 0.87 -7.9 -
acetonitrile -406 -419 0.79 -6.1 -6.57

a Molecular magnetic susceptibility, in 10-30 J T-2. b B3LYP/
6-31G** calculation. c B3LYP/6-311++G** calculation. d Density
(g/mL) used. e Relative bulk magnetic susceptibility, in parts per
million. f Ref 33, in parts per million.
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approximately spherical molecules measured in a prolonged
(rotating) capillary. As apparent from the table, the ab initio
computations with the 6-31G** and 6-311++G** basis sets
produced similar results, and the calculated values very well
(within 2-12%) agreed with the experiment. Clearly, the
bulk magnetizability can cause chemical shift differences of
several parts per million between various solvents, and as
such it cannot be neglected in precise modeling.

The Solvent Orientation Effect. We have seen (eq 4)
that oriented solvent can specifically contribute to the bulk
influence, depending on the fine structure and extent of the
solute hydration sphere. For oriented solvents and crystals,
the derived logarithmic dependence of the shielding contri-
bution on the distance means that clusters of limited sizes
are not relevant for the theoretical modeling. Fortunately,
for usual solvents, the solvent ordering is restricted to the
first hydration sphere and thus better susceptible to modeling
at the atomic level. On the example of a hydrated alanine
zwitterion (Figure 3), we can follow both immediate and
average hydration effects on the isotropic shielding of
nitrogen. The behavior of other atomic shifts was similar.

In the solvent shell selected in Figure 3, immediate solvent
configurations disperse the nitrogen shift within a large
interval, ∼-10 to +13 ppm if compared to the reference
vacuum value. After averaging, the oriented aqueous solvent

produces a significantly different average shift of 4.9 ppm
(left of Figure 3) than the chargeless artificial “water” model
(0.6 ppm, Figure 3, right). A replacement of the water atoms
by atomic partial charges (yellow curves) produces qualita-
tively similar dispersion to that of the explicit model, but
corresponding average shift values obtained with the normal
and chargeless water models (0.7 and -0.7 ppm, respec-
tively) are quite different again. We can also see that the
water magnetizability itself (green line) makes only a tiny
contribution to the overall solvent effect. Its dispersion is
also very small. Nevertheless, its average cannot be ignored
for precise modeling. The more oriented case provides a
value (0.4 ppm) that is significantly larger than that for the
less-oriented model (0.1 ppm). This computational exercise
is consistent with many cluster NMR studies,24,26,27 indicat-
ing that the shift dispersion caused by the solvent configu-
ration is huge, and a relatively large amount of MD
configurations has to be taken for converged results.

Cluster Size Convergence. The cluster size convergence
of the shielding caused by the bulk magnetazibility is rather
slow (cf. eqs 3 and 4). It also strongly depends on the cluster
shape (cf. Figures 1 and 2). However, this contribution is
relatively minor (cf. Figure 3, green lines), and for practical
computations, the principal solvent effects on NMR shielding
can be reasonably approximated by a finite cluster of the

Figure 3. Example of water (left) and a less-oriented (right, “water” without charges) alanine solvation shell (3-4 Å). For 100
MD clusters, calculated (HF/6-31G) average and immediate nitrogen chemical shift changes (σ) are plotted as caused by the
shell (maroon), alanine distorsions only (orange, the average is taken as a reference), partial charges mimicking the water
molecules (yellow, qH ) 0.42, qO ) -0.84), and the magnetic NICS contribution (green). In the bottom, cross-sections 1-Å-thick
through the overlapped hydration shells are plotted.
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solvent molecules around the solute. Indeed, as shown in
Figure 4 (left) where alanine zwitterion shielding changes
with respect to the vacuum caused by variously sized
solvation shells are plotted, solvation shells of ∼8-10 Å
seem to provide reasonably converged results. The contribu-
tions obtained with the partial atomic charges and NICS are
plotted separately in Figure 4. The size of the full shells with
explicit water molecules is limited to rmax e 10 Å because
of the computer time and memory limits. For example, the
HF/6-31G NMR computation took 11 min for the 4 Å sphere
(14 waters, 250 basis functions, about 50 MB of memory
needed) and 7 h for the 8 Å sphere (100 waters, 1368 b.f.,
∼1 GB) if related to one 2.6 GHz AMD processor.
Nevertheless, on the basis of previous analysis in Figure 3,
we can suppose that averaging of the water orientations in
the shell layers will further limit the influence of a distant
hydration. Most of the shielding changes occur up to ∼5 Å
thickness (Figure 4); nevertheless, for example, the chemical
shift of the hydrophobic CR carbon is still notably influenced
by solute molecules at a distance of ∼6 Å from the solute.

A pure electrostatic influence of the solvent simulated by
the partial atomic charges fades relatively quickly, at rmax ∼
5 Å. This suggests that other effects are important for the
total solvent-induced shift, such as making the hydrogen
bonds associated with partial electronic transfer and polariza-
tion of the solvent by the solute, also neglected in the charge
model. Particularly, the NICS “bulk” magnetizability (the
middle row of graphs in Figure 4) converges very slowly.
In accord with the above-mentioned discussion, the NICS
values are similar for all atoms (∼1.3-2.2 ppm for the 10
Å shell) and qualitatively correspond to the shielding in a
spherical aqueous cavity (�m/3 ∼ 3 ppm, cf. Table 1).

An alternate view is provided by the contributions from
variously distant hydration layers plotted at the right-hand
side of Figure 4. This approach allowed for a slightly larger
distances (rmax e 17 Å) because the layers contained fewer
water molecules than the full shells. In addition to the
dependencies discussed for the full shells, we see that the
contributions from individual layers of similar thickness
diminish much faster with the maximum distance than for
the full shells at the left-hand side of the figure, although
the layers still contain a number of water molecules increas-
ing as ∼r2. Their decreasing influence on the chemical shifts
is not monotonic, but it is modulated by actual water
distribution/orientation in the layer. This is consistent with
the shift dispersion caused by the solvent observed for a
fixed-sized shell in Figure 3.

A relatively large basis set superposition error was found
for the smallest alanine/water clusters (not shown), especially
for the nitrogen shift, where it caused variations up to 1.5
ppm. Therefore, a fixed number of basis functions corre-
sponding to all water molecules and rmax ) 4 Å was kept in
clusters smaller than this value.

Hydration Shell Additivity. Because the hydration layers
influence the solute shifts in a relatively complex way, their
effect is additive only roughly. This is demonstrated in Figure
5 for a 5-6 Å layer obtained from MD (Amber99/Tinker).
For example, the addition of a layer-1-Å thick to the 5 Å
shell does not noticeably change the original nitrogen σxx

shielding density (top of Figure 5). In the bottom of Figure
5, in a more quantitative way, the approximate additivity is
illustrated on individual AZW chemical shifts (with respect
to the vacuum). Indeed, the shifts obtained with the 5-6 Å
solvent layer follow the differences of shifts obtained with
the complete 6 Å and 5 Å clusters. Other solvent shells (e.g.,
3-4, 4-5 Å, not shown) behaved similarly. In the present
example, a considerable deviation from additivity appears,
namely, for the polar nitrogen atom. Nevertheless, on the
basis of these observations, we can conclude that the NMR
solvent effect is primarily caused by through-space electric
and magnetic “additive” interactions rather than an electron
transfer and similar solvent-mediated effects.

Solvent Contributions to NMR Shielding. Although we
cannot separate individual mechanisms taking part in the
solvent effect, they can be partially deduced from the
comparison of various solvation models. In Figure 6, we
compare isotropic shielding (relative to vacuum) of selected
nuclei in the alanine zwitterion as obtained with several
solvent approximations. The results for the other two A+

Figure 4. Calculated (HF/6-31G) dependence of chemical
shifts in the alanine zwitterion on the hydration shell radius
(left) and the chemical shifts obtained with variously sized shell
layers (right). A randomly selected MD cluster was used; the
shifts are referenced to alanine in a vacuum.
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and A- charged forms were similar to AZW and are not
shown. For example, replacing the solvent by neon atoms
placed at the water oxygen positions already causes signifi-
cant chemical shift changes. This effect is relatively large
for the hydrogen nuclei. It does not correspond well to the
last, presumably most accurate, large cluster/PCM model.
Nevertheless, the “plain polarization”, in this case that of

the electrically neutral Ne atoms, significantly contributes
to the NMR solvent effect. It should be noted that neon
polarizability is a fraction (∼20%) of the aqueous one;
modeling with other rare gas species, however, was prob-
lematic because of their large van der Waals radii. The neon
radius, on the other hand, is very close to that of oxygen.

The C′ and C� shifts induced by the atomic partial charges
(cf. Figure 6) copy the benchmark results (the last model in
Figure 6) much more faithfully. The charge approximation,
however, is fully inadequate for the nitrogen shielding,
differing by ∼10 ppm from the more advanced approxima-
tions. More importantly, the widely used PCM model (green
bars in Figure 6) also fails for the nitrogen. Clearly, for
accurate calculation of NMR parameters, explicit water
molecules are needed to model the hydrogen bonding and
electron transfer associated with the solvation of the NH3

+

group. Similarly, computations of amide electronic excita-
tions are required to include the water molecules explicitly.18

On the other hand, the charge approximation could be used
for modeling of the vibrational amide properties.12,54

The PCM model also gives rather erratic results for HR

and H� shifts. Even the models comprising H-bond waters
in smaller clusters (blue and magenta bars in Figure 6) fail
in this case. Clearly, for the aliphatic hydrogen magnetic
shielding, the inclusion of all water molecules around the
solute is more important than for the heavy atoms. This can
be understood since HR and H� do not form hydrogen bonds
that were used for the water selection in the smaller clusters.
Nevertheless, the addition of the PCM model seems to be
still important for the largest clusters, where the longer-range
polarization forces can significantly modulate the NMR
shielding. It should be noted that experimental chemical shift
variations for hydrogen, for example, in proteins, are much
smaller than those for heavy atoms, which corresponds to
the smaller absolute values for shifts comprising the HR and
H� atoms (cf. the y scale in Figure 6). Relative chemical
shift variations for hydrogen and heavy atoms are dependent
on the chosen reference (standard) and can generally be
comparable.

The NICS contributions caused by the water magnetization
only seem to be negligible for the heavy atoms. Presumably,
they are overpowered by the currents magnetically induced
inside the alanine molecule. However, they are very impor-
tant for the hydrogen atoms, which are surrounded by a
sparser electron density and clearly more susceptible to the
magnetic currents induced in the solvent. Note that the size
of the NICS effect is about the same for all atoms, similar
to the bulk effect discussed before, which also makes it more
important for the hydrogens where the absolute shifts are
small.

These findings are supported by the data in Table 2, where
the calculated chemical shifts of A- and A+ (with respect
to AZW) are compared to the experiment. In particular,
although the point charge model was not adequate for the
nitrogen shielding, it provides on average better results than
PCM. The NICS bulk magnetic contribution is negligibly
small, except for the hydrogen shielding of A-. As expected,
the largest clusters surrounded by the PCM dielectric lead
to the most accurate results.

Figure 5. (Top) Nuclear shielding density (HF/6-31G, σxx

isovalues at 0.02 au) calculated for the nitrogen atom in AZW
surrounded by 5 Å (left) and 6 Å (right) hydration spheres.
(Bottom) Difference of the chemical shifts obtained with the
full 5 Å and 6 Å hydration shells (red, and the shift changes
caused by the 5-6 Å layer only (black).

Figure 6. AZW chemical shifts calculated (B3LYP/6-
311++G**) with various solvent models: (black) water mol-
ecules replaced by neon atoms and BSSE-corrected, (red)
water molecules replaced by TIP3P atomic partial charges,
(green) plain PCM, (yellow) the NICS contribution, (blue)
explicit hydrogen-bond water clusters, (magenta) the clusters
surrounded by PCM dielectric, (aqua and gray) larger clusters
where also non-hydrogen-bonded water molecules were
included, without and with the PCM environment. Results
obtained as an average of four (two for the last two models)
CPMD clusters are shown.
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AZW J Coupling. As discussed previously, the indirect
spin-spin coupling is a significantly more local property than
the chemical shift.24,36 Consequently, its dependence on the
solvent is limited: The polarization neon model (the first in
Figure 7) has a minor influence on calculated AZW coupling
constants. On the other hand, the lower-level point charge
and PCM solvent models provide changes that are all
comparable with the most advanced explicit/PCM ap-
proximation (Figure 7). However, the PCM model fails for
the J(CR-HR) constant. This may be an accident, as both
the DFT approximation itself and neglecting the vibrational
averaging significantly contribute to an overall error of the
calculated J-coupling constants.2,24,36,55 In any case, the
importance of the solvent for the nonpolar CR-HR moiety
is rather surprising.

On average, the PCM results reasonably well explain the
experimental solvent influence on the J-coupling constants
for the three alanine charged forms, as documented in Table
3, where also other solvent models and the experimental
values are listed. Very good solvent correction is obtained
also with a computationally cheap atomic partial charge
model combined with the PCM environment.

NMR Shielding and Coupling in Nonaqueous Sol-
vents. Further insight into the mechanisms of the solvation
effects can be obtained by comparison of more solvents. We
plotted the calculated shift and spin-spin coupling constant
changes caused in the chloroform molecule by the acetone,
acetonitrile, benzene, chloroform, dimethylsulfoxide, and
methanol solvents in Figure 8. The NMR parameters were
evaluated at the BPW91/6-311++G**(6-31+G* for the
solvent) level. The GGA BPW91 functional works approxi-
mately as well as B3LYP, but the calculations are significantly
faster. As above, we consider the last (“explicit+PCM”) model
to be the most reliable. Unlike for water (Figures 6 and 7),
the replacement of the organic solvents by the partial atomic
charges does not provide reliable solvent effects. The carbon
chemical shifts obtained with PCM are not realistic, while
this approximation gives reasonable hydrogen shifts for some
polar solvents (acetone, acetonitrile, and DMSO). The
electrostatic (charge and PCM) models particularly fail for
benzene; for this molecule, we can observe an exceptionally
large NICS “bulk“ magnetizability contribution, as can be
expected because of its aromatic character. The aromaticity
causes the experimentally well-known ring current effects.32

The aromatic solvent-induced shift (ASIS) has been firstly
observed with pyridine and benzene used as solvents and
soon systematically was investigated in a series of steroidal
compounds.56 In our case, perhaps surprisingly, the NICS
shielding is also important for the chloroform hydrogen
solvent shift, where it causes about 80% of the total “explicit
+ PCM” change.

For the coupling, we defined “NICS” coupling values, in
an analogy to the shift, as a coupling constant between two
solute nuclei. The nuclei were treated as pseudo(ghost)-
atoms, without electrons and a basis set, so that the coupling
was enabled by the solvent electrons only. Such coupling
thus represents a direct magnetic interaction between the
solute nuclei mediated by the solvent. As expected, this effect
is rather small (orange bars in the bottom panel in Figure 8)
but may become important for more precise computations
in the future. According to our knowledge, it has never been
estimated before.

Table 2. Chemical Shifts (ppm) in the Charged A+ and A- Forms Referenced to the Corresponding Nuclei in AZW as
Calculated (B3LYP/6-311++G**) with Different Solvent Modelsa

vacuum PCMb point charge NICS charge+PCM cluster cluster+PCM exptlb

σ(A+) - σ(AZW)
N -3.54 -3.32 -2.84 0.02 -3.89 -1.79 -1.82 -2.20
C′ 1.79 -1.04 -1.17 0.05 -1.24 -1.42 -1.80 -1.77
CR 3.12 -1.38 -0.44 0.09 -1.53 -0.23 -1.86 -3.11
C� -3.09 -2.60 -1.68 0.03 -2.42 -0.87 -1.30 -0.83
HR 0.67 0.75 0.65 0.08 0.70 0.62 0.75 0.37
H� 0.51 0.25 0.32 0.02 0.27 0.28 0.22 0.08
∆σc 2.35 0.98 0.88 0.99 0.69 0.44 0.00

σ(A-) - σ(AZW)
N -12.97 -11.62 -8.28 -0.23 -10.65 -8.96 -8.34 -6.60
C′ 2.48 0.98 0.92 -0.18 1.03 0.47 0.77 0.93
CR 14.96 12.71 12.87 -0.08 12.57 11.53 10.28 8.94
C� 3.03 4.08 3.73 -0.15 4.49 3.03 3.11 4.25
HR -0.97 -0.90 -0.73 -0.22 -0.88 -0.56 -0.63 -0.48
H� -0.63 -0.43 -0.53 -0.15 -0.33 -0.40 -0.28 -0.26
∆σc 2.67 1.60 1.11 1.41 1.14 0.76 0.00

a The calculated shifts were obtained as an average from four clusters based on geometries from ref 24. b Ref 22. c Mean absolute
deviation.

Figure 7. Calculated (B3LYP/6-311++G**) changes of
selected AZW J-coupling constants caused by five different
solvation models (cf. Figure 6). Cluster results were averaged
for four CPMD AZW/H2O geometries.

Computational Analysis of Solvent Effects J. Chem. Theory Comput., Vol. 6, No. 1, 2010 295



Another important difference between the solvated alanine
and chloroform is the indifference of the carbon and
hydrogen NMR parameters to the addition of the PCM
continuum around the explicit cluster. Only for the J(CH)
coupling constant in DMSO and methanol solvents does the
addition of PCM cause larger changes. This can be explained
by the absence of a strong chloroform-solvent hydrogen-
bond-like interaction, lower polarity of the organic solvents,
and their comparatively larger size (against H2O). Indeed,
as apparent from the radial distribution functions in Figure
9, the used cutoff of 9 Å allows inclusion of most of the
orientation effects associated with the arrangement of the
solvent in the first solvation sphere. For larger radii, the radial
distribution functions (solvent densities) quickly converge
to the experimental values (cf. also Table 1), although minor
oscillations can still be seen even at larger distances, in
particular for DMSO.

DFT Functional and Basis Set Dependence. For control
computations, we also estimated the influence of a functional
(BPW91f B3LYP) and basis set applied used for the
solvent (6-31+G*f6-311++G**) on the predicted solvent
effects in Figure 8. This did not bring significant qualitative
changes. For absolute values, however, the basis set change
still caused differences up to 0.4 ppm and 0.1 ppm for the
carbon and hydrogen chemical shifts and 0.8 Hz for the C-H
coupling, for example. The results obtained with the different
functionals differed much less (∼0.1 ppm for the shifts and
∼0.2 Hz for the coupling).

Comparison to Experimental Chloroform NMR Spec-
tra. As an ultimate test, the NMR parameters calculated with
the MD solvent/chloroform clusters are compared to experi-
mental results. In Figure 10, 13C and 1H chemical shifts (with
respect to pure chloroform) are plotted as calculated and

Table 3. Calculated and Experimental Indirect Spin-Spin Coupling Constants (Hz) for the Three Alanine Forms

CR vacuum cluster point charge PCM point charge+PCM cluster+PCM exptl.a

AZW N-CR 0.1 -3.5 -2.8 -3.2 -3.4 -4.2 -5.7
CR-C� 33.6 33.1 33.3 33.2 33.3 33.2 34.9
CR-C′ 45.4 52.8 52.8 52.4 52.9 53.8 54.0
CR-HR 142.8 140.0 141.5 145.1 144.4 141.8 145.1
C�-H� 123.4 123.6 124.0 123.4 123.5 123.3 129.7
N-HR -3.4 -1.7 -2.1 -1.6 -1.7 -1.2 0.0
N-C� 0.0 -0.1 -0.1 -0.2 -0.2 -0.4 0.0
N-C′ 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0
CR-H� -2.5 -2.9 -2.8 -2.8 -2.8 -3.0 -4.4
C�-HR -2.4 -2.7 -2.7 -3.0 -2.9 -3.0 -4.6
C′-C� -1.0 -1.1 -1.2 -1.1 -1.2 -1.1 -1.2
C′-HR -3.8 -3.6 -3.8 -4.0 -4.0 -3.6 -5.0
N-H� -3.8 -3.2 -3.6 -3.5 -3.5 -3.0 -3.1
C′-H� 2.9 3.6 3.5 3.5 3.6 3.9 4.2
HR-H� 5.8 6.2 6.0 6.1 6.1 6.4 7.3
∆Jb 2.5 1.7 1.6 1.4 1.4 1.4 0.0

A+ N-CR -5.2 -5.9 -6.0 -6.0 -6.2 -6.0 -6.6
CR-C� 31.5 32.8 32.4 33.3 33.2 33.5 34.1
CR-C′ 63.1 61.6 62.7 62.2 62.4 60.9 59.6
CR-HR 141.4 138.1 139.7 143.5 142.8 141.5 146.6
C�-H� 128.1 126.3 127.3 125.7 125.9 125.0 131.0
N-HR -1.1 -0.2 -0.6 -0.3 -0.2 0.0 0.0
N-C� -0.2 -0.2 -0.3 -0.4 -0.4 -0.3 0.0
N-C′ -0.5 -0.7 -0.5 -0.4 -0.4 -0.6 0.0
CR-H� -3.0 -3.3 -3.2 -3.3 -3.3 -3.4 -4.6
C�-HR -3.8 -3.9 -3.9 -4.1 -4.1 -4.2 -4.9
C′-C� -1.4 -1.1 -1.2 -1.3 -1.3 -1.1 -1.3
C′-HR -6.2 -5.7 -5.9 -6.2 -6.1 -5.8 -6.0
N-H� -4.1 -3.1 -3.6 -3.5 -3.4 -2.9 -3.0
C′-H� 4.3 4.4 4.4 4.4 4.4 4.5 4.6
HR-H� 6.5 6.7 6.6 6.5 6.6 6.7 7.3
∆Jb 1.5 1.5 1.4 1.1 1.2 1.2 0.0

A- N-CR -3.3 -3.1 -3.5 -2.8 -3.4 -2.8 -4.3
CR-C� 36.3 35.6 36.2 36.2 35.9 35.5 35.2
CR-C′ 49.6 50.3 50.9 50.4 51.0 50.0 52.7
CR-HR 130.5 130.5 130.2 132.9 132.1 131.9 138.4
C�-H� 118.1 120.3 119.7 120.2 121.1 120.9 127.6
N-HR -3.4 -2.5 -2.8 -2.7 -2.5 -2.3 -2.2
N-C� -4.9 -3.3 -3.9 -4.3 -3.6 -0.3 0.0
N-C′ 0.9 1.1 1.0 0.9 1.1 1.1 0.0
CR-H� -3.0 -3.2 -3.1 -3.2 -3.1 -3.2 -4.3
C�-HR -2.9 -3.6 -3.4 -3.4 -3.5 -3.7 -4.7
C′-C� 0.3 0.2 0.3 0.4 0.1 0.2 0.0
C′-HR -3.7 -3.1 -3.3 -3.4 -3.3 -3.0 -4.3
N-H� -3.5 -3.3 -3.5 -3.5 -3.6 -3.3 -3.0
C′-H� 3.1 3.6 3.4 3.6 3.6 3.8 4.3
HR-H� 6.0 6.3 6.2 6.2 6.2 6.4 7.1
∆Jb 2.4 2.0 2.1 2.0 1.8 1.6 0.0

a Ref 22. b Mean absolute deviation.
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measured for the six solvents. A total of 10 clusters were
averaged for each point, and the standard error of the mean
is indicated. Overall, the main trends are well-reproduced;
the results obtained with the MD solvent clusters could
further be improved when the bulk influence was arbitrarily
added as 1/3 of the relative magnetic susceptibility (Table
1) for all solvents, mimicking thus a spherical cavity. The
BPW91 and B3LYP functionals provide nearly the same
results. The calculated solvent effects (the slope in the graphs,
compare to the line y ) x) are overestimated for 13C and
underestimated for 1H in comparison with the experiment.
Interestingly, the NVT dynamics provided much larger
solvent effects than NpT. Such a sensitivity of the NMR

shielding to the MD model has already been observed for
the alanine,24 where the CPMD simulation gave better results
than a classical MD. For the larger chloroform/solvent
clusters, unfortunately, the CPMD computations take too
long.

A very good overall agreement can also be observed
between the calculated and experimental solvent changes in
the J(CH) coupling (Figure 11). Here, the NVT geometries
provided somewhat better results than those from the NpT
simulation. This can be attributed to more realistic NVT
solvent densities; the NpT simulation underestimates both
densities and coupling solvent effects. The solvent coupling
effect on J(CH) seems to be primarily driven by the polarity
of the solvent. The DMSO induces the biggest changes with
respect to the nonpolar solvents, but the dependence does
not follow the electric permittivity for similarly polar solvents
blindly (the respective permittivities for CHCl3, C6H6,
CD3CN, MeOH, acetone, and DMSO are εr ) 4.7, 2.3, 35.7,
32.6, 20.5, and 46.9). The good agreement with the experi-
ment and the variation of the results with the MD parameters
also indicate desirable improvements in future simulations
of the NMR parameters. Inevitably, solvent and solute
molecular dynamics have to become more reproducible.

4. Conclusions

On several models, we have investigated various factors that
are important for an understanding and reliable modeling of
the solvent effects on NMR chemical shifts and indirect
spin-spin coupling constants. In spite of the complexity,
such as the delocalized character of the magnetic phenomena,
the cluster models, where the geometry is derived from
relatively accurate MD simulations and properly averaged
over a modest number of configurations, recover the most
important changes observed for the NMR parameters in the
experiment. Needless to say, ab initio molecular dynamics,
when possible, provide more reliable results than empirical
MD force fields.

For the shielding, a correct description of the solvent
orientation in the first solvation sphere appeared particularly

Figure 8. Calculated (BPW91/6-311++G**/6-31+G*) solvent-
induced carbon (top) and hydrogen (middle) chemical shifts
and changes of the C-H coupling constant (bottom) for
chloroform in different solvents. Five solvent approximations
were adopted as indicated.

Figure 9. Radial distribution densities of the six solvents
surrounding the chloroform molecule obtained by the NVT
Amber99 MD simulations. The density was integrated with
respect to the CHCl3 carbon atom.
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crucial for precise results. The far-ranging bulk influence
could be estimated only roughly from computations on large
clusters or from the solvent magnetic susceptibility. The
isotropic shielding was found to be very sensitive to specific
solvent-solute interactions and solvent orientation in the
hydration spheres.

The indirect spin-spin coupling behaved as a much more
local phenomenon than the shielding. The solvent effects,
primarily dependent on electrostatic interactions, could be
modeled at a relatively low level of approximation, for
example, with the atomic partial charges or a polarizable
continuum.

The modeling provided chemical shifts and indirect
spin-spin coupling constants for the alanine charged forms
that compared well with the previous experimental results.
Similarly for the chloroform NMR data, the calculated results
reasonably well explained differences observed experimen-
tally for six organic solvents. The calculated results were
strongly dependent on the adopted molecular dynamics
model. Nevertheless, the modeling revealed the large po-
tential of the NMR spectroscopy to study not only molecular
structure and conformation, but also the specific solvent-solute
interactions and structures of the solvation shells.
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113, 16698.

(25) Woodford, J. N.; Harbison, G. S. J. Chem. Theory Comput.
2006, 2, 1464.

(26) Kongsted, J.; Nielsen, C. B.; Mikkelsen, K. V.; Christiansen,
O.; Ruud, K. J. Chem. Phys. 2007, 126, 034510.

(27) Aidas, K.; Møgelhøj, A.; Kjær, H.; Nielsen, C. B.; Mikkelsen,
K. V.; Ruud, K.; Christiansen, O.; Kongsted, J. J. Phys.
Chem. A 2007, 111, 4199.

(28) Autschbach, J.; Ziegler, T. J. Am. Chem. Soc. 2001, 123,
3341.

(29) Buehl, M.; Golubnychiy, V. Magn. Reson. Chem. 2008, 46,
S36.

(30) Watts, V. S.; Goldstein, J. H. J. Phys. Chem. 1966, 70, 3887.

(31) Hoffman, R. E. J. Magn. Reson. 2003, 163, 325.

(32) Gomes, J. A. N. F.; Mallion, R. B. Chem. ReV. 2001, 101,
1349.

(33) Hoffman, R. E. J. Magn. Reson. 2006, 178, 237.
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Abstract: Dielectric continuum or implicit solvent models provide a significant reduction in computational
cost when accounting for the salt-mediated electrostatic interactions of biomolecules immersed in an
ionic environment. These models, in which the solvent and ions are replaced by a dielectric continuum,
seek to capture the average statistical effects of the ionic solvent, while the solute is treated at the atomic
level of detail. For decades, the solution of the three-dimensional Poisson-Boltzmann equation (PBE),
which has become a standard implicit-solvent tool for assessing electrostatic effects in biomolecular
systems, has been based on various deterministic numerical methods. Some deterministic PBE algorithms
have drawbacks, which include a lack of properly assessing their accuracy, geometrical difficulties caused
by discretization, and for some problems their cost in both memory and computation time. Our original
stochastic method resolves some of these difficulties by solving the PBE using the Monte Carlo method
(MCM). This new approach to the PBE is capable of efficiently solving complex, multidomain, and salt-
dependent problems in biomolecular continuum electrostatics to high precision. Here, we improve upon
our novel stochastic approach by simultaneouly computing electrostatic potential and solvation free
energies at different ionic concentrations through correlated Monte Carlo (MC) sampling. By using carefully
constructed correlated random walks in our algorithm, we can actually compute the solution to a standard
system including the linearized PBE (LPBE) at all salt concentrations of interest, simultaneously. This
approach not only accelerates our MCPBE algorithm, but seems to have cost and accuracy advantages
over deterministic methods as well. We verify the effectiveness of this technique by applying it to two
common electrostatic computations: the electrostatic potential and polar solvation free energy for calcium
binding proteins that are compared to similar results obtained using mature deterministic PBE methods.

1. Introduction

Many biological molecules, such as weakly charged proteins
embedded in either their normal cellular or in vitro milieu,

are surrounded by water, ions, and other small molecules.
Both experimental measurements and theoretical results have
shown that subtle and small changes in salt concentration
can have a strong effect on a broad spectrum of protein
properties. For instance, the stability of proteins as well the
protein’s association with molecules ranging from small
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charged peptides and drugs to larger proteins and polysac-
charides at both the kinetic and the thermodynamic levels
can be altered by changing the salt type and concentration.1-6

We still lack a complete theoretical understanding of why
increasing the salt concentration and changing the salt type
can either enhance or diminish protein stability and binding
to charged ligands (e.g., other charged proteins), depending
upon the geometry and charge distribution of the protein or
its complexes. To interpret this simple yet fundamental
experimental observation, it will be necessary to understand
the long-range salt-mediated electrostatic interactions and
hydration effects at the molecular level of detail.

The enzymatic and catalytic activity, folding landscape,
precipitation, and recognition behavior of proteins can also
be modulated by small changes in salt concentration.5,7-11

In a recent contribution to the literature, it has been
demonstrated how changes in salt concentration can have
an important role in producing more potent therapeutic
vaccines consisting of cationic lipid and proteins.12 Thus, a
better understanding of how nonspecific and bulk salt-
mediated electrostatic interactions modulate the stability,
biological activity, aggregation, and recognition processes
involving proteins will have a significant impact in drug
design efforts where the target is proteins. This will clearly
be of tremendous value in biopharmaceutical applications.

Implicit solvent or dielectric continuum model-based
approaches, such as the PBE, which ignore the explicit
treatment of water and ions but fully account for the
geometric and 3D structural details of the protein charge
distribution, have already shown to be quite successful in
predicting some biophysically important nonspecific salt-
mediated properties such as thermodynamic and kinetic
binding parameters, and stability data under low to moderate
physiological salt conditions, where ion-type specific (e.g.,
Hofmeister effects) and hydration effects can safely be
ignored.13,14 In principle, the explicit solvent molecular
dynamics (MD) of large-scale proteins and their complexes
are capable of modeling salt-mediated electrostatic and
hydration effects at the molecular level of detail with higher
accuracy when compared to implicit solvent models. How-
ever, very few studies of salt effects on biomolecular
properties have appeared in the literature,15 some of which
are only based on simple model systems.16 This is probably
due to issues concerning adequate metal ion force field
parameters, the long-equilibration times required to obtain
converged and reliable ion distributions surrounding large
biomolecules under the appropriate salt conditions, periodic
boundary condition effects,17 and other problems. Of course,
in time this scenario may quickly change with the push to
develop better force fields (e.g., polarizable) and enhanced
sampling techniques.18 In fact, a few very elegant all-atom
molecular dynamics simulations examining both salt specific
and nonspecific effects on the stability and binding of small
charged peptides and proteins have appeared in the past few
years.15,19,20

To better account for conformational flexibility in both
stability and binding studies of proteins and other biomol-
ecules, it has become common practice to use MD or MCMs
techniques along with the PBE to compute the thermodynamic/

kinetic stability or association energetics, which entails doing
so at several thousands of PB calculations.21 Clearly, in one
such approach, known as the MM-PBSA protocol,22 which
is now being widely used in pharmaceutical companies,23

robust PBE solvers that provide both accurate and fast
electrostatic or polar salvation free energy predictions are
important prerequisites. It should also be pointed out that
MC simulations that use a dielectric continuum model for
the solvent but treat ions explicitly are very valuable, and
some recent studies have appeared in the literature.24

Interestingly, some of these studies lend further support to
the use of the LPBE due to the good agreement between the
predictions of two fundamentally different computational
approaches when examining salt-dependent behavior of
proteins. Of course, when studying ion distributions sur-
rounding proteins, the more accurate MC approach should
be the method of choice.

On the basis of the above discussion, it seems that implicit
solvent-based approaches such as the PBE still appear to be
the best alternative when modeling nonspecific salt effects
in biomolecular systems given their accurate, fast prediction,
and ease of use for interpreting and/or predicting pertinent
salt-dependent properties of biomolecules when compared
to the more expensive and complex explicit solvent molecular
dynamics or explicit ion/dielectric solvent MC-based mo-
lecular simulation tools. Because of the above facts, the
development of faster and more accurate predictions of
nonspecific salt-dependent electrostatic properties is still an
important research endeavor, because they will provide
powerful software tools for diverse applications in far
reaching settings, including the pharmaceutical and biotech-
nology industries. With this goal in mind, here we discuss a
novel implicit-solvent-based LPBE approach that can deliver
very accurate nonspecific salt-dependent electrostatic proper-
ties, over a broad range of salt concentrations, in a single
PB calculation and with very high accuracy due to the
inherent properties of our MC-based algorithm.

In this work, we first provide a detailed description of the
random walk-MC approach for solving the LPBE for
biomolecules of arbitrary size, shape, and charge distribution.
The use of correlated sampling in the MC simulations and
its advantages over uncorrelated sampling for solving the
LPBE over a broad range of salt concentrations is presented.
Next, we discuss the errors and cost in CPU time and
memory of the MC-based LPBE algorithm. We then employ
the MC-based LPBE approach to compute some electrostatic
properties (e.g., electrostatic solvation free energy, electro-
static potential) of four different EF-hand calcium binding
proteins of varying net charge. We choose these because salt-
mediated electrostatic interactions are important for their
stability and calcium binding affinity behavior.14 To validate
the proposed correlated sampling scheme, we compare the
computed electrostatic properties of these important proteins
over a broad spectrum of salt concentrations with similar
results obtained with a robust deterministic LPBE approach
(Boschitsch and Fenley, in preparation).
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2. Methods

The PBE provides the electrostatic potential and other
important derived quantities, such as electrostatic solvation
free energies and electrostatic forces at varying ionic
conditions. Thus, we will specialize our discussion to these
computations using the PBE as the basic electrostatic
model.25,26 In the past three decades, various deterministic
approaches such as boundary element,27-40 finite-differ-
ence,41-51 and finite-element methods52-57 have been re-
ported in the literature. In this work, we focus on the novel
MC-based solution of the PBE and when possible make
comparisons with the more mature deterministic methods.

We are interested in describing a specific computational
method to solve a well-defined class of electrostatics
problems of biophysical significance in various fields.58 To
do this, we will begin by defining the general problem for a
prototypical large biomolecule composed of many spherical
atoms that is immersed in an aqueous ionic solution. In
Figure 1, the jth atom is modeled as a sphere of radius, Rj,
with a fixed charge of magnitude qj (in units of e, the protonic
charge) located at its center, xj, and the biomolecule in
question is the union of such intersecting atomic spheres. In
the interior region, Gi, the dielectric constant, εi, is equal to
that of the solute. Thus, the electrostatic potential in the
interior region of the biomolecule satisfies the Poisson
equation:

where ui is the normalized electrostatic potential (in units of
kbT/e) in the interior region, N is the number of atoms, ∆ )
∇2 is the Laplace operator, and δ(x - xj) is the Dirac delta
function. The Dirac delta function is used because each atom
is assumed to have its (partial) charge localized at the center
of its atomic sphere.

In the exterior region, Ge, we have an aqueous ionic
solution with the free ions distributed via a Boltzmann
distribution, which is a standard assumption underlying the
derivation of the PBE. Here, the exterior dielectric constant,
εe, is also assumed to be constant but equal to that of the

high dielectric aqueous ionic solvent. Thus, the normalized
electrostatic potential (in units of (kbT)/(e)) in the exterior
region containing a 1:1 salt, ue, obeys the full PBE:

with κ2 ) (2NAe2Ic)/(kbTεe); κ is called the Debye-Hückel

constant. Here, Ic ) 1
2

∑
k

cb
kzk

2 is the ionic strength of the

solvent, cb is the bulk salt concentration in moles (M), zb is
the ionic valence, NA is Avogadro’s number, kb is Boltz-
mann’s constant, εe is the solvent dielectric constant, e is
the protonic charge, and T is the absolute temperature of
the system (in K). For small potentials, ue , 1, one can
linearize eq 2 to obtain the so-called LPBE:

In the subsequent discussion, we will only consider systems
involving the LPBE.

At the biomolecule’s boundary, Γ, which is defined by
the van der Waals (vdW) surface, the electrostatic potential,
u, and the normal component of the dielectric displacement,
ε(∂u/∂n), are both continuous. These two boundary conditions
arise from consideration of bound surface charge density at
the dielectric interface. Note that for a vdW boundary, the
normal vector is not uniquely defined on the intersections
of spherical surfaces. However, the mathematical singularities
on these curves are integrable under the condition that the
molecular surface as a whole is regular.59 Because of
the geometry of the molecule, possible internal cavities are
treated as if they were the exterior region.60 Since we have
evidence that treating these internal cavities as exterior as
opposed to interior regions can affect the computed electro-
static properties in a future communication, we will examine
this issue in more detail, which will require some very minor
algorithmic changes. Thus, the electrostatic potential inside
and outside of the molecule must satisfy the following
boundary conditions on Γ:

In addition, the potential must go to zero as we move away
from the molecule:

We have now defined a system of elliptic partial dif-
ferential equations (PDE) with appropriate boundary condi-
tions, eqs 1, 3, 4, and 5, whose solution gives the electrostatic
potential everywhere (e.g., at charge sites and in exterior
domain). This system of equations, with the previously
mentioned molecular geometry, defines our model problem.

The fixed charges in the interior region are seen as the
source of the electrostatic potential (field), and because these
are modeled as point charges, they introduce singularities
in the electrostatic potential. These singularities can be
removed by expressing the overall electrostatic potential as
the sum of a Coulombic part, which is the solution when

Figure 1. A solvated biomolecule with interior dielectric region
defined by Gi and with dielectric permittivity εi. The exterior
ionic solvent region, Ge, with dielectric permittivity εe. The
boundary Γ separating the interior and exterior regions of the
solvated biomolecules of interest is here defined by the van
der Waals (vdW) surface: the union of the spherical atomic
surfaces defined by the van der Waals radius of each atom j,
Rj, in the molecule.

∆ui ) -

e ∑
j)1

N

qjδ(x - xj)

kbTεi
(1)

∆ue ) κ
2 sinh(ue) (2)

∆ue ) κ
2ue (3)

ui ) ue

εi

∂ui

∂n
) εe

∂ue

∂n
(4)

lim
|x|f∞

ue(x) ) 0 (5)
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the exterior solvent is replaced by the interior dielectric
medium (i.e., the Coulombic potential generated by atomic
charges in a uniform medium with interior dielectric constant
throughout the whole space), and the so-called reaction field
potential.

where

This explicit separation of the total electrostatic potential into
two terms results in the singularity-free reaction field
potential satisfying the Laplace equation in the interior
region, Gi:

It should be noted that this decomposition of the potential is
very useful, because it conveniently removes charge singu-
larities that are inherent and problematic to some determin-
istic schemes. These charge singularities lead to numerical
accuracy and convergence issues as well as the need to
perform two LPBE computations, one as reference, as
opposed to the single computation needed in the method
described here. However, boundary-element and some finite-
difference implementations of the LPBE39,61,61-64 also use
a similar decomposition of the electrostatic potential, thus
leading to more accurate solutions and CPU time gains due
to the need to perform only a single computation to evaluate
the reaction field potential.

While the quantity to be solved for in the above discussion
is clearly the electrostatic potential, in most cases it is difficult
to experimentally measure this quantity in a biochemical
setting. However, some recent experimental studies have
reported electrostatic potentials for some interesting biomo-
lecular systems.65,66 However, there are certain scalar
quantities that involve the electrostatic potential that also
cannot be measured; these include the electrostatic free
energy and some of its differences, such as the polar solvation
and binding free energies. On the other hand, one can
measure the salt dependence of the binding affinity14 and
the stability of biomolecules4 using thermodynamic and
kinetic techniques and compare these results directly with
similar LPBE computational predictions.

To compute the electrostatic solvation free energy, which
is the electrostatic free energy change involved in transferring
the solute from vacuum into the ionic solution, we need to
calculate the reaction field term at the center, xj, of each
atomic sphere in Gi that has a nonzero static charge, qi * 0.
Specifically, we must compute the electrostatic free energy
change with the exterior dielectric constant, εe ) εsolv

(solvent) and εe ) 1 (vacuum). This quantity involves only
a finite number of computations for the reaction-field
potential at two different exterior dielectric constants:

Because we are using εi ) 1 in our study, the last term in eq
9 is zero because it is computed at zero salt concentration
and with no dielectric discontinuity, εi ) εe. Thus, only the
first term needs to be computed in this specific case.

2.1. Monte Carlo Solution of the Electrostatic
Equations. The traditional ways to solve a system of
equations like eqs 1, 3, 4, and 5 are all based on replacing
this continuous PDE system with some sort of discrete
approximate system. While the details vary considerably, this
is the way the finite-difference, finite-element, and boundary-
element methods approach this problem.25

Once the finite-dimensional approximate systems are
formed, an approximate solution is obtained by solving the
resulting systems of (linear) equations. These methods of
solution are all deterministic in nature and lead to errors that
are commonly studied by numerical analysts. These errors
are the discretization error, caused by replacing the original,
continuous, system by the appropriate deterministic ap-
proximation, and the roundoff error introduced in solving
the resulting system of linear equations using floating-point
arithmetic on a digital computer. Roundoff error is a function
of the precision of the computer and the algorithms’ design.
On the other hand, discretization error can be controlled by
replacing a given finite approximation with improved
techniques such as “focusing”.67 This usually requires setting
up a new computation with many more unknowns and thus
leads to an increase in the memory and CPU requirements
for computing the solution. In this Article, we use a Monte
Carlo method (MCM)68-74 to solve this same system, eqs
1, 3, 4, and 5. Monte Carlo methods (MCMs) are funda-
mentally different from deterministic methods. If we have a
quantity of interest, V, and we want to design a MCM to
numerically determine V, we need to define a random
variable, ν, that approximates V in a statistical sense. This
means that the expected value E[ν] ) V + �, where � is the
bias (a type of MCM error), and if � ) 0, then ν is called
an unbiased estimator of V. Given ν, we need to have a way
to statistically sample it through simulation, and then we can
use our simulation to provide a MC estimate through this
simulation. Because ν is a random variable, we simulate νi,
i ) 1,..., M, and then use Σi)1

M νi ) νj as our MCM estimate.
We know its mean and can sample the variance, σνj

2, of νj,
and so can form a confidence interval that contains the correct
value with a specified probability. The width of this
confidence interval is traditionally used as an a posteriori
estimate of the error and is proportional to the square root
of the sample variance, M-1/2σν.

The errors in a MCM are qualitatively different from those
in deterministic numerical methods. There are two errors in
MCMs: the first is the bias, �, and has been described above.
In this Article, we have either � ) 0 or its dependence on
computational parameters will be explicitly known. It is
important to note that the bias, when there is one, is the
difference between the MCM’s estimate and the solution to
the PDE. When the estimate is unbiased, the MCM samples

ui ) ui
Coulomb + ui

RF (6)

ui
Coulomb ) ∑

j)1

N eqj

kbTεi|x - xj|
(7)

∆ui
RF ) 0 (8)

∆Gsolv ) 1
2 ∑

j)1

N

qj[u
RF(xj)(εe ) εsolv) - uRF(xj)(εe ) 1)]

(9)
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the solution to the PDE directly, as opposed to all of the
deterministic methods known, which incur a discretization
error because they solve a related approximate problem, but
not the actual PDE. The other error in MCMs is the so-
called sampling error and is the width of the confidence
interval of the mean. As mentioned above, this is proportional
to M-1/2σν, where the constant of proportionality is based
on the confidence level desired in the estimate. Thus, the
sampling error can be reduced by either reducing the sample
variance, which is called variance reduction, or increasing
the number of samples, M. Increasing M can be achieved in
many ways, such as using multiple processors, as MCMs
are naturally parallel, but sampling error in MCMs scales as
M-1/2. This is often viewed as a weakness of MCMs, but
this sampling error is often the only significant error in a
particular MCM, and reducing it does not require solving a
different problem as with deterministic methods, only doing
more computations on the same problem. In addition, this
error is often robustly independent of other problem param-
eters, the problem’s dimension (not important in this case),
and problem geometry.

2.2. The Monte Carlo Method. The goal of this Article
is to show how the MCM method we previously developed
can be redeployed efficiently to solve these electrostatics
problems over a broad range of salt concentrations. We
deploy a correlated sampling technique, but to understand
the technique we need to describe certain quantitative aspects
of the underlying MCM. However, it is not appropriate to
detail the technique here as it has been published in great
detail elsewhere.71,72,74,75

The qualitative nature of the MC algorithm is that it creates
a statistical sample of the solution of the PDE system at a
point by starting a Brownian motion process at that point.
Each time the Brownian motion hits the surface of the
molecule, the Coulombic contribution of the potential at
the hitting point is accumulated. The process then leaves the
surface by entering either the molecule or the exterior region.
In the interior region, the process eventually hits the vdW
surface again, while outside the process may return to the
surface, but also can be terminated with a probability that is
related to the length of the process in the exterior solvent
region. In addition, this probability is related to κ: higher
values of κ increase the termination probability and thus
reduce the length of the process.

Some more detail is appropriate here, but still the
publication of the full algorithm71,72,74,75 should be consulted
for those interested in all of the algorithmic and mathematical
details.

2.3. Acceleration Techniques. The technique we use
requires the simulation of a complicated Brownian motion
process, and specifically we need to be able to correctly
sample the hitting locations of the process on the surface of
the molecule. If one uses standard techniques from Brownian
dynamics or stochastic differential equations, this is a
complicated task. However, we can use sampling techniques
based on the walk on spheres (WOS) method69,70,74,76,77 to
accomplish this while also accelerating the computations.
Because we need to only sample the hitting locations, this
can be done by creating our walks in subregions where the

first hitting location can be sampled exactly. Spheres are such
regions, as the distribution of first hitting of a Brownian
motion started anywhere within a sphere is both known and
easy to sample from. In addition, because we are dealing
with a problem geometry based on molecules made up of
spherical atoms, the WOS technique can further take
advantage of this geometry. Thus, when we start our
Brownian processes, we walk from point to point on the
surface of spheres using WOS.

When we begin our walks, at a point in the interior, we
use the WOS algorithm where our spheres are the atoms
making up the molecule under consideration. There are two
issues in this interior WOS scheme. The first is that often
we need to walk from a point that is not the center of the
sphere to a point on the sphere’s surface. Fortunately, the
exact first passage distribution is known via the well-known
Poisson kernel. Moreover, sampling random points from the
distribution defined by the Poisson kernel is very straight-
forward to implement. When a new point, x, has been
sampled with the Poisson kernel, there is a geometric issue:
determining if x is on the surface of the molecule, Γ, or if it
is on an atom’s surface but still in the molecule’s interior.
The algorithm for answering this question is very efficient
and described elsewhere.71,72,74,75 To determine if a point
on the surface of an atom is inside a molecule, we make use
of the fact that in our model atoms are represented as spheres.
The distance from a point to a sphere is equal to the distance
from the point to the sphere’s center less its radius. The
function that computes the distance from a point to the closest
atom of the molecule makes use of this fact; it will return a
negative distance in response to a point that is inside of the
molecule. A point that is on the surface of an atom but inside
of the molecule can be recognized by noting the sign of the
response from the distance function.

When the walk reaches the surface of the molecule, a
decision is made as to whether one continues the walk inside
or outside the molecule. The probability of returning inside
is pi ) (εi)/(εi + εe), while with probability pe ) 1 - pi )
(εe)/(εi + εe) the walk continues outside the molecule.
Because εe . εi, the chance of exiting the molecule is close
to one. In addition to these probabilities, the location of the
walker is chosen with the help of a small auxiliary sphere
with radius raux. The use of the auxiliary sphere causes our
MC estimate to be biased with a bias of O(raux

3 ).72 When
outside the molecule, the regular WOS algorithm is used. If
we are at a point outside the molecule, x, then we draw the
largest sphere with center at x that is completely outside the
molecule. The closure of this sphere touches the molecule
at only a single point, in most cases. Next, a point is chosen
uniformly on this sphere to give us our new x. Because these
spheres touch the molecule at only a few points at most, the
WOS process can never return to the sphere in a finite
number of steps. To fix this, we add a small capture region
of thickness εj , 1, which is defined as all of the points
outside the molecule within distance εj of the surface, Cεj )
{x outside of the molecule |dist(x, Γ) e εj}. In addition, to
sample the solution to the LPBE outside the molecule, we
have to either weight our sample or terminate the walk with
probability equal to this weight. Each WOS step outside the
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molecule occurs on a sphere with a radius, d, and this allows
us to define the probability that the walker terminates with
this step as pterm ) 1 - psurv ) 1 - (κd)/(sinh(κd)).

2.4. Correlated Sampling. The second acceleration tech-
nique that we use is one that allows the simultaneous
computation of the solution to the problem at all of the salt
concentrations of interest. In the previous three sections, we
have described the random walk algorithm and the descrip-
tion of the probabilistic method to treat the boundary
conditions. Suppose we want to compute the reaction field
potential in the interior region for several different values
of κ. The random walk algorithm in the interior region, as
shown in Figure 2, is dependent only on the geometry and
does not depend on the value of κ. Thus, the trajectories in
the interior region generated for one value of κ can be reused
for all other values of κ. The same thing is also true for the
boundary treatment, because the probability of reentering or
leaving the molecule depends only on the dielectric constant
of the two regions. On the other hand, the survival probability
psurv(x, y) for a random walk in the exterior region depends
on the value of κ.

However, for every walk in the exterior region, the radius
of the WOS sphere does not depend on κ, but depends only
on the geometry, as shown in Figure 3. Furthermore, we also
know that the value of psurv(x, y) lies in the interval [0,1]
and decreases monotonically as the value of κ increases. This
means the smaller is the value of κ, the longer is the walk
taken in the exterior region. Thus, for a computation for
several different values of κ, one could reuse the trajectory
of the smallest nonzero κ for computing the trajectories at
the other κ values. This correlated computation brings us
two advantages. First, it reduces the amount of CPU time

by making it possible to do an electrostatic potential
computation simultaneously over a range of κ values. The
second advantage relates to the nature of MCMs; by having
the same reference trajectory, the estimate for different κ

values will be correlated with each other. This correlation
makes it possible to take the difference of two MCM
estimates without introducing unacceptable levels of random
error in the difference.

Although the correlation algorithm can be used for the
computation of electrostatic properties over a range of κ

values, it is limited to only κ > 0. The reason for this is that
at κ ) 0 the survival probability psurv(x, y) is 1, and so walks
do not terminate in the exterior. Yet, for κ ) 0 the LPBE in
the exterior turns into the Laplace equation, and one can use
another exactly known probability distribution to accelerate
this situation. Suppose the walk is started at the point x in
Ge\B(xenc, Renc), as described in Figure 4. For this unbounded
region, there is a nonzero probability pinf ) 1 - (Renc)/(dist)
that the walk goes to infinity in a single step. When the
walker is outside a sphere that completely encloses the
molecule, the probability of walking to infinity (and termina-
tion) is pinf, while with probability 1 - pinf a point on the
surface of B(xenc, Renc) is sampled on the basis of the Poisson
kernel ppk′ , as the next point of the walk. The correct Poisson
kernel for exterior region is given by ppk′ ) (1/4πRenc)[(x2 -
Renc

2 )/(|y - x|3)], where y is the point on the sphere
B(xenc, Renc).

Although we now have a new algorithm for the special
case of κ ) 0, the algorithm for κ * 0 can also be used
here. It is important to relate the κ ) 0 trajectory with the κ

* 0 algorithm to make it possible to compute the electrostatic
potential for a range of κ values, which includes κ ) 0, and
to preserve correlation. One possible way to do this is by
first generating a trajectory for the smallest nonzero κ, and
to reuse that trajectory for all other values of κ, including κ

) 0. Once the walk for the smallest nonzero κ terminates,
the walk for κ ) 0 is continued with its random walk
algorithm. This ensures the correlation between the two
algorithms.

2.4.1. Computational Error and Time. The statistical error
of the MCM estimate, ν, (width of confidence interval), is

Figure 2. Random walk constructed by consecutive walks
on spheres in the interior region, Gi.

Figure 3. Random walk constructed by consecutive walks
on spheres B(xs, Rs) in the exterior solvent region Ge. The
walk will eventually come back to the boundary Γ with
probability less than one. An absorbing layer with thickness εj
is introduced to reduce the number of walks in the exterior
region.

Figure 4. An enclosing sphere around the molecule being
studied is used for the κ ) 0 MC simulation. This sphere is
centered at xenc and has radius Renc that is large enough to
enclose the molecule. In the region outside this sphere, the
electrostatic potential satisfies only the LPBE, and one can
use p0 ) Renc/dist as the survival probability for any walk
starting from a distance “dist” from the center of the sphere.
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measured in units of σνM-(1)/(2), where σν
2 ) VAR[ν] is the

estimate’s variance, and M is number of trajectories.
Therefore, to guarantee a statistical error of δ, we have to
simulate ∼σν

2δ-2 samples. This means that for a given δ,
the total computational time (theoretical complexity of the
algorithm) is ∼σν

2δ-2t, where t is the mean time needed for
computing a single trajectory. The length of the trajectory
depends on several parameters: the coefficient κ, the width
of the strip near the boundary εj, and the radius of the
auxiliary sphere raux.

Brownian motion trajectories in the exterior region either
terminate or return to the molecular surface, Γ. Thus, the
overall number of simulated points depends linearly on the
number of boundary hits. The probability of terminating
the walk depends linearly on the initial distance from the
boundary in the exterior domain. This means that the average
number of steps in the walk before revisiting the boundary
is finite and proportional to the inverse of the initial distance:
(raux/2)-1. For a given boundary strip width, εj, the number
of steps between two consecutive boundary hits scales like
log|εj|. Our computations show that the dependence on κ is
also weak, and the length of the random walk scales like
O(log κ).

The terminating condition for the walk depends on κ and
the distance to the boundary. The walk in the interior is done
in a bounded region, while the exterior walk is done in
unbounded region. This means that the length of the
Brownian trajectory is dominated by the part of the trajectory
in the exterior region. Thus, the CPU time is dominated by
the walk in the exterior rather than by any other processes.
For every walk in the exterior region, one needs to find the
closest boundary point and compute the distance to the
boundary. In a linear search, this will take time O(N), where
N is the number of atoms in the molecule. In our Article,
we use the approximate nearest neighbor (ANN) algorithm,
which scales as O(log(N)).

2.4.2. Correlated Versus Uncorrelated Random Walk
Sampling. The mean µ and statistical error σ/�M come from
the scoring function uCoulomb, where its evaluation depends
on the location of the charges and the geometry of the
molecule. In uncorrelated sampling, both µ and σ/�M for
different values of κ are computed from independent
trajectories. Therefore, for an arbitrary number of trajectories,
M, there is no guarantee of a monotonic behavior of µ versus
κ. In this case, a plot of µ versus κ would give an oscillating
curve, which would converge to a smooth curve as Mf∞.
Thus, it will be difficult to draw information of salt derivative
of electrostatic property, which is the slope of the function.
On the other hand, the simulation in correlated sampling of
a set of κ employs the survival probability, psurv, in all
trajectories, which guarantees the monotonic behavior of µ
versus κ. Therefore, the salt derivative of any electrostatic
properties can be computed with very high accuracy using
correlated sampling.

2.5. Structure Preparation. Four calcium binding pro-
teins of varying net charges and charge densities were
selected from the RCSB database (http://www.rcsb.org) with
the following PDB ids: 3ICB (net charge ) -7e, surface
charge density ) -0.055704 e/A2, 1EDM (net charge )

-14e, surface charge density ) -0.27852 e/A2, 3CLN
(net charge ) -22.5e, surface charge density ) -0.17684
e/A2, and 1PRW (net charge ) -24.5e, surface charge
density )-0.17525 e/A2. Preparation of the calcium binding
proteins was done following two simple protocols because
in this work we are not attempting to make any comparison
with experimental data, only to similar deterministic LPBE
results. In both protocols, missing protein side chains were
not modeled, and all cofactors, calcium ions, and water
molecules were removed from all structures prior to any
further calculations.

In the first protocol, hydrogen atoms were not added to
the structures because we are employing a simplified formal
charge model. Moreover, the structures were not subjected
to any energy minimization procedure. The ionization state
at physiological pH was adopted, that is, ionized forms for
side chains of Arg, Lys, Asp, Glu, and C-terminus residues,
and ionized forms for the His side chains. In the simplified
formal charge model, all atoms had zero net charge with
the exception of the following atoms whose charges were
assigned as follows: Arg (NH1 ) +0.5e, NH2 ) +0.5e),
Lys (NZ ) +1e), Asp (OD1 ) -0.5e, OD2 ) -0.5e), Glu
(OE1 ) -0.5e, OE2 ) -0.5e), C-terminus (OXT ) -1e),
and His (ND1 ) 0.25e, NE2 ) 0.25e). The following Bondi
radii78 were assigned: C ) 1.7 Å, O ) 1.4 Å, N ) 1.4 Å,
and S ) 1.8 Å. With the formal charge assignment, there is
a significant CPU savings because the walks in MC simula-
tion only need to be started at sites where charges are
nonzero. However, because atoms with zero charges are not
necessarily modeled as point charges, their geometries are
still accounted for in the MC simulation. For some of the
atoms that are assigned to have zero radius, the random walk
is started in the same way as at other atoms.

In some of our LPBE calculations, the pdb2pqr server
(http://pdb2pqr-1.wustl.edu/pdb2pqr)79 was used to obtain
a pqr file based on the Charmm or Amber molecular
mechanics force fields. In these cases, the default settings
of the pdb2pqr software were used. Hydrogen atoms were
added to the structures, and the radii and charge were
assigned according to the Charmm80 or Amber81 force fields.

In section 3.3, the Amber force field was used to generate
the charges and radii of the atoms for “hypothetical
molecules” that were constructed from the initial vitamin
D-dependent calcium binding protein structure (PDB id:
3icb). We generated several different unphysical molecules
from four 3icb molecules by stacking the three molecules
that were shifted by 2 Å in x, y, and z directions to the
original 3icb molecules. We then made a spherical cut of
this molecule with several different radius so that we have
several molecules with globular shapes and varying size: 503,
601, 702, 800, 984, 2973, and 4257 atoms. The CPU time
is geometrically dependent; thus by using the same geometry
for all test cases we fix the dependence on geometry while
varying the number of atoms.

2.6. Monte Carlo-Based LPBE Calculations. As in any
deterministic LPBE solver, the user is required to provide
an input file containing the coordinates, charge, and radii
for each of the atoms of the biomolecule (e.g., a pqr file
obtained from the pdb2pqr software (see above)). The other
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usual and standard PBE parameters such as temperature of
the solution, interior solute, and exterior solvent dielectric
constants have to be provided by the user in an input file.
The specification of boundary conditions and other grid-based
parameters is not necessary due to the nongrid-based and
stochastic nature of the MCM. The radii and charge values
used in this study are given in section 2.5, while the solvent
and protein dielectric constants were 78.5 and 1, respectively.
The temperature of the solution was fixed at 298 K (room
temperature). The 1:1 salt (i.e., NaCl) concentration varied
in the range of 0-1 M (0, 0.0001, 0.0002, 0.0005, 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 M).

Some important code parameters that are intrinsic to
the MC approach that need to be specified by the user
are: the absorbing layer82,83 width, which was set to 0.0001
Å, the auxiliary sphere radius,72 which was set to 0.01 Å,
and the number of trajectories, which was set to several
different values depending on the problem being studied.
The choices of these parameters were based on the trade
off between the CPU time and the desired accuracy of
the MC simulation. The optimal values of the first two
parameters depend on the geometry of the molecule.

2.7. Deterministic Finite-Difference versus MC
LPBE Calculations. For any new algorithm to become
mainstream and made available to the user community, it is
very important to validate it against different algorithms that
solve the same problem. So with this goal in mind, here we
compared the MC LPBE solver with results obtained with
an innovative and mature deterministically based (i.e.,
multigrid finite-difference) PBE solver (Boschitsch and
Fenley, in preparation). We had already established that this
latter deterministic PBE solver is in very good agreement
with other PBE solvers and analytical results (results not
shown).

As in the MCM method, in this deterministic PBE solver
only the reaction field potential is computed in the interior
region, thus eliminating singularities at the charge sites and
eliminating the need for a fine mesh or complications of self-
energy effects in the vicinity of these sites. In the exterior
region, the total potential is calculated. Here, we examine
the predictions of two important electrostatic properties: the
electrostatic potential at user specified sites and the electro-
static solvation free energies. Both of these are required to
examine the role of electrostatic interactions in processes
such as binding, folding, and recognition of biomolecular
systems.

The dielectric boundary separating the solute and solvent
regions was the vdW surface generated by the union of
spheres centered at each atom. For consistency with the MC
results, no ion-exclusion region was employed. To estimate
the error of the PBE calculations due to grid resolution, the
calculations were repeated at the finest grid spacings of 1.5,
1.0, 0.8, 0.4, 0.2, and 0.1 Å. Our results are stable and
converged for resolutions as coarse as 0.4 Å (results not
shown). To strike a compromise between accuracy and
efficiency, we used a fine grid spacing of 0.3 Å. The
dimensions of the grid were set to 3 times the largest
dimension of the molecule.

3. Results and Discussion

3.1. Correlated versus Uncorrelated Random Walk
Sampling. One of the motivations for accurately computing
salt-dependent electrostatic solvation free energies resides
on their use in helping experimentalists interpret salt-
dependent thermodynamic stability data for moderate to
highly charged biomolecules, such as certain halophilic and
thermophilic proteins.13,84,85

Here, we focus on an overall anionic vitamin D-dependent
calcium binding protein (PDB id: 3icb), which, as shown in
Figure 5, has significant negative potential over most of its
surface. Note also that the calcium binding pockets, which
consist of anionic Asp (D) and Glu (E) residues (a DEEE
pattern at the calcium binding sites) in its surroundings,
generate a characteristic negative electrostatic patch near the
two calcium binding sites. This characteristic potential
surface patch at calcium binding sites is a general charac-
teristic of all calcium binding proteins here studied (see
Figure 5).

In this section, we examine the salt dependence of the
electrostatic solvation free energy of vitamin D-dependent
calcium binding protein, which has a significant salt-
dependent electrostatic solvation free energy, using both the
uncorrelated and the correlated sampling MC approaches.
Our goal here is to show the importance of using the
correlated MC sampling in terms of both its CPU time and
enhanced accuracy when calculating the salt-dependent
electrostatic solvation free energies, ∆Gsolv

elec, of arbitrarily
complex-shaped biomolecules.

As shown in Figure 6, the electrostatic solvation free
energies of the vitamin D-dependent calcium binding protein
are plotted as a function of the logarithm of the NaCl
concentration in the range of 0.001-1 M (for a total of 14
salt concentrations). We generated 500, 1500, and 4500
trajectories for the uncorrelated MC sampling computations
as opposed to 500 trajectories for the correlated sampling
MC computations. As shown in Figure 6, the uncorrelated
random walk sampling gives a very nonsmooth (i.e., jagged)
∆Gsolv

elec versus log(salt concentration) curve. It is clear that
this behavior is more pronounced when the number of
trajectories is smaller because the fluctuation of the peaks is
larger and thus the plot is more visibly jagged. These large
fluctuations of ∆Gsolv

elec are a reflection of the fact that the
simulations at the different salt concentrations were carried
out independently; that is, they are uncorrelated with each
other.

It would be difficult to extract any salt derivatives of
electrostatic solvation free energy at specified salt concentra-
tions using finite-differencing techniques when the uncor-
related sampling approach is employed. This can be remedied
by using a large number of trajectories. However, this
approach is not practical from the CPU time point of view.
On the other hand, by using the correlated sampling method,
one can attain highly accurate salt-dependent electrostatic
properties with a very low CPU time cost because a single
PBE run is required for any user specified number of salt
concentrations. In the correlated MC simulations, the survival
probability of the random walk in the exterior region is

Correlated MC Sampling for Solving the Linearized PBE J. Chem. Theory Comput., Vol. 6, No. 1, 2010 307



independent of the geometry of the molecule. Thus, with
the same trajectory one can obtain energy estimates for all
different salt concentrations. On the other hand, in the
implementation of the uncorrelated random walk sampling,
separate and independent walks are done for each of the salt

concentrations. Therefore, for the same level of accuracy,
the CPU time for a correlated MC simulation with Nconcentration

salt concentrations is on the order of Nconcentration times smaller
than in the uncorrelated MC approach.

In the low salt region where the MC trajectory takes longer
to complete, there are consequently larger fluctuations in the
energies as reflected in Figure 6. As expected, we also
observe that the uncorrelated random walk data points
fluctuate around the smooth line of the correlated sampling
energy values. As one increases the number of trajectories
from 500 to 1500, the computed data points of ∆Gsolv

elec for
uncorrelated sampling approach to the computed ∆Gsolv

elec curve
for correlated sampling. This implies that by increasing the
number of trajectories the uncorrelated random walk energies
approach the smooth line generated by the correlated
sampling energy curve.

Here, we also computed the fluctuations of the energies
relative to its normalized mean values (σ)/(µ�M) for both
types of sampling: correlated and uncorrelated. To get the
same level of accuracy for the energies computed at 0.1 M
NaCl using a correlated MC approach requires only 500
trajectories, whereas for uncorrelated MC simulation at least
4500 trajectories are necessary. This means that for this
specific case, the correlated sampling gives an overall
advantage of about a factor 126, which is obtained from the
relationship: Nconcentration × (Mtraject

uncorr/Mtraject
corr ).

3.2. CPU Cost and Statistical Error of the LPBE
MCM. As shown in section 3.1, the fluctuations of the MCM
energy estimates depend on the number of trajectories
employed as well as the specified range of salt concentration.
It was also shown that the correlated sampling algorithm
provides a significant CPU savings because the computations
for a set of salt concentrations are done all in one PBE
calculation. Moreover, this approach also provides a smaller
statistical error for the same number of generated trajectories.
In the MC simulation for the vitamin D-dependent calcium
binding protein, which was done using 500 trajectories, the
fluctuation (or error) of the electrostatic solvation free energy
for κ ) 0 is about 0.1%, which is a very small error as

Figure 5. The 3D structures of four calcium binding proteins
(given by their PDB ids) along with their surface electrostatic
potential maps are displayed: (a) 1edm, (b) 3icb, (c) 1prw,
and (d) 3cln. The calcium ions are shown as cyan colored
spheres. Note that for all four calcium binding proteins an
extensive patch of negative electrostatic potential lies around
the calcium binding sites, which are created by unique
patterns of Asp and Glu residues. The color scheme used in
these surface electrostatic potential maps is as follows: yellow
is the most negative and green is the most positive. White is
neutral. Red and blue represent negative and positive poten-
tials, respectively.

Figure 6. Electrostatic solvation free energy (∆Gelec
solv) of the

vitamin D-dependent calcium binding protein (PDB id: 3icb)
calculated using four different protocols: uncorrelated sampling
with 500 trajectories at each salt concentration, uncorrelated
sampling with 1500 trajectories at each salt concentration,
uncorrelated sampling with 4500 iterations at each salt
concentration, and correlated sampling with 500 trajectories.
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compared to what can be attained with some deterministic
PBE methods. If such a small error is not required for a
particular electrostatic property being computed with MCM,
one can reduce the number of trajectories and therefore save
significant CPU time.

As an example, we computed the salt dependence of the
electrostatic solvation free energy of calmodulin (CaM) (PDB
id: 3cln). The 3D structure of CaM along with its charac-
teristic electrostatic potential map are shown in Figure 5. If
one requires a very small error of 0.1% in the electrostatic
solvation free energy, the MCM simulation will require 625
trajectories. On the other hand, a less stringent, but still very
good level of accuracy of about 0.5% only requires 25
trajectories and takes 33 min to complete on a machine with
a 2.8 GHz AMD Opteron 8220 Dual-Core processor.

We can obtain a significant CPU time gain on the order
of 25, by simply increasing the error level from 0.1% to
0.5%, which still leads to extremely accurate values for salt-
dependent electrostatic properties. Therefore, it is more
straightforward to control the accuracy level of electrostatic
properties with our MCM as opposed to the more mature
deterministic PBE methods. With deterministic PBE solvers,
the end-user needs to do some further analysis to determine
the accuracy of the PBE solution.

3.3. The Dependence of CPU Time on the Size of
the Biomolecule. For any new PBE algorithm to become
mainstream in the community, it is important to assess how
its accuracy and CPU time scale with system size. Thus, in
this section, we address how the CPU time of our MCM-
based PBE computation scales with the size of the biomo-
lecular system and how this compares with the scaling of
alternate deterministic PBE methods.

In this section, we use an “unphysical” biophysical system
to preserve the globularity of the hypothetical biomolecule.
The requirement of using similar geometries for these
unphysical molecules is done so that all molecules have the
same CPU time dependence on the geometry. Thus, we
computed the dependence of the CPU time on the number
of atoms for an unphysical toy model.

We already described how we constructed “hypothetical
biomolecules” of comparable globularity but with different
numbers of atoms (i.e., 503, 601, 702, 800, 984, 2973, and
4257 atoms). We evaluated how the CPU time taken in the
computation of the salt dependence of the electrostatic
solvation free energy of such “toy biomolecules” scales with
the number of atoms.

The nature of the discretization required in deterministic
finite-difference PBE solvers limits the computational domain
to a bounded region. These intrinsic limitations of the popular
finite-difference solvers combined with their computational
box effect limit its ability to accurately compute electrostatic
properties of large-scale biomolecular systems such as
viruses, which can have a million or more atoms, without
the need for sophisticated computer platforms.86

In our MCM algorithm, the random walk done in the
interior region is bounded by the molecular surface, whereas
the exterior random walk is unbounded. The walk in the
exterior region is terminated with the complement of its
survival probability, 1 - psurv. In principle, there is no error

associated with computational box effects. Because of the
intrinsic nature of the MCM algorithm, the simulation time
is dominated by the walk in the exterior region rather than
other processes (e.g., walk in the interior region, evaluation
of the Coloumbic potential). The CPU time as a function of
the number of atoms for a random walk is thus O(ln(N)).

In Figure 7, we plot the CPU time as a function of the
number of atoms (N) for molecules of differing sizes. As
can be inferred from this figure, our results show that for
molecules with a small number of atoms the CPU time per
atom per trajectory follows a linear scaling, while for
molecules with a large number of atoms this gets closer to
a logarithmic scaling. Although we compute the CPU time
of the MCM for “hypothetical biomolecules”, this trend
should also apply to any arbitrary and realistic biomolecule.

3.4. Stochastic versus Deterministic Predictions of
the Salt Dependence of the Electrostatic Solvation Free
Energy of Calcium Binding Proteins. The salt dependence
of the electrostatic solvation free energy of four calcium
binding proteins (PDB ids: 1prw, 3cln, 1edm, and 3icb)
obtained with the MCM is compared against similar finite-
difference-based predictions. On the basis of previous results,
we anticipate that the salt sensitivity of the electrostatic
solvation free energies of the four calcium binding proteins
will be different given their differing charge densities. In
fact, the salt dependence of the electrostatic solvation free
energies is expected to be more pronounced for proteins with
higher charge densities. As shown in Figure 8, our MCM
results are in excellent agreement with similar deterministic
PBE results, thus showing the excellent accuracy of two
fundamentally different numerical solutions to the same PDE.

Figure 8 shows the salt dependence of ∆∆Gelec
solv for all four

proteins, where ∆∆Gelec
solv is the electrostatic solvation free

energy at a finite salt concentration relative to that at zero
salt concentration as defined by the following equation:

Figure 8 shows that the proteins exhibit different salt-
dependent behavior in the medium to high salt range. The

Figure 7. The CPU time per atom per trajectory as a function
of the number of atoms of hypothetical globular-like molecules.
For a small number of atoms, the CPU time scales linearly
with the number of atoms, whereas for larger molecules the
scaling approaches a logarithmic behavior.

∆∆Gelec
solv ) ∆Gelec

solv(κ * 0) - ∆Gelec
solv(κ ) 0) (10)
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more pronounced salt sensitivity of ∆∆Gelec
solv for calmodulin

(PDB id: 1prw) is a reflection of its larger net charge (charge
density).

Figure 9 shows the limiting behavior of the electrostatic
solvation free energy with respect to log(salt concentration)
computed with MCM and the deterministic PBE method. In
the limit of zero salt concentration, the salt derivative of the
electrostatic solvation free energy of calmodulin (PDB id:
3cln) computed with both codes converges to zero. This also
shows that the deterministic energy result falls well within
the 95% confidence interval of similar MCM energies. As a
comparison, we also plot the salt derivative of the electro-
static solvation free energy with respect to κ at extremely
low salt concentration. Figure 10 shows that both PB codes
predict comparable salt derivatives in the limit of κ ) 0
(differing by 20%). For the other three calcium binding
proteins, smaller differences were observed (results not

shown). The derivation of the expressions for the limiting
behavior of the two different salt derivatives of the electro-
static solvation free energies is given in the Appendix.

3.5. Calcium Binding Site Potentials. It is well estab-
lished that the electrostatic environment plays a key role in
metal binding to proteins, including calcium binding pro-
teins.87 Locating potential metal binding sites in proteins and
nucleic acids using implicit solvent models, such as the PBE,
is now a common and practical approach, but there is still
room for improvement, especially when one is interested in
predicting “hot spot” regions in large-scale assemblies such
as viruses and ribosomes, which require a huge computational
box (huge memory cost) for deterministic PBE methods.88

One of such prediction strategies relies on computing
surface electrostatic potentials using PBE methods. We
anticipate that our approach will be superior as compared to
mainstream methods in determining “‘hot spot”’ regions, and
the binding strength of a ligand for particular sites, due to
the MCM ability to compute local electrostatic metrics in a
very fast and accurate manner. However, before developing
postprocessing tools to allow the end-user to expediently
analyze hot spot regions on biomolecules of interest, it is
necessary to determine the accuracy and CPU time associated
with such electrostatic potential computations.

For a calcium binding protein (PDB id: 1EDM), which
has three calcium binding sites (see Figure 5), we computed
the electrostatic potential at the center of each site, in the
absence of the calcium ions, using both deterministic and
MCMs, to assess the accuracy of these two fundamentally
different PBE codes. As shown in Figure 5, two of the
calcium sites are very close to the molecular surface, while
the third calcium ion is much further away. In fact, by
analyzing the structural data for this protein, we noted that
the B-factor for this latter site is very large, indicating a
significant variability for its positioning, whereas the other
two calcium positions had similar and smaller B-factors.
Therefore, we anticipate that the third calcium ion is more
loosely bound, and thus the electrostatic potential surrounding
it is probably not as strong as that at the other two sites.
Our results confirm this hypothesis, and the electrostatic
potential map also shows a stronger negative potential around
the first two sites (results not shown).

Figure 8. Relative electrostatic solvation free energy
(∆Gelec

solv(κ) - ∆Gelec
solv(κ ) 0)) versus the logarithmic of the bulk

1:1 salt concentration (in M units). In the limit of zero salt
concentration, the slope of the curve also tends to zero. The
magnitude of the slope of the curves is larger for the calcium
binding proteins with higher net charges.

Figure 9. Comparison of the salt dependence of the elec-
trostatic solvation free energy (∆Gelec

solv) of calmodulin (PDB id:
3cln) obtained with two independent and very distinct PB
solvers: MC and deterministic. The graph shows that the
deterministic results fall well within the 95% confidence interval
of MC energy values at all salt concentrations. Moreover, in
the limit of zero salt concentration, the salt derivative of ∆Gelec

solv

is equal to zero for both deterministic and LPBE MCM.

Figure 10. The behavior of the salt derivative of ∆Gelec
solv (with

respect to κ) at the limit of κ ) 0. The plot shows that both
deterministic and MCM predict a comparable salt behavior in
an extremely low salt regime.
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Moreover, the electrostatic potentials at the specified sites
obtained with these two fundamentally different PBE ap-
proaches are in excellent agreement. More precisely, as
observed in Figure 11, the electrostatic potential values for
all calcium sites obtained with the deterministic code fall
well within the 95% confidence interval of the MCM results
and obey the same salt behavior.

In the MCM, the electrostatic potential at any arbitrary
site is calculated via a random walk starting from that precise
3D location, which implies that to compute the electrostatic
potential at one particular location, one does not need to solve
the LPBE over the entire 3-D computational domain as
required in deterministic-based PBE approaches. Moreover,
deterministic-PBE approaches do not provide site potentials
directly; they only provide electrostatic potentials at the grid
points and thus require the use of interpolation schemes to
obtain potential values at any specified 3D-location. When
we performed site electrostatic potential calculations for the
epidermal growth factor protein using the Charmm force-
field, we noted a large discrepancy (up to 20%) between
MCM and deterministic results, which is due to the presence
of internal voids that are caused by the small hydrogen atoms
(radius ) 0.2245 Å). It should be pointed out that if we
considered the internal cavities as external regions in the
deterministic computations as is done in the MCM solver,
the agreement between the potential values obtained with
both PBE algorithms would be restored. Moreover, we also
noticed that the existence of internal cavities near one of
the calcium binding sites leads to extremely high electrostatic
potentials, on the order of 80(kbT)/(e), when such voids are
treated as external regions.

To ensure small errors in the electrostatic potential,
calculations using the MCM simulations were performed
with 1000 trajectories. The computations took at most 3 min
to complete for any of the three calcium binding sites. We
observed that the CPU time is smaller the further away the
calcium site is from the molecular boundary. The CPU time
can be further reduced by fine-tuning code parameters such
as the absorbing layer width, εj, and the auxiliary sphere
radius, a. Our results suggest that the evaluation of electro-

static potential at putative recognition sites for large-scale
biomolecular assemblies such as viruses and ribosomes using
the proposed MCM will be of great interest to the structural
biology and bioinformatics communities due to its low cost
and high accuracy.

4. Conclusions

We demonstrated the accuracy, memory, and CPU time
advantages of an alternative, stochastic-based, LPBE solver
for obtaining salt-dependent electrostatic properties of bio-
molecules. In particular, we presented a detailed description
of how correlated sampling is essential for obtaining accurate
electrostatic properties of biomolecules over a broad range
of salt concentration in a single MC-based PBE computation,
thus significantly reducing the CPU cost and increasing the
accuracy of the predictions of salt dependent electrostatic
properties. We then validated the LPBE MCM by comparing
the electrostatic potential and solvation free energies of
calcium binding proteins against similar results obtained with
a mature deterministic PBE solver. The excellent agreement
between results obtained with two such fundamentally
different techniques gives us confidence for further optimiz-
ing the present algorithm to make it a viable complementary
LPBE solver for the general scientific community. We expect
that our LPBE MCM will be very useful in predicting both
the electrostatic potential at user-specified sites for large-
scale biomolecular assemblies (e.g., viruses and ribosomes)
and the salt-dependent solvation free energies of proteins.
The latter is important when examining the salt sensitivity
of the stability of charged proteins.13 Of course, we anticipate
that in the future it may be possible to create hybrid
stochastic-deterministic PBE solvers, where we combine the
strengths of each of these two fundamentally different
numerical techniques.

Future work will include the applications of the LPBE
MCM solver to the computation of other electrostatic
properties (e.g., Born radii, electric field). In addition, there
are many different quantities of biophysical interest (e.g.,
electrostatic binding free energy, pKa shift) that we wish to
compute, and further algorithmic and code development is
needed on the MCM. There are also many opportunities to
improve the performance of MCM by using clever compu-
tational geometric algorithms. Finally, we anticipate that this
approach will be increasingly beneficial to the general
scientific community as these stochastic methods become
both better developed and more widely deployed.
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Appendix

Dependence of the Electrostatic Solvation Free Energy
on K. For the LPBE, the electrostatic free energy of a
biomolecule immersed in a 1:1 salt solution is given as
follows:89

Figure 11. Electrostatic potential at one of the calcium
binding sites for the epidermal growth factor-like calcium
binding protein (PDB id: 1EDM). The electrostatic potential is
computed for salt concentrations ranging from 0.000001 to
0.1 M.
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where Ff is the charge density of the biomolecule, φ is the
electrostatic potential, cb is the bulk salt concentration, ε is
the dielectric constant, and Eb is the electric field. From this
equation, one can derive two salt derivatives of the electro-
static free energy, dGelec/dκ and dGelec/d log(cb), where

In eq 12, kb is the Boltzmann constant, T is the temperature,
εe is the external dielectric constant, and e is the protonic
charge.

The limiting behavior of these two salt derivatives of the
electrostatic free energy at zero bulk salt concentration was
first derived by Boschitsch et al.39,90 and is given by the
following.

(i) The salt derivative of the electrostatic free energy with
respect to κ:

From eq 11, one can derive the expression

where S ) -∫Aεe(dφe/dn)(dφe/dκ) dA is the surface integral,
φe is the electrostatic potential in the exterior region, and ue

is the normalized potential ue ) (eφe)/(kbT).
At large distances from the biomolecule, the biomolecule

can be treated effectively as a single central charge with total
charge Qnet located in the center of a cavity of radius acav,
which reflects the dimension of the biomolecule. In this
region, the dielectric constant is εe, and the electrostatic
potential, φe, has the following asymptotic form:

By using eqs 14 and 12, as rf∞, the limit of the derivative
of φe with respect to κ at κf0 can be evaluated and is given
by -(Qnet)/(4πεe). By using this, one can evaluate the surface
integral S, in the limit of κf0, as follows:

The volume integral in eq 13 cannot generally be evaluated
for arbitrary geometries. However, the limiting behavior at
κf0 can be computed exactly. The exterior region can be
divided into a region outside a spherical volume of radius
Rs, called V2, and its complementary volume V1. Therefore,
the volume integral can be rewritten as:

The radius Rs is chosen to be large so that in region V2 the
molecule looks like a spherical object. Using the expression
for the normalized electrostatic potential obtained from
Kirkwood,91 the limit of I(V2) at κf0 can be calculated and
is equal to (Qnet

2 )/(8πεe) for any finite Rs. Because I is
independent of Rs, then it has to be true that the limκf0I(V1)
) 0. Therefore, the limit of salt gradient at κf0 is given
by:

as first shown by Boschitsch et al.39,90

(ii) The salt derivative of the electrostatic free energy with
respect to log (cb):

We begin by using the relationship

In the limit as κf0, the right terms of eq 18 are equal to
zero, given the fact that the limiting behavior of S is defined
by eq 15, and the limiting behavior of volume integral I is
given by (Qnet

2 )/(8πεe). Therefore, for any arbitrary geometry,
the following relation is valid:

(iii) The salt derivative of the electrostatic solvation free
energy with respect to κ and log(cb):

Because Gelec
solv is defined as

where the Gelec(εe ) 1) is independent of κ, it is straight-
forward to calculate the limiting behavior of the two salt
derivatives of Gelec

solv as κf0 as

and
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Abstract: We introduce a nonradial potential term for coarse-grained (CG) molecular simulations
of proteins. This term mimics the backbone dipole-dipole interactions and accounts for the
needed directionality to form stable folded secondary structure elements. We show that R-helical
and �-sheet peptide chains are correctly described in dynamics without the need of introducing
any a priori bias potentials or ad hoc parametrizations, which limit broader applicability of CG
simulations for proteins. Moreover, our model is able to catch the formation of supersecondary
structural motifs, like transitions from long single R-helices to helix-coil-helix or �-hairpin
assemblies. This novel scheme requires the structural information of CR beads only; it does not
introduce any additional degrees of freedom to the system and has a general formulation, which
allows it to be used in synergy with various CG protocols, leading to an improved description of
the structural and dynamic properties of protein assemblies and networks.

1. Introduction

Molecular dynamics (MD) simulations have proven to be a
powerful tool to investigate the structure and function of
biomolecular systems. Among different approaches to mod-
eling proteins, nucleic acids, and biological membranes, all-
atom MD has been shown to provide a reasonable compro-
mise between the accuracy of the force fields used to describe
molecular interactions and the computational cost required
to simulate relevant systems.1 The continuous increase in
computational power allows a routine application of such
techniques to systems as large as 102 kDa at the multi-
nanosecond time scale, when using high-performance-
computing resources. Moreover, benefiting from such im-
proved throughput, the scientific community has been
recently very active in testing the reliability of current force
fields2,3 and in developing new models, protocols, and
algorithms to increase both the accuracy and the performance
of current MD codes. Nonetheless, within the atomistic
framework, it remains computationally unaffordable to

thoroughly sample size and time scales that are critical to
most of the biological processes both in vitro and in vivo.
In fact, fundamental events like protein folding, signal
transduction, or DNA transcription, while all triggered by
interactions at atomistic dimensionality, occur at very dif-
ferent time scales (from the femtosecond to the second and
more) and span over different sizes (from few tens to millions
of atoms). Such a scale range implies a dimensionality of
the corresponding phase-space so large that its complete
sampling by brute-force all-atom MD remains at the moment
unfeasible.4

To extend the boundaries of time and size, one can
abandon the atomistic representation for a coarser description
of molecular systems. From the original framework of elastic
networks used by Levitt and Warshel5 and Go and Scheraga6,7

to describe protein folding, more recent coarse-grained (CG)
models make use of beads to represent groups of atoms that
interact through effective potentials, which have a functional
form similar to that of atomistic force fields. Successful CG
models were introduced to describe polar/nonpolar interac-
tions, such as in lipid self-assembly processes in water.8-10

On the basis of these seminal works, new generations of CG
models were developed to study aqueous surfactant solu-
tions,11,12 and membrane lipid assemblies.13-16 Current
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computational power allows using these schemes to access
size scales on the order of 106 CG particles (i.e., ≈10 million
atoms) and time scales approaching relevant experimental
regimes (i.e., millisecond).4 Recently, effective potentials
based on similar atom-to-bead mapping have been extended
to proteins17-20 and nucleosomes.21-25 These models have
been used in the past years to study very large membrane-
protein complexes, showing promising results for the study
of structural rearrangements, which are functional to many
biological processes.26-36 Even coarser levels of approximat-
ing protein potentials have been proposed on the basis of a
single bead representation of amino acids37-39 or extended
to describe well-defined structural intraprotein domains or
even single proteins in multimolecular assemblies.26,40

Progressive efforts in linking CG models to the atomistic
descriptions have also been produced by the computational
community, with the scope of developing multiscale frame-
works able to synergically exploit the complementary
advantages of descriptions of molecular systems at different
levels of resolution.25,41-53

Nonetheless, to date, many issues still afflict CG schemes,
which limit in turn their general applicability to a vast class
of relevant biological problems. The functional form of CG
potentials is not univocally defined and strongly depends on
the level of coarse-graining one chooses to adopt.52,54

Moreover, accurate potential function parameters for CG MD
simulations are still laking full transferability; therefore, they
have to be recalibrated according to the system of interest.55,56

The lack of both universality and transferability results in
significant drawbacks, which reduce their general applicabil-
ity. In particular, fully transferable CG models based on pair
potentials can face difficulties in reproducing anisotropic
properties, which are crucial for accounting for both stability
in secondary structure elements and correct tertiary structure
assembling. One possibility to circumvent such problems is
to maintain a higher resolution (atomistic or quasi-atomistic)
at least in the backbone region.57-59 In the case where a
one-bead per backbone unit mapping is chosen, it is usually
necessary to introduce additional bias potentials, which are
defined on a target conformation and do not naturally adapt
to secondary structure modifications, which may occur during
dynamics.17,26,31

In the past years, significant results have been achieved
by Scheraga and co-workers, by defining coarse-grained
potentials where dipole-dipole interactions for the backbone
are explicitly taken into account.60-63 Such a model has
proven to be particularly effective for energy calculations
in folding predictions. Recently, backbone dipole-dipole
interactions within a similar scheme were also implemented
in a MD scheme.64

In a recent previous paper, we have shown how the
orientation of the backbone dipole can be directly recon-
structed from the positions of CR atoms only.65 From that
standpoint, we have here formulated a computational protocol
able to account for the intrinsic nonradial nature of
backbone-backbone interactions in a CG-molecular dy-
namics framework using a single-bead representation for
backbone units. We have evaluated its performance in a
series of test systems, finding that our designed potential term

is able to naturally stabilize secondary structure motifs, such
as R-helices and �-sheets, to describe basilar structure
rearrangements and to reliably modulate structural transitions
into supersecondary assemblies. The proposed potential
energy term is computationally very efficient, as it is fully
defined as a function of the backbone CR coordinates;
therefore, it does not introduce any additional degrees of
freedom to the system. Together with analytical modifications
in the bending and torsional potentials, also discussed in this
work, this novel scheme represents a promising step toward
the development of a CG force field, which can accurately
describe the structural and dynamic properties of protein
assemblies and networks.

2. Computational Methods

Parameterized potential functions in all-atom (AA) molecular
dynamics usually take the form

VAA ) ∑
bonds

kr(r - r0)
2 + ∑

angles

kγ(γ - γ0)
2 +

∑
dihedrals

[1 + cos(n� + δ)] + ∑
i<j [ Aij

Rij
12

-
Bij

Rij
6] + ∑

i<j

qiqj

Rij

(1)

where the first three terms represent stretching, bending, and
torsional potentials, and the last two terms are nonbonded
van der Waals and Coulomb interactions. Our model
potential for CG backbone beads is expressed in a similar
form, but with some important modifications. In particular,
we change the functional form of the angular potential, we
introduce a correlation term for consecutive dihedral angles,
and we replace point-charge Coulombic interactions with
backbone dipole-dipole interactions:

VCG ) ∑
bonds

kr(r - r0)
2 + ∑

angles

kγP4(γ - γ0) +

∑
dihedrals

k�[1 + cos(n� + δ)] + ∑
dihedrals-1

kcorr(�i - �i+1)
2 +

∑
k<l

( Akl

Rkl
12

-
Bkl

Rkl
6 ) + ∑

i<j

V[µi(CR,i-1, CR,i, CR,i+1),

µj(CR,j-1, CR,j, CR,j+1)] (2)

In this expression, indices k and l run on all beads, while
indices i and j run on all groups of three consecutive bonded
CR, i-1, CR, i, and CR, i+1 beads (called Ci triplet hereafter,
Figure 1).

2.1. Dipole-Dipole Interactions. Backbone atomistic
dipole-dipole interactions are modeled as directional inter-
actions between two Ci triplets. An electrostatic dipole µi is
associated with each Ci triplet. µi mimics the electrostatic
dipole associated with the peptide bond located between
amino acids i and i + 1 (Figure 1). The geometrical
orientation of these dipoles is constrained to that of the Ci

triplet to which they belong. In this way, forces acting on
dipoles can be transmitted to the relative CR beads, without
increasing the number of degrees of freedom to be propa-
gated during dynamics.

The protocol works as follows (Figure 2):
• Determination of the spatial orientation of all dipoles {µi}

starting from the coordinates of all Ci triplets
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• Computation of forces Fij and torques τij acting on each
dipole µi, due to dipole-dipole interactions

• Distribution of Fij and τij to the corresponding Ci triplet
• Time propagation of Ci coordinates, following classical

equations of motion (EoM)
Below, each step of this protocol is explained in detail.

Computation of the Backbone Dipole Moment. Given a
triplet Ci, let γi be the angle formed by the CR beads of the
triplet and Si be the local reference system of axes (υ, n, m),
centered at CR, i, defined as follows: W is directed along the
direction given by CR, i and CR, i+1; n is orthogonal to the
plane formed by the Ci triplet; m is orthogonal to W and n
(Figure 1 and Figure 2, panel 2).

In a recent paper,65 we showed that the components of
the backbone dipole along such axes can be obtained with
good approximation by fitting their experimental measure-
ments from the PDB databank as functions of the angle γ.
For the purposes of this work, we have reformulated such a
fit by using the following representation in spherical coor-
dinates:

µi,ν ) µ0 cos φ

µi,n ) µ0 sin φ cos ϑ

µi,m ) µ0 sin φ sin ϑ (3)

where µ0 is the modulus of the vector µ (3.6 D, modeled as
two charges of (0.33 au, located at a distance δ ) 2.273 Å,
mimicking the atomistic intensity)66 and φ and ϑ are defined
as in Figure 1. In this way, by construction, the angle φ is a
constant, with cos φ ) 0.177. The angle ϑi remains as the
only variable, which is fitted as a function of the angle γi:

ϑi ) -1.607γi + 0.094 + 1.883

exp[(γi - γ0)

σ ] + 1

(4)

where γ0 ) 1.730 rad and σ ) 0.025 rad (see inset of
Figure 1).

Computation of Forces and Torques. The electrostatic
dipole-dipole interaction potential reads

V(µi, µj) )
µi · µj

r3
- 3

r5
(µi · r)(µj · r) (5)

where r is the vector connecting the two dipoles. Forces Fij

and torques τij and τji acting between dipole couples are
derived accordingly (Figure 2, panel 3):

Fij )
3

r5
(µi · µj)r - 15

r7
(µi · r)(µj · r)r + 3

r5
[(µj · r)µi +

(µi · r)µj] (6)

and

τij ) - 1

r3
(µi × µj) +

3

r5
(µj · r)(µi × r)

τji ) - 1

r3
(µj × µi) +

3

r5
(µi · r)(µj × r)

(7)

Figure 1. Backbone dipole reconstruction. The backbone
dipole moment µi as a function of the local reference system
(v, n, m) associated with the Ci triplet. φ is the angle between
the µi and the v axis. ϑi is the angle between the component
of µi on the plane n, m (µn, m), and the n axis. The inset shows
the statistical distribution of θi as a function of γ extracted from
the PDB (square symbols) and its analytical fitting function
(solid line). The local reference system is represented at the
middle point of the CR, i-CR, i+1 bond for the sake of clarity.

Figure 2. Dipole-dipole interaction protocol. The theoretical
protocol of the new algorithm used to describe the dipole-
dipole interactions.
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Equations 6 and 7 are valid under the condition that the
dipole length δ is much shorter than the distance between
the same dipoles, that is, δ , |r|. At short distances, that is,
when δ is on the same order of magnitude as |r|, the
dipole-dipole interactions are treated by considering the
opposite charges of absolute value q ) 0.33 au, placed at
the edges of the dipole and at a fixed distance of δ, and
computing point-charge interactions.

Dynamics of the Ci Triplets. The spatial orientation of the
dipole µi is fully determined by the geometry of the Ci triplet.
Therefore, forces and torques acting on the dipole can be
explicitly transformed into forces acting on the three beads
forming Ci.

In fact, because any γi angle is associated with the
respective ϑi angle via eq 4, the application of a torque on
µi, which produces a variation of ϑi, is necessarily associated
with a variation of γi (Figure 1 and Figure 2, panel 5a). On
the contrary, the angle φ is constrained to a fixed values,
therefore, torques that would produce a modification of that
angle will instead result into a rigid rotation of the triplet
(Figure 1 and Figure 2, panel 5b).

Specifically, the torque τi,

τi ) ∑
j

τij (8)

which is the total torque acting on µi due to the interactions
of µi with all of the other dipoles µj, is expressed as the
sum of two components:

τi ) τn,m + τυ (9)

τn, m is the projection of τi on the plane (n, m), and τV is the
component along the W axis (Figure 2, panel 4). The τV
component, associated with a rotation around W, affects ϑ

only (Figure 2, panel 5a). Therefore, by inverting the
biunivocal relationship between ϑi and γi (eq 4), such
precession can be easily transformed into a bending force,
Bi(γi) acting on the γi angle:

Bi(γi) ) τυ

∂ϑi

∂γi
(10)

The τn, m component is associated with a rotation of µi on
a plane containing the CR, i, CR, i+1 direction, thus with a
variation of the constrained angle φ. Therefore, this rotation
of µi has to be rigidly transferred to the triplet Ci (Figure 2,
panel 5b).

In practice, interactions among dipoles result into rigid
rototranslations of the triplets, produced by the combined
action of τn, m, and forces Fij, and bending motions, under
the action of τV (Figure 2, panel 6).

Integration of the EoM. Our procedure rigorously trans-
forms all forces acting on dipoles into forces acting on CR

beads (Figure 2); therefore, integration of the equations of
motion is performed on CR’s only, without the introduction
of additional degrees of freedom to the system or the need
to impose any fictitious dipole dynamics. The generation of
dipole geometries and the redistribution of forces from
dipoles to beads constitute negligible additional computa-
tional costs to the simulations. In fact, they are constituted
by simple operations, most of which (like the determination

of internal reference systems and computation of the γ
angles) are already routinely required for bending interactions
and, thus, performed by standard MD operations. The only
non-negligible cost is related to the dipole-dipole interaction
part, which has to be added ex novo to the nonbonded
interactions. Anyway, its cost is comparable to that of an
additional nonbonded solute-solute interaction, which typi-
cally constitutes less than 1% of the total simulation cost
per step, thus being acceptable for simulation-speedup criteria
in CG simulations.

2.2. Bending Potential. Within the harmonic approxima-
tion for bending motion, only small oscillations of the angle
γ formed by three consecutive backbone beads around a
defined equilibrium value γ0 are allowed. Instead, variations
in such angles are related, in the respective all-atom
representation, to structural variations of the Ramachandran
torsional angles (Figure 3). Therefore, we decided to use a
double-well potential to describe angular interactions. The
angular potential function takes the form of a fourth degree
polynomial function in the (γ-γ0) variable:

P4(γ - γ0) )
1
2

k1(γ - γ0)
2 - 1

3
k2(γ - γ0)

3 +

1
4

k3(γ - γ0)
4 (11)

where γ0 is 91°.
Such a kind of potential form for the CG bending term,

originally proposed by Warshel and Levitt,5 and recently
successfully used in studies on CG modeling of HIV-1
protease,22,37-39 allows the determination of two local
minima, corresponding to the R-helical and �-strand basins.
Thus, this allows for a more general description of CG
interactions, without the need of specifying biasing secondary
structure-dependent angular potentials. Rather, by modulating
its shape, secondary structure propensities can be attributed
to local portions of the amino acid (aa) sequence, thus making
conformational transitions possible at finite energy costs. The
two parameter sets chosen for simulations in this paper (see
Table 1) are meant to reproduce the qualitative shape of a
Boltzmann inversion of the statistical distributions coming

Figure 3. Relationship between the CG angle γi and the all-
atom Ramachandran angles φ and Ψ. The all-atom structure
is sketched in lines; the CG beads are represented in cyan
balls-and-sticks. Rotation of any Ramachandran angle cor-
responds to a precession of the respective CG bead, resulting
in a variation of the angle γi.
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from triplets of amino acids with high R and high � propen-
sities, respectively.

2.3. Dihedral Correlation Potential. The final modifica-
tion of the molecular Hamiltonian consists of defining a
correlation potential term for consecutive dihedrals:

Vcorr(�i, �i+1) ) kcorr(�i - �i+1)
2 (12)

This effective potential is meant to account for all of those
steric and electrostatic interactions that would be present
among those atoms that are represented by neighboring CG
beads, and which result in a decreased rigidity of the chain.
With such a potential, structures which are characterized by
large variations in consecutive dihedral angles will pay for
extra potential energy. In particular, the potential in eq 12
disfavors randomly collapsed structures, and it enhances the
formation of ordered structures that show local conforma-
tional self-identity along the sequence. Rather, a minimal
number of deformations (e.g., turns) can be allowed when-
ever they account for any favorable pairing of structural
elements, like in �-hairpin or R-helical assemblies. Different
values of kcorr can in principle be used for different portions
of the chain, to represent local variations in its chemical-
physical nature.

2.4. Choice of Simulation Parameters. Different param-
eter sets where chosen, as reported in Table 1, representing
different physical natures of the peptide chain. In particular,
we define increasing rigid polymers by progressively in-
creasing the values of kcorr, and we modulate the R or �
propensity by modulating the shape of the bending and
torsional potentials (see Table 1). The van der Waals
parameters were modeled as alanine beads of the MAR-
TINI17 potential (equilibrium distance, 5.28 Å; binding
energy, 0.836 kcal mol-1). Solvent-solute interactions were
also taken from the MARTINI potential (equilibrium dis-
tance, 5.28 Å; binding energy, 0.741 and 1.195 kcal mol-1

for solute-solvent and solvent-solvent interactions, respec-
tively). Dihedral potentials are in general expressed as a
combination of multiple cosine terms. The dipole-dipole,
bending, dihedral, and dihedral correlation potential terms
account, on average, for ≈-0.29, +0.21, +0.13, and +0.02
kcal mol-1 per bead, respectively (data taken from simulation
of the short helix, see below). Stretching distances were
constrained to their equilibrium value (3.8 Å). In our
simulations, interactions within consecutive dipoles were
excluded. All interactions were screened by a relative global
dielectric constant of 10.

2.5. Molecular Dynamics Simulations. Molecular dy-
namics simulations of different test systems were performed.
In particular, we first tested the structural stability of 10-aa-
long peptides in initial helical conformation and that of 25-

aa-long peptides in initial antiparallel �-sheet conformation
for different values of the potential parameters. This part of
the work allowed us to define basins of stability for R-helices
and �-sheet structural elements. Then, longer (25 to 30 aa)
peptides in the helical conformation were studied, to
investigate the capabilities of our model in predicting
structural reorganizations of the polymer.

The systems were first minimized by 2000 steps of
conjugate gradients; then they were slowly heated up from
0 to 300 K in 10 ns and simulated in the canonical ensemble
on the nanosecond to microsecond time scales. We tested
the use of different timesteps, starting from 1 fs and
progressively increasing them. We found our simulations to
be consistent among themselves for timesteps up to 20 fs.
For larger timesteps, problems in conservation of the energy
start to arise, leading eventually to inconsistent simulations.

Our potential function was implemented in the LAMMPS
suite of programs67-69 for MD, all simulations were run with
the same program.

3. Results

Molecular dynamics runs were performed on model systems
representing fundamental secondary and supersecondary
structure elements. In this way, we tested the capability of
our new potential function of predicting such motifs as
locally stable structures. We have compared our results to
those obtained with the MARTINI force field,17 which is, at
present, one of the most successful and reliable CG force
fields proposed in the literature.

Short r-Helices. We simulated helical peptides composed
of 10 units for 1.5 µs. Helices are stable in a regime of kcorr

> 0.4 kcal mol-1 rad-2 and for bending potentials which
define a strong helical propensity (Table 1). The helical
structures remain stable along all of the simulation times,
with average values for the 1-4 and 1-5 pitches in the
helical turn of d1-4 ) 5.2 ( 0.2 Å and d1-5 ) 5.9 ( 0.5 Å,
respectively (Figure 4). The structural data are in good
agreement with the experimental measurement as obtained
from PDB structures (Table 2).

Simulations with different dihedral potential intensities
show the same behavior and do not lead to significant

Table 1. Potential Energy Parametersa

structure k�, n, δ kcorr γ0 k1 k2 k3

R-helix 0.8, 3, 0.0 >0.4 1.588 100.0 295.3 218.0
�-sheet 0.8, 3, 0.0 and

2.6, 1, 0.0
0.6 1.588 70.0 308.5 302.2

a Different secondary structure propensities are modeled using
the reported values. n ) multiplicity of dihedral term; [γ0], [δ] )
rad; [k�], [kcorr] ) kcal mol-1; [k1] ) kcal mol-1 rad-2; [k2] ) kcal
mol-1 rad-3; [k3] ) kcal mol-1 rad-4.

Figure 4. Structural parameters for R-helices and �-sheets.
d1-5 and d1-4 are the distances between the helical pitches
of five and four consecutive beads, respectively. d is the
interstrand distance, and φ is the interstrand torsional angle.

A Nonradial Coarse-Grained Potential for Proteins J. Chem. Theory Comput., Vol. 6, No. 1, 2010 319



differences in their results. The stability of the structure is
not affected by variations of the dihedral energy term. The
structures fluctuate with an average rmsd of 1.2 ( 0.2 Å
from the initial structure, which corresponds to a mobility
similar to that found using the MARTINI force field.17

Antiparallel �-Sheets. Molecular dynamics simulations
of two antiparallel strands kept their average structural
parameters close to optimal values. In particular, the inter-
strand distance and orientation (Figure 4) are d ) 5.1 ( 0.1
Å and φ ) 91 ( 8°. These relevant structural parameters
are in very good agreement with experimental values (Table
2). The �-hairpin structure remains within a rmsd as small
as 1.6 ( 0.2 Å from the initial native geometry. In particular,
the structure shows conserved eclipsed configurations be-
tween corresponding CR’s in the two strands and the correct
overall average parallel orientation of their planes (Table 2).
�-sheet geometries are stabilized by dihedral potential terms
with an absolute minimum at � ) 180°, which corresponds
to defining a stiff rigidity for the chain. Structural features
characterizing the �-sheet pair cannot be easily described
using standard CG models with radial nonbonded interac-
tions. In fact, radial potentials do not discriminate among
all those configurations that keep a similar number of contacts
between the two strands (e.g., structures with wrongly
oriented strand planes or with coiled strands). This results
in a disordered ensemble of structures, different from the
native one, which are found during CG MD runs with
the MARTINI-ff and present a higher rmsd (3.0 ( 0.3 Å).
The only way of overcoming this problem would be to explicitly
define contact potentials between the two strands, which would,
on the other hand, bias the structure. In our model, the presence
of dipole interactions among strands automatically introduces
preferential directionality, thus, producing the right geometry
without the need of external biases.

Long r-Helices. Single long R-helices with nonspecific
aa sequences are usually not stable and tend to undergo
conformational transitions leading to supersecondary struc-
ture elements like, for example, helix-coil-helix or �-hair-
pin motifs.70 We have tested the behavior of our backbone
potential by simulating a 25-aa-long chain starting from an
R-helical conformation. Attributing parameters previously
found to produce stable helices, we find that the initial
structure corresponds to a local minimum of the energy, but
MD simulations at 300 K univocally lead to rapid confor-
mational transition, to form helix-loop-helix structures
(Figure 5). Such transition is induced by the attractive
coupling between the finite electrostatic dipoles associated
with the two antiparallel helical portions formed when the
initial structure breaks. Our protocol, in fact, intrinsically

takes into account the interaction between macromolecular
dipoles induced by backbone helical packing and therefore
is able to correctly describe helical N-to-C polarity, which
is a fundamental ingredient for the correct assembling of
helical bundles. We note that in our simulations the terminal
residues were not bringing any zwitterionic charge. There-
fore, no instabilities due to attraction of the ends of the chain
were present. The new structure is stable for values of kcorr

of 0.4-0.5 kcal mol-1 rad-2. For lower values of kcorr,
instead, we find that, after formation of the helix-coil-helix
motif, the two helices tend to break again, yielding collapsed
structures that resemble a four-helix bundle (which cannot
be fully formed due to the shortness of the peptide chain).
r-Helix-�-Hairpin Transition. Our potential was tested

toward the possibility of describing R-� structural transi-
tions. We used again the 25-aa-long R-helical peptide as a
starting conformation and potential parameters, as in Table
1, which reproduce stable �-sheet structures. Within such
potential parameters, the R-helix is only marginally stable
and rapidly unfolds when heated up to 300 K. The peptide
chain tends to stretch into an extended structure, which
eventually bends to pair its two arms, leading to a �-hairpin
structure (Figure 6). For smaller values of kcorr, the reorga-
nization into a three-antiparallel-sheet structure is also
observed.

�-Helix. Finally, we tested the stability of parallel �-sheets,
by modeling an 81-aa-long peptide in a �-helical conforma-
tion. We used the core structure of the antifreeze protein
from Choristoneura fumiferana (pdb code: 1M8N71) as a
template model (Figure 7). Parallel �-sheet pairings are not
characterized by optimal dipole alignment, and therefore they
fold only in the presence of other stabilizing factors, for
example, side-chain packing in supersecondary assemblies.
In fact, the template protein presents a compact hydrophobic
core in the middle of the helix, which stabilizes the whole
structure. Therefore, we modeled our helix by filling the inner
space with nonbonded hydrophobic beads with a VdW radius
of 2.0 Å. We find that, apart from an initial sudden shrinking

Table 2. Structural Parameters for R-Helices and �-Sheets
in CG MDa

present results
PDB exptl.

values

R-helices d1-4 ) 5.2 ( 0.2
d1-5 ) 5.9 ( 0.5

d1-4 ) 5.1 ( 0.1
d1-5 ) 6.2 ( 0.1

�-sheets dis ) 5.1 ( 0.1
�is ) 91 ( 8

dis ) 4.8 ( 0.1
�is ) 90 ( 6

a Values for 1-4 and 1-5 helical pitches and interstrand
distances (d1-4, d1-5, dis, respectively) are reported in Å; values for
interstrand torsional angles are given in degrees.

Figure 5. Helix-coil-helix formation. The N-C terminal
distance as a function of the simulation time for a 25-aa-long
chain. Averaged distances are represented with a solid black
line. The insets show the conformational transition undergone
by the initial helical structure into a supersecondary helix-
coil-helix structure.
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of the structure, which has to be attributed to a nonoptimal
space-filling by the hydrophobic-core mimicking beads, our
model structure remains stable along the 160 ns of MD
(Figure 7). Importantly, we see that the major deformations
of the structure are associated with local distortions occurring
at the vertices of the triangular assembly. The three �-sheet
edges, on the contrary, keep all their contacts paired, as in
the canonical structure of parallel �-sheets.

4. Discussion

Published data based on toy potentials and statistical
mechanics modeling72 showed that the minimal ingredients
required to reproduce folded states of proteins are backbone
flexibility and relative hydrophobicity of the chain, while
H-bonding is required to ensure diversification, modulation,
and ordered assembly of folded motifs. More generally,
structuring of polymer chains can be associated with an

induced coupling between consecutive Frenet terns, that is,
of the relative orientations of the local reference systems
associated with each bead.73 While CG models based on
molecular potentials (eq 1) can easily treat hydrophobicity
(e.g., through relative solute-solute, solute-solvent, and
solvent-solvent nonbonded interactions), both H-bonding
and flexibility remain a more complex issue. In fact, H-bonds
are intrinsically determined by the relative spatial orientation
of objects (atoms) smaller than the resolution of the same
CG models. The amino acid chain flexibility, at the all-atom
level, is determined by the mixture of bonded and nonbonded
energy terms which drive interactions of atoms in neighbor-
ing amino acids. This means that energy contributions for
bonded interactions in CG should be able to represent such
a mixture of both bonded and nonbonded interactions from
the all-atom picture. In fact, in the CG picture, the pseudo-
bonds which link the backbone beads are connecting objects
that, in the all-atom picture, can be topologically distant.
Therefore, simple harmonic approximations for bonded
interactions, like those used in all-atom molecular Hamil-
tonians, can be too limiting for a correct description of the
physics of the amino acid chain.

Our model potential for the protein backbone introduces
an effective directional potential which mimics the presence
of permanent electrostatic dipoles at peptide bond locations.
Such directional interaction enables the reproduction of, at
short-range, the local structure of contacts formed by the
H-bonding network in all-atom systems, which is funda-
mental to defining secondary structure elements (Figure 4,
Table 1). At the same time, it introduces long-range
interactions which are able to drive the recognition and
pairing of elements and, thus, formation of supersecondary
structure assemblies, like in the case of the collapse of long
helical structures into helix-coil-helix arrangements (Figure
5). Such assembly is favored by the presence of macromo-
lecular dipoles associated to each helix, which pair in an
energetically advantageous configuration. Such a feature is
well represented by our model; in fact, within its representa-
tion, unspecific packing of backbone beads does not neces-
sarily lead to an energy gain, and therefore it is not
necessarily stabilized. This is confirmed by the results from
our simulations, where we see the spontaneous assembly of
ordered helix-turn-helix (Figure 5) and �-hairpin (Figure
6) motifs. In particular, our model predicts a very good
relative orientation of two paired �-strands with respect to
that predicted by potentials based on radial nonbonded
interactions only (see Results section).

The improved performances of our model can be related
to the intrinsic anisotropic character of the electrostatic
potential of proteins. In fact, the nonbonded potential terms
for CG beads have to effectively describe, among the others,
the electrostatic interactions between the different groups of
atoms they represent. As the electrostatic potential of a group
of atoms, expressed as a function of a single center, is
formally defined by its multipolar expansion, it is reasonable
to think that a fully transferable radial potential would be
particularly suited in those cases where CG beads map groups
of atoms with a non-negligible total charge Qtot, or in the
assumption that characteristic times for multipole reorganiza-

Figure 6. R-helix-�-hairpin transition. The N-C terminal
distance as a function of the simulation time for a 25-aa-long
chain. Averaged distances are represented with a solid black
line. The insets show the conformational transition from the
initial helical configuration to a �-hairpin structure.

Figure 7. �-Helix structure. Diameter of a 81-aa-long peptide
in a �-helical conformation as a function of the simulation time.
The equilibrated structure is shown in the inset (PDB code:
1M8N).71 The average diameter value remains stable during
the simulation time.
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tion are much faster than the typical times of CG dynamics.
On the contrary, the protein backbone is characterized by
the presence of strong permanent dipoles localized at peptide
bonds between CR atoms, an orientation that is not free but
directly correlated to the local conformational geometry
(Figure 3). As the conformation of the polymer is a piece of
information explicitly present at the CG-resolution, direc-
tional nonbonded contributions due to the presence of
permanent dipoles remain a relevant quantity to describe the
physics of proteins.74

More sophisticated modeling for bonded terms than the
harmonic approximation also turns out to be useful for the
stabilization and modulation of secondary structure elements.
In particular, we make use of a double-well potential for
bending, representing the two principal stable basins in the
Ramachandran plot. Moreover, we introduce a correlation
potential energy term for consecutive dihedrals. These
modifications ensure a direct control on the flexibility
properties of the polymer. Specifically, such potential
disfavors random orientations of the chain, which would
eventually lead to collapsed structures, promoting structures
characterized by conformational self-identity along the chain,
like in extended (e.g., �-strands) or coiled structures (e.g.,
helical motifs). For parameters corresponding to highly
flexible polymers (kcorr <0.4 kcal mol-1 rad-2), random
collapsed structures tend to appear. On the contrary, for high
values of kcorr, combined with strong dihedral potentials of
multiplicity n ) 1 and k� > 2.8 kcal mol-1, all initial
structures tend to form single, long, stretched motifs. Our
findings on the correlation between flexibility and structure
stability are in very good qualitative agreement with the
phase diagram reported in ref 72.

Our potential energy term for nonbonded interactions does
not need to be defined according to the starting secondary
structure; rather, it allows for structural reorganizations or
deformations which can lead to energetically more favorable
assemblies. This was seen in our simulations of long
R-helical structures, where, starting from the same conforma-
tion, for two peptides with different defined secondary
structure propensities, we observed the spontaneous forma-
tion of helix-coil-helix or �-hairpin motifs, respectively.
This is also confirmed by the structural deformations seen
in the �-helix simulations, where the strain of the structure
due to nonoptimal modeling of the hydrophobic core remains
localized at the ends of the �-sheets, keeping ordered
elements in their place. We remark on the fact that we did
not define different specific potentials for the beads in the
sheets and in the turns; rather, the system itself finds it
energetically convenient to pay for some strain in the turn
regions, while keeping the strands paired, as expected. The
possibility of explicitly defining bead-specific bending,
dihedral, and correlation terms makes possible the future
development of new CG force fields based on the proposed
functional form, able to incorporate both local flexibility and
secondary-structure propensity into the backbone potential.

The presented algorithm allows for a full description of
dipole locations and orientations as functions of the coor-
dinates of the CR beads, and, thus, representation of their
interactions with forces acting on the same CR beads.

Therefore, it does not introduce further degrees of freedom
to the system, limiting the increase of computational time
to the explicit evaluation of the dipole-dipole interactions.
The possibility of reconstructing structural features from the
CR coordinates in proteins was already shown in the case of
side-chain localization75 and effectively used to improve the
performance of CG network models.76,77 The dipolar interac-
tions, within our model, have to be considered as an effective
potential which represents, through an explicit potential
energy term, the energy gain in the formation of ordered
contacts in a folded protein backbone. Its functional form is
such that it allows it to be easily incorporated into any CG
representation of proteins which make use of CR beads. In
this respect, the intensity of the dipoles, as well as that of
the interactions in general, can be in principle rescaled or
re-equilibrated to optimally match pre-existing CG models
or the multiscaling criteria used to develop the original CG
potential.

The use of a dipole that has a definition consistent with
the corresponding permanent electrostatic dipole of a protein
backbone has specific advantages. In fact, we had already
shown that, within a very similar approach,65 electrostatic
potentials of proteins can be reproduced by CG structural
information, in particular by accounting for the contribution
only of backbone and side-chain permanent dipoles. There-
fore, such multipolar definition of CG electrostatics can be
helpful in describing more reliably protein-protein as-
semblies or protein-ligand recognition in multiscale frame-
works.

5. Concluding Remarks

In conclusion, our protocol is able to introduce backbone
dipole interactions in CG MD simulations of proteins, which,
in turn, allows for an unbiased representation of stable
secondary structure elements, as well as prediction of their
dynamical arrangement into supersecondary structure as-
semblies. The proposed directional potential has a general
form and can in principle be coupled to existing CG protocols
(single or multibead), which retain structural information of
the CR trace of proteins. Together with modifications of the
bonded energy terms, with respect to simplest harmonic
approximations (in particular, of bending and dihedrals), our
scheme constitutes a promising step toward the development
of a more universal and transferable CG force field for
proteins, not plagued with knowledge-based biases on the
secondary structure. In particular, the directionality of the
backbone structure is directly connected to the bending angle.
Thus, the secondary structure propensity of amino acids,
which is chemically encoded in the side-chain, can be
elegantly controlled by using the backbone bending potential
as an order parameter. The present results anticipate the
development of a new CG force field able to take into
account the intrinsic anisotropy of protein structures, leading
to an improved description of the structural and dynamic
properties of protein assemblies and networks.
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Abstract: Molecular dynamics simulations of fully hydrated pure bilayers of four widely studied
phospholipids, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-
3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 2-oleoyl-1-
palmitoyl-sn-glycero-3-phosphocholine (POPC) using a recent revision of the GROMOS96 force
field are reported. It is shown that the force field reproduces the structure and the hydration of
bilayers formed by each of the four lipids with high accuracy. Specifically, the solvation and the
orientation of the dipole of the phosphocholine headgroup and of the ester carbonyls show that
the structure of the primary hydration shell in the simulations closely matches experimental
findings. This work highlights the need to reproduce a broad range of properties beyond the
area per lipid, which is poorly defined experimentally, and to consider the effect of system size
and sampling times well beyond those commonly used.

1. Introduction

Pure phospholipid bilayers have been extensively studied as
models for biomembranes.1,2 Although lipids may exhibit a
wide diversity of phases (such as the gel and liquid-crystalline
phases), the most biologically relevant state under physi-
ological conditions is the fluid phase (alternatively named
the liquid crystal, LR phase or, more correctly, the liquid-
disordered phase Ld) in which the lipid chains are flexible
and disordered. The fluidity of membranes precludes the
accurate determination of their structure at an atomic level.1

As a consequence, theoretical techniques, especially molec-
ular dynamics (MD) simulations, have contributed greatly
to our understanding of the structure and the dynamical
properties of membrane systems as well as to the interpreta-
tion of experimental results. The basic features of the
mechanisms of fundamental processes, such as vesicle
formation3 and fusion,4 peptide-induced5,6 and peptide-free7

pore formation, ion permeation through membranes,8-12 lipid
flip-flop,13,14 spontaneous lipid aggregation into a bilayer,15

and formation of gel16 and ripple17 phases, have been
modeled using MD simulations.

The quality and the validity of the results from such MD
simulation studies depend heavily on the fidelity with which
the underlying model, or force field, used describes the
interatomic interactions. Biomolecular force fields are being
continuously improved and updated. Currently, the most
widely used force fields for lipid systems are the all-atom
CHARMM18,19 and the united-atom GROMOS9620 force
fields and the parameter set proposed by Berger et al.21 The
latest revision of the GROMOS96 force field (parameter set
53A6)22 was based on the reproduction of the solvation
properties (free enthalpies of hydration) of small molecule
analogues of biomolecules. The G53A6 parameter set has
been extensively studied and validated for the simulation of
peptides, proteins and DNA in water.23,24 However, it failed
to reproduce the properties of phosphatidylcholine lipidssa
major component of biological membranessin the fluid
phase.25 We recently reported a correction of the G53A6
parameter set (G53A6L), which greatly improved the fluidity
of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid
bilayers.25 Specifically, the repulsion between the choline
methyl groups and the nonester phosphate oxygens was
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enhanced by increasing the van der Waals radius of the atom
of oxygens for this particular interaction. The structural
properties of these bilayers (area and volume per lipid,
electron density profiles, bilayer thickness and hydration,
ordering and conformation of acyl chains) were in very good
agreement with experiment. The self-assembly of DPPC into
a bilayer in water was also simulated, demonstrating that a
bilayer is the thermodynamically preferred state.

Two recently developed lipid force fields include alterna-
tive GROMOS96-derived parameter sets. In the parameter
set proposed by Kukol26 and based on the GROMOS 53A6
parameter set, the repulsion between DPPC molecules was
enhanced by increasing the van der Waals radius of the two
carbonyl carbons in the glycerol moiety. This new parameter
set was used to model various phospholipid bilayers in a
fluid phase, and it was found that the area per lipid (AL) was
reproduced correctly for 1,2-dimyristoyl-sn-glycero-3-phos-
phocholine (DMPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-
phosphocholine (POPC), and DPPC and for simulations up
to 40 ns. In contrast, Chiu et al.27 partly reparameterized
the GROMOS96 43a1 parameter set, specifically the bond
and the van der Waals parameters. The new parameter set
called 43a1-S3 was used to simulate pure lipid bilayers of
1,2-lauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dio-
leoyl-sn-glycero-3-phosphocholine (DOPC), DMPC or DPPC

in the fluid phase. The structural parameters of the bilayers
calculated from the simulations, such as the area and the
volume per lipid, the bilayer thickness, the deuterium order
parameters, and the form factor, were in good agreement
with experiment.

AL is often used as the primary target property in the
validation of lipid force field parameters to assess their ability
to reproduce the correct phase of a membrane. However,
there is considerable uncertainty in regard to the true value
of AL for a given lipid bilayer in the fluid phase.1 In the last
two decades, values of AL derived from X-ray methods,
NMR, and neutron diffraction have varied dramatically. For
example, as shown in Table 1, in the case of the DMPC LR

phase, values of AL as low as 0.596 nm2 1 and as high as
0.660 nm2 28 have been proposed in the last nine years.
Similarly, recent values of AL for the LR phase of DOPC,
published even by the same group of authors, range from
0.674 nm2 29 to 0.724 nm2 30 at 303 K. One reason for the
scatter in the values of AL obtained experimentally is that
the area per lipid is frequently not measured directly but
inferred from other quantities, such as order parameters from
NMR spectroscopy.31 Fluctuations in the structure of lipid
bilayers, which are inherent in the bilayer being in a fluid
phase, also make the accurate determination of this structural
quantity difficult.32

Table 1. Summary of Published Areas Per Lipid AL (in nm2) Measured in Experiments and in Simulations in Fluid-Phase
DLPC, DMPC, DPPC, DOPC and POPC Bilayersa

lipid bilayer

source DLPC DMPC DPPC DOPC POPC

Experiment
0.69 (RT)94 0.58 (297)95 0.665 (317)96 0.70 (275)97 0.54 (275)98

0.665 (293)96 0.67 (298)99 0.625 (318)100 0.82 (RT)94 0.63 (297)95

0.572 (293)101 0.652 (300)102 0.643 (318)100 0.594 (296)103 0.683 (303)48

0.594 (295)104 0.65 (300)94 0.57 (323)105 0.82 (298)102 0.66 (310)106

0.687 (298)102 0.595 (303)107 0.712 (323)102 0.718 (298)100 0.62 (323)98

0.71 (298)99 0.597 (303)108 0.69 (323)99 0.726 (298)100

0.626 (303)65 0.596 (303)1 0.71 (323)94 0.722 (303)60

0.632 (303)47 0.60 (303)65 0.717 (323)109 0.725 (303)1

0.660 (303)28 0.629 (323)110 0.721 (303)32

0.589 (303)111 0.633 (323)65 0.724 (303)48

0.606 (303)47 0.64 (323)1 0.674 (303)29

0.657 (309)96 0.642 (323)64 0.724 (303)30

0.600 (309)101 0.628 (323)29

0.622 (310)104 0.631 (323)29

0.695 (338)104

Simulation
literature 0.629 (303)27 b 0.577 (300)112 d 0.61 (323)21 c 0.651 (303)38 c 0.693 (298)26 b

0.630 (303)27 b 0.577 (300)113 d 0.62 (323)15 c 0.65 (310)87 f 0.655 (300)114 h

0.660 (323)115 c 0.618 (303)27 b 0.635 (323)116 c 0.658 (303)27 b 0.668 (303)117 f

0.621 (303)27 b 0.66 (323)118 c 0.660 (303)27 b

0.592 (305)119 e 0.636 (323)27 b

0.602 (310)120 b 0.637 (323)27 b

0.558 (310)87 f 0.60-0.64 (325)121 b

0.625 (314)26 b 0.691 (325)122 c

0.611-0.635 (323)37 c 0.50-0.57 (325)123 b

0.656 (323)124 c 0.604 (325)125 b

0.57 (325)86 b 0.645 (325)125 g

0.623 (325)26 b

0.65 (350)126 c

G53a6L 0.632 (303) 0.616 (323) 0.631 (323)25 0.649 (303) 0.638 (303)

a Temperatures (in K) are indicated in parentheses (room temperature,RT). The data are presented in a chronological order for each
temperature. b-h The force field parameter sets used in simulations are: b as described in the reference; c Berger parameters;21

d AMBER94;33 e CHARMM22;36 f GAFF;34 g CHARMM27;19 and h CHARMM1935 (partial charges from CHARMM2236).
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In contrast, the areas per lipid obtained in simulations
appearing in the literature fall in a narrow range, regardless
of the parameter set used (such as Berger,21 GROMOS,20

AMBER33,34 or CHARMM)18,19,35,36 and regardless of
whether the simulations required or not the application of a
surface tension to reproduce a value of the area per lipid
compatible with a fluid bilayer. They are also seemingly
independent of the length of the simulation and the extent
to which the specific system was equilibrated. This is
surprising as structural relaxation times in bilayer systems
can be long (>100 ns) and, even at equilibrium, the area per
lipid in simulations of systems (including relatively small
ones) under periodic boundary conditions can fluctuate on a
time scale of tens of nanoseconds.37-39 The uniformity in
the values from simulations is all the more striking given
the variation in the methodology used, such as the method
for the treatment of the long-range electrostatic interactions
(particle mesh Ewald,40,41 reaction field,42 straight cutoff,
or shift function).43 Furthermore, corrections for the effects
of undulations in the membrane and other artifacts inherent
in the quantity measured experimentally are rarelysif
eversconsidered. Instead AL is normally determined simply
as the area of the simulation box divided by the number of
lipids, not by modeling the experiment. It is also noteworthy
that a reasonable agreement of a value of AL obtained from
simulations with experiment can be misleading. For example,
a value of 0.56 nm2 was found when simulating a hydrated
DPPC bilayer with the original GROMOS 53A6 force field.25

Despite this value being considered low, it is still almost
within the range of experimental values listed in Table 1
(0.57-0.717 nm2). However, other properties, such as the
electron density profile across the bilayer, were characteristic
of bilayers in a gel-like phase. The simulation of hydrated
DLPC, DMPC, and POPC bilayers with the original GRO-
MOS 53A6 force field showed a similar behavior (data not
shown). Therefore, the ability of a parameter set to model a
fluid bilayer must be judged based on a combination of
several properties and not only on the area per lipid.

In this work, the ability of the G53A6L parameter set to
reproduce the structural and hydration properties of pure
bilayers of DLPC, DMPC, DOPC, and POPC in a LR phase
is examined. Together with DPPC bilayers, these phospho-
lipids bilayers have been best characterized experimentally.1,44

The myristoyl, oleoyl and palmitoyl acyl chains are also
among the major fatty tails found in biologically relevant
phospholipids.45 For example, POPC is the most abundant
lipid in animal cells.46 The results from the simulations are
compared to a wide range of structural properties (including
the area and volume per lipid, the isothermal area compress-
ibility modulus, the bilayer thickness, the deuterium order
parameters, and the conformation of the acyl chains as well
as the orientation and hydration of the headgroups and the
carbonyls). The results demonstrate that the G53A6L param-
eter set is well suited for simulating a range of phosphati-
dylcholine lipids in the fluid phase. In addition, by collecting
and tabulating the range of experimental results that have
been obtained for these properties experimentally, we not
only provide a measure of the uncertainty in these values
but also underline the need to validate models against a range

of properties, in contrast to just a specific value of, for
example, the area per lipid.

2. Methods

2.1. Simulation Systems. Four different systems were
simulated. Each system consisted of a pure lipid bilayer
containing either DLPC (12:0/12:0), DMPC (14:0/14:0),
DOPC (18:1c9/18:1c9), or POPC (16:0/18:1c9). The lipids
were described using the recently derived GROMOS 53A6
parameter set for phosphatidylcholines (G53A6L).25 Each
system consisted of a hydrated 128-lipid bilayer (64 lipids
in each leaflet) initially constructed by replicating a pair of
lipids on an 8 × 8 grid. The area per lipid for each membrane
was set initially to the experimentally measured area per lipid
of the appropriate bilayer in the LR phase. The areas per lipid
used were 0.632 nm2 for DLPC,47 0.606 nm2 for DMPC,47

0.724 nm2 for DOPC,30 and 0.683 nm2 for POPC.48 Sufficient
water molecules were added to give the desired level of
hydration for fluid bilayers (with a ratio of 35-40 H2O per
lipid).

2.2. Simulation Parameters. All simulations were per-
formed using the GROMACS package, version 3.2.149 under
periodic boundary conditions in a rectangular box. The
temperature of the system was maintained by independently
coupling the lipids and the solvent to an external temperature
bath at the reference temperature of 303 K with a coupling
constant τT of 0.1 ps using a Berendsen thermostat.50 The
temperature for each system (303 K) was chosen above the
gelfliquid-crystalline phase transition temperature (276.4,
296.9, 255.7, and 270.5 K for DLPC, DMPC, DOPC and
POPC, respectively51-54). The pressure was kept at 1 bar in
the lateral and normal directions by weakly coupling to a
semi-isotropic pressure bath,50 using an isothermal com-
pressibility of 4.6 × 10-5 bar-1 and a coupling constant τP

of 1 ps. Covalent bond lengths in the lipid were constrained
using the LINCS algorithm.55 The geometry of the simple
point charge (SPC) water molecules56 was constrained using
SETTLE.57 A 2-fs time step was used. Nonbonded interac-
tions were evaluated using a twin-range cutoff scheme:
interactions within the 0.8-nm short-range cutoff were
calculated every step, whereas interactions within the 1.4-
nm long-range cutoff were updated every 5 steps together
with the pair list. A reaction-field correction was applied to
the electrostatic interactions beyond the long-range cutoff42

using a relative dielectric permittivity constant of 62, as
appropriate for SPC water.58 The force field parameters
(G53A6L) used to calculate the inter- and intramolecular
interactions in lipids have been described previously.25 This
parameter set was derived from the GROMOS 53A6 force
field.22 Specifically, the repulsion between the choline
methyls and the nonester phosphate oxygens was enhanced.

Each system was initially energy-minimized and then
simulated at 50 K for 10 ps. The temperature was then
increased gradually over 100 ps until the final simulation
temperature was reached. Each system was simulated twice.
The equilibration of the systems was monitored by examining
the time evolution of the potential energy and the area per
lipid of the system. Once the systems were equilibrated, data
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were collected for 120 ns. An overview of the simulations
performed is given in Table 2.

3. Results

3.1. Area and Volume Per Lipid and Isothermal
Area Compressibility Modulus. The area AL per lipid was
calculated from the lateral dimensions of the simulation box
divided by the number of lipids in each leaflet. AL is often
used to judge the convergence of simulations of lipid bilayers.
Similarly, the volume per lipid VL was calculated by
subtracting the volume occupied by the water molecules from
the volume V of the simulation box:

VL )
V - nwVw

nL
(1)

where nL and nw are the number of lipid (128) and water
molecules, respectively. Vw is the volume per water molecule.
Vw was determined from an independent 15-ns simulation
of 1 728 SPC water molecules at 303 K and at a pressure of
1 bar. The value of Vw obtained was 3.09 × 10-2 nm3. The
average values of AL and VL from the simulations are reported
in Table 3 together with the values obtained experimentally.
As found previously in regard to DPPC, the G53A6 force
field25 yields are in good agreement with experiment for both
properties for each of the systems simulated (DLPC, DMPC,
DOPC, and POPC). The AL’s calculated from the simulations
are in general agreement with the experimental values
measured for fluid bilayers listed in Table 1. The simulated
values of VL fall within less than 2% of the experimental
values.

The isothermal area compressibility modulus KA is related
to the fluctuations of AL:

KA )
2kB〈T〉〈AL〉

nLσA
2

(2)

where kB is the Boltzmann constant, 〈T〉 is the average
temperature, 〈AL〉 is the average area per lipid and σA

2 is the
variance associated to AL. The average area compressibility
moduli calculated from the simulations are given in Table
3, along with the alternative experimental values of 234 (
23 for DMPC,59 188,60 254,30 265 ( 1859 for DOPC, and
180-330 mN ·m-161 for POPC in the fluid phase. As
previously found in the case of the simulation of a fluid
DPPC bilayer with the G53A6L parameter set,25 the values
of KA derived from the simulations are about a factor of 2
larger than the experimental values. Nonetheless, they are
consistent with previous estimates of KA obtained from
simulation studies, which were in the range of 200-600
mN ·m-1.37,43 The discrepancy with experiment is mainly
due to the values of σA

2 being low, which leads to an
overestimation of KA.37,62

3.2. Electron Density Profiles. The structure of the
bilayers was compared with the available X-ray scattering
data by calculating an electronic density profile from the
simulations. Ideally, one would directly compare the simula-
tion and experimental data in reciprocal space but, to make
the comparison direct, the spacing of the layers in the
simulations would have to match those in the experiment
exactly. Alternatively, the electron density profiles across the
bilayer for DLPC, DMPC, DOPC, and POPC shown in
Figure 1 are a straightforward, common way to compare
qualitatively with experiment. The two main peaks in the
density profiles are due to the phosphorus atoms, the most
electron-dense atoms in the bilayers. The bilayer thickness
can be characterized in several ways. The thickness DHH of
a bilayer is commonly taken as the distance between the two
phosphate peaks. Alternatively, the Luzzati thickness DB is
defined as1

Table 2. Overview of the Systems Simulated

lipid bilayer total time (ns) sampling time (ns)

DLPC 220, 350 120
DMPC 235, 245 120
DOPC 260, 300 120
POPC 245, 250 120

Table 3. Summary of Structural Properties of Bilayers at Equilibrium Measured in Experiments and in the Simulationsa

lipid bilayer AL (nm 2) VL (nm 3) KA (mN ·m -1) DHH (nm) DB (nm)

DLPC
experiment 0.54-0.71b 0.99147 s 3.0847 3.1447

simulation 0.632 (3) 0.969 (1) 461 (96) 2.85 (1) 3.07 (4)

DMPC
experiment 0.58-0.67b 1.095528 234 (23)59 3.44108 3.6347

1.1011,47 3.5347 3.691,108

3.601

simulation 0.616 (1) 1.077 (1) 475 (10) 3.27 (3) 3.49 (3)

DOPC
experiment 0.594-0.82b 1.3031,29,30,48,60 18860 3.5360 3.591

25430 3.6729,30 3.6132,60

265 (18)59 3.691 3.8729

3.7132

simulation 0.649 (2) 1.284 (1) 389 (19) 3.63 (2) 3.89 (1)

POPC
experiment 0.54-0.683b 1.22398 180-33061 3.7048 3.6848

1.25648

simulation 0.638 (4) 1.232 (1) 404 (55) 3.46 (4) 3.87 (1)

a AL, area per lipid; VL, volume per lipid; KA, isothermal area compressibility modulus; DHH, bilayer thickness; DB, Luzzati bilayer thickness.
The numbers in parentheses are error estimates in the last digit(s) of the averages.

b See Table 1.
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DB ) bz - ∫-bz/2

bz/2 Fw(z)dz (3)

where bz is the z-dimension of the simulation box and Fw(z)
is the probability distribution of water along z. Fw(z) was
calculated from the time-averaged histogram of the distribu-
tion of water along the z-axis with a bin width of dz:

Fw(z) )
nw(z)Vw

dV
(4)

where nw(z) is the time-averaged number of water molecules
per slice and dV is the time-averaged volume of a slice.27

The values of DHH and DB observed in the simulations are
reported in Table 3. Again, the values calculated are
consistent with the values obtained from experimental studies
of lipid bilayers in the fluid phase. DHH and DB values
obtained in the simulations are within 9% of those measured
experimentally and are listed in Table 3.

The decomposition of the overall electron density into the
contributions from different groupssnamely water, choline
moieties (Cho), phosphate groups (P), glycerol and carbonyls

groups (Gro/CO), methylenes (CH2) and terminal methyls
(CH3) of the acyl chains, and CHdCH groups in the oleoyl
chains of DOPC and POPC (CH)sare also presented in
Figure 1. The profiles are relatively symmetric, indicating
that the bilayers are equilibrated. Water was found to
penetrate into the bilayers up to the Gro/CO groups,63 while
the terminal methyl groups in the acyl chains were dehy-
drated, in agreement with experiment.47,48,64

3.3. Ordering of the Acyl Chains. The deuterium order
parameters SCD of the lauroyl (Lau), myristoyl (Myr),
palmitoyl (Pam), and oleoyl (Ole) acyl chains, in the
simulations of DLPC, DMPC, DOPC, and POPC, were
calculated and compared to the available experimental data.
SCD measures the relative orientation of the CsD bonds with
respect to the bilayer normal. The order parameter SCD of a
methylene group is defined as

SCD ) 1
2

〈3cos2 θ - 1〉 (5)

where θ is the angle between a CsD bond of the methylene
in the given acyl chain and the normal to the bilayer (z -axis).
The angular brackets indicate an ensemble average. As the
GROMOS force field uses an united-atom representation,
the positions of the deuterons were constructed based on the
positions of the neighboring carbons assuming tetrahedral
geometry. The |SCD| profiles of the lipid sn-1 and sn-2 acyl
chains of DLPC, DMPC, DOPC, and POPC, together with
various experimental profiles based on NMR measurements,
are presented in Figure 2. In all cases, the |SCD| values are
lower than 0.25, which indicates than the aliphatic chains
are disordered. The variation in |SCD| and in the magnitudes
for the DLPC and DMPC bilayers are very similar to the
values of Petrache et al.65 and Douliez et al.66 obtained
experimentally. There is some discrepancy for the methylenes
2 and 3 in the Lau tails, but Douliez et al.66 reported that
the |SCD| for the second methylene could not be determined
accurately.

In the case of POPC, the simulations reproduced the
differences between the |SCD| values of the sn-1 Pam and
sn-2 Ole chains observed experimentally.67-69 The sn-1 Pam
chain shows a continuous decrease in |SCD| characteristic of
saturated chains. In contrast, the profile of the sn-2 Ole chain
has a distinctive dip, corresponding to the double bond
between carbons 9 and 10. The sn-2 Ole chain is also clearly
less ordered than the saturated chain.68,69 To our knowledge,
no experimental values of |SCD| for the oleoyl chains in DOPC
have been published. However, the two Ole tails show similar
variations to the |SCD| of sn-2 Ole in POPC, as expected.

3.4. Conformation of Acyl Chains. Another structural
parameter that can be inferred from experiment is the
preference for given rotamers and sequences of rotamers in
the acyl chains. Fourier transform infrared (FTIR) spectros-
copy can be used to determine the number of trans (t) and
gauche (g) conformers in an acyl chain and the sequences
of t and g (end gauche eg, gg, gtg and kinks gtg′). The
combinations observed are characteristic of a given lipid
phase with, for example, the gel-to-fluid phase transition
being associated with an increase in the number of gauche
conformers and of kinks in the acyl chains.70-72 In the
simulations of DLPC, DMPC, DOPC, and POPC, the torsion

Figure 1. Electron density profiles of the whole hydrated
DLPC, DMPC, DOPC, and POPC bilayers and of the contri-
bution of their individual components (Cho: contribution from
the choline moieties; P: phosphate groups; Gro/CO: contribu-
tion of the glycerol and carbonyl groups; CH2: methylenes of
the acyl chains; CH: CHdCH groups in the oleoyl chains; CH3:
terminal methyls of the acyl chains).
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angles φ in the acyl chains were classified as t (φ < -150°
or φ > 150°), g- (-90°eφ < -30°) or g+ (30° < φ e 90°).73

The results are listed in Table 4 together with the available
experimental values.74-76 The estimates of eg and gg from
the simulations of DLPC and DMPC are in good agreement
with experiment. As noted previously in regard to DPPC,25

apparent discrepancies for gtg′ and gtg + gtg′ are due mainly
to experimental uncertainties in the assignment of gtg and
gtg′ methylene wagging modes.72 No experimental data is
available for DOPC and POPC. Nevertheless, given the
experimental data available for phosphatidylcholines and
phosphatidylethanolamines shown in Table 4, it is possible
to judge the quality of the simulations of the DOPC and
POPC bilayers. As is evident from Table 4, experimentally,
there are marked differences in the incidence of specific
rotameric sequences between DPPC (0.38-0.54 eg,74-76

0.40-0.57 gg,74-76 and 0.46-1.0 gtg′ + gtg75,76 per

palmitoyl chain) and DPPE (0.1 eg, 0.2 gg, and 1.0 gtg′ +
gtg)75 in the LR phase. By comparing the propensity of
palmitoyl chains to have eg, gg, and gtg′ + gtg rotamers in
DPPC and DPPE bilayers in the fluid phase, Senak et al.75

estimated there were gains of 0.3-0.4 in eg, 0.2 in gg, and
0.1 in gtg′ + gtg per chain going from a DPPC to a DPPE
bilayer. By extrapolating their observations to fluid POPC
and POPE bilayers, the number of eg, gg, and gtg′ + gtg
rotamer sequences per acyl chain, calculated from the
simulation of a POPC bilayer (0.31 eg, 0.45 gg, and 0.69
gtg′ + gtg), seems consistent with those obtained experi-
mentally from a POPE bilayer in the LR phase (0.05 eg, 0.2
gg, and 0.8 gtg′ + gtg).75

No experimental values for DOPC were found, but the
trend observed in the simulation of a DOPC fluid bilayer is
similar to that of POPC, with a higher population of kinks

Figure 2. Deuterium order parameter |SCD| profiles of the sn-1 (b) and sn-2 (0) fatty acyl chains of hydrated DLPC, DMPC,
DOPC, and POPC bilayers calculated from the simulations (Lau, 12:0; Myr, 14:0; Pam, 16:0; and Ole, 18:1c9). The |SCD| values
are averaged over all the lipid sn-1 and -2 acyl chains in the systems and over the two simulations. Experimental |SCD| values:
for DLPC and DMPC, |SCD| measured by Petrache et al.65 for the sn-1 (O) and sn-2 (0) acyl chains; for DLPC, sn-2 Lau at 308
K from Douliez et al.66 (4); for DMPC, sn-2 Myr from Douliez et al.66 (4); for POPC, sn-1 Pam from Seelig and Seelig at 300
K67 (O), sn-2 Ole from Perly et al.69 (0), and from Seelig and Waespe-Šarčević68 (4).

Table 4. Occurrence of Rotamer Sequences in Acyl Chains (eg, gg, gtg′, and gtg′ + gtg) Estimated from Experiment and in
the Simulationsa

number of bonds or bond sequences per chain

experiment simulation

rotamer DLPC74 DMPC76 DPPC DPPE75 POPE75 DLPC DMPC DOPC POPC

eg 0.45 0.38 0.5474 0.1 0.05 0.34 (1) 0.31 (0) 0.31 (0) 0.31 (0)
0.3876

0.475

gg 0.32 0.67 0.4074 0.2 0.2 0.37 (0) 0.50 (0) 0.41 (0) 0.45 (0)
0.5776

0.475

gtg′ 0.88b s 1.1974 b s s 0.29 (0) 0.36 (1) 0.31 (0) 0.37 (0)
gtg′ + gtg s 0.44 0.4676 1.0 0.8 0.56 (0) 0.66 (0) 0.59 (0) 0.69 (1)

1.075

a The numbers between the parentheses are error estimates in the last digit of the averages. b The gtg′ sequence may be ascribed to a
gtg′ + gtg sequence.72

330 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Poger and Mark



+ gtg than that of eg and gg sequences, as previously noticed
by Chia and Mendelsohn.77

3.5. Orientation of the Headgroups and of the
Carbonyls. Büldt et al.78 have shown that the dipole moment
along the P-fN+ vector in the phosphocholine headgroup
lies almost parallel to the surface of the membrane. Figure
3 shows the probability distribution function of the angle
�PN between the P-fN+ dipole and the outward bilayer
normal. The distributions of �PN obtained from the simula-
tions of DLPC, DMPC, DOPC, and POPC are similar with
most probable angles �PN being 88°, 87°, 91°, and 86°,
respectively. Accordingly, the headgroups, on average, lie
nearly parallel to the bilayer surface.

The orientation of the sn-1 and -2 carbonyl Oδ-fCδ+

dipoles with respect to the outward bilayer normal was also
calculated (angles ω1 and ω2, respectively). The probability
distributions of ω1 and ω2 are shown in Figures 4 and 5,
respectively. Again, the distributions are similar in all
systems, with the most probable value for the angle ω1 being
107° for DLPC, DMPC, DOPC, and POPC. The most
probable value of ω2 was 132°, 127°, 132°, and 135° for
DLPC, DMPC, DOPC, and POPC, respectively.

3.6. Hydration of the Headgroups and Glycerol/
Carbonyls Moieties. The distribution of the water molecules
around the atoms within the headgroup, the glycerol group
as well as the sn-1 and sn-2 carbonyls, were calculated.
Figure 6 illustrates the distribution of the distance between
the oxygens of water and the nearest phosphocholine
headgroup atom in the simulations of DLPC, DMPC, DOPC,

and POPC. The curves obtained in all simulations are
essentially identical with three peaks at 0.27, 0.34, and 0.63
nm, indicating that the interaction of water with the head-
groups does not depend upon the nature of the lipid tails.
The integration of the distributions up to the second peak
shows that there are 14.5, 14.3, 14.9, and 14.9 water
molecules per lipid headgroup for DLPC, DMPC, DOPC,
and POPC, respectively (Table 5). These results are in accord
with experiment from which a ratio of about 11-20 water
molecules per lipid in a fluid phase has been estimated.79-82

The decomposition of the distributions of PCho into the
individual contributions of the choline (Cho) and phosphate
(P) groups, together with the distributions of the water
oxygens to the nearest glycerol (Gro), sn-1 carbonyl (COsn-1)
and -2 carbonyl (COsn-2) groups are depicted in Figure 7.
All four bilayers show similar distributions with a distinct
first peak at 0.34 nm for Cho, 0.28 nm for P, 0.29 nm for
Gro, 0.27 nm for COsn-1, and 0.26 nm for COsn-2. P and
Gro also have a clear second peak at 0.47 and 0.38 nm,
respectively. As listed in Table 5, it was found that there
were, on average, 13-14 water molecules around the choline
groups at 0.34 nm, about 3 and 10-11 water molecules
around phosphates at 0.28 and 0.47 nm, respectively, and
1.6 water molecules around the carbonyls at the sn-2
positions at 0.26 nm. Despite the presence of a peak at 0.29
nm for Gro and at 0.27 nm for COsn-1, the integration of
the peaks shows that they correspond to less than one water
molecule on average.

4. Discussion

Overall, the GROMOS 53A6 force field parameters have
been shown to be effective in representing a range of
phosphatidylcholine lipids in a fluid phase and are able to
reproduce a range of structural properties, such as the area
per lipid, the volume per lipid, the deuterium order param-
eters, the hydration properties in close agreement with
experiment, and, to a lesser extent, the isothermal compress-
ibility modulus. The validation of simulation studies of
membranes in a fluid phase is, however, a difficult task.
Phospholipids are amphipathic molecules with the central
polar glycerol group bound to one or two long, hydrophobic
acyl chains and to a polar or charged headgroup. As a
consequence, the phase behavior of a lipid bilayer is the result
of a subtle balance between inter- and intramolecular

Figure 3. Probability distribution function of the angle �PN

between the bilayer normal pointing away from the middle of
the bilayer to bulk water and the lipid headgroup P-fN+

vectors in the simulations of DLPC, DMPC, DOPC, and
POPC.

Figure 4. Probability distribution function of the angle ω1

between the bilayer normal pointing away from the middle of
the bilayer to bulk water and the sn-1 carbonyl OfC vectors
in the simulations of DLPC, DMPC, DOPC and POPC.

Figure 5. Probability distribution function of the angle ω2

between the bilayer normal pointing away from the middle of
the bilayer to bulk water and the sn-2 carbonyl OfC vectors
in the simulations of DLPC, DMPC, DOPC, and POPC.
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interactions83 as well as the balance between interactions
within the headgroup and tail regions. The compactness of
a bilayer also means that structure and dynamics are strongly
correlated. For example, in a gel phase, lipids pack more
closely and are more highly ordered than in a LR phase. The
degree of ordering is often estimated by the area per lipid
AL, but this is generally measured indirectly, and the range
of alternative experimental values is broad (see Table 1). In
simulations, AL is dependent on the sampling time, the size
of the system, and the methodology used.37-39,43 As a result,
AL is just one of a range of properties that need to be
considered during the validation of force field parameters
for lipids. In this work, a range of structural properties (AL,
bilayer thicknesses DHH and DB, SCD, conformation of the
acyl chains, and orientation of the headgroups) were used
to validate the G53A6 parameter set. As shown in Table 3
and Figure 2, a good agreement was found with experiment
not only for AL but also for all the structural properties
investigated. Although high, the estimates obtained for the

isothermal area compressibility modulus in all the bilayers
(within the range of 389-475 mN ·m-1, see Table 3) are
consistent with the range of 200-600 mN ·m-1 obtained in
previous simulation studies by Anézo et al.43 This said, it
must be noted that the Berendsen weak-coupling method50

was used in both studies to maintain constant temperature
and pressure, which might account for the discrepancy. The
Berendsen thermostat and barostat do not give rise to an exact
NPT ensemble. In particular, the weak-coupling method can
suppress short-time fluctuations in the temperature and the
pressure even though the long-time averages are correct. In
this regard, it should be stressed that, while the fluctuations
in the temperature and the pressure in the simulations occur
on a 1-10-ps time scale, the fluctuations in AL occur on a
10-100 ns time scale. Thus, fluctuations in AL are not
expected to be strongly affected or biaised by the relaxation
time used in the weak coupling of temperature (τT ) 0.1 ps)
and pressure (τP ) 1 ps). Other factors that could lead to an
underestimation of the fluctuations in AL include the sup-
pression of the fluctuations due to the small size of the system
and/or the time scale over which the fluctuations were
accumulated. To determine the extent to which the values
of KA reflect the size of the system and the length of the
sampling time, two additional simulations of a POPC bilayer
at equilibrium with 361 lipids per leaflet were performed
under the same conditions described in Section 2, the
Methods section. The variation in KA as a function of the
extent of sampling time for the POPC bilayers in the fluid
phase containing either 64 or 361 lipids per leaflet is shown
in Figure 8. It is evident in Figure 8 that the apparent value
of KA depends strongly on both the size of the system
simulated and the time scale over which σA

2 is determined;
the value of KA becoming closer to experiment the longer
the sampling time or the larger the bilayer for a fixed
sampling time. For example, with a sampling time of 60 ns,
KA is almost a factor of 2 lower in the bilayer comprising
361 POPC per leaflet (KA ) 454 ( 89 mN ·m-1) than in the

Figure 6. Distribution of the distance between the oxygen of water and the nearest lipid headgroup atom in the simulations of
DLPC, DMPC, DOPC, and POPC. Insets: Integral of the distribution.

Table 5. Number of Water Molecules Per Lipid Hydrating
the Phosphocholine Headgroup and the Different Polar
Moieties in Lipidsa

number of water molecules per group

lipid bilayer PCho Cho P Gro COsn-1 COsn-2

DLPC 2.6 13.5 3.2 0.2 0.6 1.6
14.5 10.2 3.3

DMPC 2.5 13.3 3.3 0.2 0.6 1.6
14.3 10.3 3.5

DOPC 2.6 14.0 3.2 0.2 0.6 1.6
14.9 10.9 3.4

POPC 2.7 13.6 3.3 0.2 0.6 1.6
14.9 10.9 3.3

a Phosphocholine (PCho), choline (Cho), phosphate (P),
glycerol (Gro), and carbonyls at the sn-1 (COsn-1) and sn-2
(COsn-2) positions. The values correspond to the integration up to
the first peak in the distribution of water in Figure 6 for PCho and
in Figure 7 for the other groups. In the case of PCho, P and Gro,
the second values correspond to the integration up to the second
peak.

332 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Poger and Mark



bilayer with 64 lipids per leaflet (KA ) 781 ( 101 mN ·m-1).
In both cases, the average value of AL is consistent with
experiment (0.638 nm2 in the 361 lipid per leaflet bilayer
and 0.630 nm2 in the 64 lipid per leaflet bilayer). In the
smaller system, variations of AL due to undulatory and
peristaltic (thickness fluctuations) motions in bilayers,37

which determined the value of σA
2 used in eq 2, were

occurring on a time scale of 50-100 ns. This accounts for
the decrease in KA with increased sampling. In the larger
system which contained almost six times the number of lipids
per leaflet, the value of σA

2 converged more rapidly as
expected. Note that the error bars shown in Figure 8 reflect
the standard deviations of the average values of KA calculated
over the two independent equilibrium trajectories for a given
sampling time. While in principle a larger bilayer is expected
to reduce the effects of periodic boundary conditions and
improve convergence, larger bilayers have the added com-

plication that collective properties, such as the bending of
the bilayer, must also be taken into account. In this case,
alternative formulas to eq 2 must be used.37 This underlines
the need to consider not only a wide range of properties but
also the effect of sampling time and of system size when
validating models.

While the overall structural properties such as AL are
central to validating force field parameters, the local proper-
ties, such as the sequences of rotameric states or the
interaction with interfacial water, are equally important.
Hydration forces play a critical role in the structure of fluid
lipid bilayers.84,83 Chandrasekhar et al.85 showed that the
balance between the water-water, lipids-lipids, and inter-
facial water-lipids interactions is crucial to allow a sufficient
number of water molecules to interact with headgroups.
NMR spin-lattice relaxation measurements, as a function
of lipid hydration, suggested a ratio of 11-16 H2O per
lipid,79 and more specifically 14-20 water molecules per
lipid in the case of DOPC, in a liquid crystalline phase.80,81

Lairión et al.82 estimated the number of interfacial waters
to be 12-16 in reversed micelles. The first hydration shell
of lipids corresponds to the first two peaks in Figure 6. Figure
7 shows that the phosphate and carbonyl groups mainly
contribute to the inner peak, whereas the choline and glycerol
moieties are to a greater extent responsible for the outer peak.
The integration of the distributions of the distances of the
water oxygens to the closest lipid headgroup in the simula-
tions is illustrated in the insets in Figure 6. This shows that
there are approximately 14-15 water molecules up to the
second peak: 14.5, 14.3, 14.9, and 14.9 water molecules per
headgroup for DLPC, DMPC, DOPC, and POPC, respec-
tively (Table 5). This is in good agreement with the NMR
results and with previous simulation studies on DMPC,86,87

DPPC,88 POPC,89 and DOPC87,89,90 fluid bilayers, for
example. Note, the splitting of the first hydration shell into
separate peaks for the phosphate and choline groups at 0.27

Figure 7. Distribution of the distance between the oxygen of water and the nearest atom of the choline (Cho), phosphate (P),
glycerol (Gro), sn-1 (COsn-1), and sn-2 (COsn-2) carbonyl groups in the simulations of DLPC, DMPC, DOPC, and POPC. Insets:
Integrals of the distributions.

Figure 8. Isothermal area compressibility modulus KA cal-
culated over different sampling times ts from the simulations
of a fluid POPC bilayer comprising 64 (b) or 361 (9) lipids
per leaflet. For each value of ts, the initial time ti for sampling
was determined using the total time of the simulation tt such
that ti ) tt - ts. The error bars show the standard deviation of
the average KA over two independent simulations for a given
value of ts for each system.
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and 0.34 nm in the distribution function, in Figure 6, observed
in all the simulations has been previously seen in simulations
of DOPC89,90 and POPC89 performed with united-atom models
(with peaks at approximately 0.25-0.27 and 0.32-0.36 nm)
but not in the all-atom simulations of DMPC and DOPC by
Rosso and Gould.87 This highlights the extent to which local
properties of a model may vary even if general properties, such
as the area per lipid, are similar.

The two ester carbonyl groups are not equivalent in
phospholipids. Infrared spectroscopic studies of fully hy-
drated DMPC bilayers91,92 suggested that, whereas the sn-1
carbonyl is largely buried, the sn-2 carbonyl interacts strongly
with water. In the simulations, similar features are found with
COsn-1 being almost desolvated, while COsn-2 is bound to
1.6 water molecules on average (Table 5).

Polar and charged groups give rise to the existence of
several dipoles in lipids, namely the P-f N+ dipole in
phosphocholines and the Oδ-fCδ+ dipoles of the sn-1 and
sn-2 carbonyls, which show preferential orientations with
respect to the surrounding water molecules. Using neutron
diffraction, Büldt et al.78 showed that the P-N dipole in
phosphocholine headgroups lies almost parallel to the surface
of the bilayer. Furthermore, the X-ray structure of DMPC
dihydrate93 shows that the sn-1 carbonyl lies flat in the plane
of the bilayer, whereas the oxygen of the sn-2 carbonyl is
directed toward water. Using the G53A6 parameter set, the
appropriate orientation of the three dipoles was found
consistent for all four lipid bilayers: the P-N dipole is
parallel to the surface of the bilayer (�PN ≈ 90°) and the
dehydrated sn-1 carbonyl adopts a comparable orientation
but with the OfC vector slightly pointing outward from the
bilayer (ω1 ≈ 107°), whereas the sn-2 carbonyl has its
oxygen clearly directed toward water (ω2 ≈ 132°).

5. Conclusion

The simulations of common phospholipids of varying length
(DLPC and DMPC) and degree of saturation (DOPC and
POPC) of the acyl chains demonstrate that the G53A6
parameter set is well suited for the simulation of phosphati-
dylcholine bilayers in the biologically relevant liquid-
crystalline phase. The structural properties of the bilayers
were validated using a broad range of experimental data for
each lipid. Critically, the extent of hydration of the lipid
headgroups was found to be in agreement with NMR, X-ray,
and neutron diffraction as well as infrared spectroscopic data.
The work underlines the fact that to validate simulation
models, especially those used to model lipid bilayers, there
is a critical need to examine a range of experimental data as
opposed to focusing on a single parameter, such as the area
per lipid in isolation.
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Hünenberger, P. H.; Krüger, P.; Mark, A. E.; Scott, W. R. P.;
Tironi, I. G. Biomolecular Simulation: The GROMOS96
Manual and User Guide; vdf Hochschulverlag AG an der
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Abstract: The different coordination modes and fast ligand exchange of zinc coordination has
been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable
metal in biological catalysis. However, partly because of the well-known difficulties for zinc to
be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc
coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio Quantum
Mechanical/Molecular Mechanical (QM/MM) molecular dynamics (MD) simulation has been
employed, which allows for a first-principle description of the dynamics of the metal active site
while properly including effects of the heterogeneous and fluctuating protein environment. Our
simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc
coordination shell in thermolysin (TLN) and histone deacetylase 8 (HDAC8). We have observed
different coordination modes and fast ligand exchange during the picosecond’s time scale. For
TLN, the coordination of the carboxylate group of Glu166 to zinc is found to continuously change
between monodentate and bidentate manner dynamically, while for HDAC8, the flexibility mainly
comes from the coordination to a nonamino acid ligand. Such distinct dynamics in the zinc
coordination shell between two enzymes suggests that the catalytic role of zinc in TLN and
HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of the amide
bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations
are very much desired but are widely considered to be too computationally expensive to be
feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art
approach in simulating metalloenzymes.

Zinc is relatively abundant in biological materials. Ap-
proximately 10% of the total human proteome have been
identified to bind with zinc in vivo from a bioinformatics
investigation,1 and they play very crucial roles in all forms
of life.2-6 For mononuclear zinc enzymes, a typical metal
coordination environment contains three amino acid side
chain ligands (His, Glu, Asp, and Cys) and one or two small

molecules.3,7,8 The flexibility of zinc coordination, which
allows different coordination modes and fast ligand exchange,
has been suggested to be one key catalytic feature of the
zinc ion which makes it an invaluable metal in biological
catalysis.9 However, partly because of the well-known
difficulties for zinc to be characterized by spectroscopy
methods,10,11 evidence for dynamic nature of the catalytic
zinc coordination has so far mainly been indirect coming
from determined X-ray crystal structures5,12 and geometry
optimizations of model complexes with electronic structure
methods.13,14
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A classical example of the flexible zinc coordination is
thermolysin (TLN), one of the best experimentally character-
ized zinc proteases with one Glu and two His amino acid
side chains as ligands.15 Extensive structural studies have
indicated that besides the simple tetrahedron coordination,
its catalytic zinc ion can also be five- or six-coordinated16-19

especially for the carboxylate of Glu/Asp whose coordination
is highly flexible. The different coordination mode of
carboxylate to zinc with a continuous range between mono-
dentate and bidentate manner has been observed in model
complexes as well as in other zinc enzymes with one Glu or
Asp as ligands.12 It has been suggested that the coordination
of carboxylate to zinc could be dynamic in the catalytic
process, known as carboxylate shift, which has been sug-
gested to be important in the function of zinc en-
zymes.13,14,20-22 Intriguingly, for zinc-dependent histone
deacetylases (HDACs), in which the catalytic zinc ion is
coordinated to one His and two Asp residues, only the
monodentate mode has been observed for the carboxylate
coordination in several crystal structures.23-26 HDACs,
which catalyze the removal of acetyl group from histone tails,
have emerged to be critical in gene regulation and are among
the most promising targets for the development of antitumor
therapeutics. For example, the recently FDA approved
anticancer drug SAHA is an HDAC inhibitor which is
directly coordinated to the zinc.27,28

To provide deep insights into the dynamics and flexibility
of the zinc catalytic site, which would be essential in
characterizing their catalytic mechanisms and rational design
of novel inhibitors for zinc enzymes, we have carried out
density functional theory (DFT) QM/MM Born-Oppenheimer
molecular dynamics (BOMD) simulations on TLN and
HDAC8. Although semiempirical QM/MM BOMD simula-
tions of some zinc-dependent enzymes have been carried
out,29-32 one main concern is the accuracy and transferability
of the semiempirical QM Hamiltonian in describing the zinc
coordination shell and the enzyme reaction profile. Often,
some parameters of the semiempirical Hamiltonian need to
be reoptimized for specific systems and reactions to obtain
reasonable results,30,32-35 which significantly reduce its
transferability and predictability. Thus, in our current DFT
QM/MM molecular dynamics simulations, the zinc ion and
its ligands are treated by B3LYP hybrid functional with a
Stuttgart ECP/basis set36 for the zinc atom and a 6-31G*
basis set for all other QM atoms. Our employed theoretical
approach, which has recently been demonstrated to be
feasible and powerful in several enzymatic studies,37-40

allows for a first-principle description of the dynamics of
the metal active site while properly including effects of the
heterogeneous and fluctuating protein environment.

Computational Methods

I. Preparation of Simulation Systems. As illustrated in
Figure 1 and listed in Tables 1 and 2, four TLN and two
HDAC8 simulation systems have been prepared on the basis
of their respective experiment crystal structures: TLNa, a
substrate-free structure of TLN (pdb code: 1LNF16); TLNb,
a TLN-inhibitor complex which mimics the reactant state
(pdb code: 1ZDP17); TLNc, a TLN-inhibitor complex which

mimics the transition state (pdb code: 2TMN18); TLNd, a
TLN-product complex (pdb code: 3TMN19); model 1, a
complex of the Y306F mutant of HDAC8 and its substrate
(pdb code: 2 V5W25); model 2, an HDAC8-SAHA complex
(pdb code: 1T6924). Representative active site structures of
TLN and HDAC8 enzymes are illustrated in Figure 2.

Figure 1. Illustration of various zinc coordination shells in
our simulated TLN and HDAC8 enzyme complexes.
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For each simulation system, its initial structure was
prepared on the basis of its respective crystal structure with
molecular modeling and dynamics simulations. First, missing
residues were added with the Swiss-PdbViewer.41 Proton-
ation states of charged residues in the enzyme complex were
determined via H++ program42 and by carefully examining
local hydrogen bond networks. In all TLN models, His142
and His146 were identified as singly protonated, whereas
His231 was doubly protonated, which are the same as
previous studies.43,44 For HDAC8 models, His180 was
determined as singly protonated on δ site, while His142 and
His143 were determined as singly protonated on ε site. Then,
each prepared system was solvated into a rectangular box
with a 10 Å buffer distance between the solvent box wall
and the nearest solute atom. Finally, to neutralize each
simulation system, one to six sodium ions were added at
the protein surface by employing the Amber Tool. All
sodium ions were located more than 17 Å away from the
zinc active site. The resulting simulation system was about
45 000 atoms for each model. The Zn2+ ion was modeled
with the Stote’s scheme.45 Considering that the zinc coor-
dination shell is very difficult to be well described by a
molecular mechanical force field,46-49 ∼1500 kcal/mol
harmonic restraint was placed on ∼15 atoms in the zinc bind
site to retain the zinc coordination structure during the MM
equilibrations. The rest of protein and solvent molecules were
first minimized, and then more than 3 ns MD simulations
were carried out for each system with periodic boundary
condition. A time step of 2 fs was used. Berendsen thermostat
method50 was used to control the system temperature at 300
K. All MD simulations were performed with AMBER10
molecular dynamics package.51 The Amber99SB52-54 force
field for the protein and TIP3P model55 for water molecules
were employed, and the force field parameters for substrate
in HDAC8 and inhibitors in these simulation models were
generated from AMBER GAFF force field56 via AMBER
tools. The SHAKE algorithm57 was applied to constrain all

bonds involving hydrogen atoms with tolerance of 10-5 Å,
and 12 Å cutoffs were used for both van der Waals and
electronic interactions.

II. Born-Oppenheimer ab Initio QM/MM Molecular
Dynamic Simulations. Considering that the trajectory was
very stable after 2 ns for all these classical MD simulations,
the resulting snapshot after 3 ns MD simulation was
employed as the initial structure for the preparation of ab
initio QM/MM MD simulations. Each QM/MM model was
prepared by deleting the solvent molecules beyond 30 Å from
the zinc atom. The resulting QM/MM system had a total of
∼13 000 atoms. The detailed QM/MM partition for all these
TLN and HDAC8 models are presented in Figure 1 of the
Supporting Information. The QM subsystem, including the
zinc and its coordinating ligands, was treated with B3LYP
functional using Stuttgart ECP/basis set36 for the zinc atom
and 6-31G(d) basis set for all other atoms, which has been
previously tested and employed successfully to describe zinc
coordination shell.14,21,58-60 The QM/MM boundary was
described by improved pseudobond approach.61-64 All other
atoms were described by the same molecular mechanical
force field used in classical MD simulations. The spherical
boundary condition had been applied so that atoms beyond
22 Å from the zinc atom were fixed. The 18 and 12 Å cutoffs
were employed for electrostatic and van der Waals interac-
tions, respectively. There was no cutoff for electrostatic
interactions between QM and MM regions. The prepared
system was first minimized by QM/MM calculations. Finally,
more than 20 ps ab initio QM/MM MD simulations were
carried out with 1 fs as the time step, and the Beeman
algorithm65 was used to integrate the Newton equations of
motion. To further check the convergence of our simulations,
we also extended the ab initio QM/MM MD simulations to
40 ps for the TLNa system. As shown in Table 1 of the
Supporting Information, the difference of average distances
and the fluctuation for the zinc coordination shell in TLNa
are very similar for different time periods. The Berendsen

Table 1. Interaction Distances in the Zinc Coordination Sphere of Thermolysina

models CNb Zn-N (H142) d1 Zn-N (H146) d2 Zn-Oe1(E166) d3 Zn-Oe2(E166) d4 d5 d6

expt (1LNF)c 6 1.980 1.987 2.378 2.242 2.384g 2.276g

TLNa 5.6 ( 0.4 2.063 ( 0.063 2.152 ( 0.076 2.216 ( 0.289 2.150 ( 0.069 2.186 ( 0.093g 2.158 ( 0.086g

expt (1ZDP)d 4 2.141 2.096 2.002 2.955 2.414h n/a
TLNb 4.0 ( 0.1 2.031 ( 0.051 2.066 ( 0.060 2.053 ( 0.062 3.117 ( 0.140 2.330 ( 0.060h n/a
expt (2TMN)e 4 2.119 2.102 2.148 2.887 2.792i 2.065i

TLNc 5.3 ( 0.4 2.043 ( 0.051 2.235 ( 0.116 2.940 ( 0.409 2.131 ( 0.335 2.220 ( 0.223i 2.083 ( 0.128i

expt (3TMN)f 4 2.119 2.117 2.167 2.800 2.129j n/a
TLNd 4.5 ( 0.4 1.991 ( 0.050 2.078 ( 0.062 2.173 ( 0.272 2.466 ( 0.415 2.089 ( 0.071j n/a

a The flexible distances are highlighted in bold (n/a, not applicable). Å are used for Zn-O, 2.40 and 2.65 for Zn-S, respectively. These
values are chosen on the basis of very recent analysis on databases of zinc enzyme structures database.5 b CN means the coordination
number. CN is 1 if Zn-N e 2.15 Å, equals 0 if Zn-N g 2.40 Å, and is a linear scalar between 0 and 1 if Zn-N is between 2.15 and 2.40 Å.
Similarly, the values of 2.20 and 2.60. c Ref 15. Resolution: 1.7 Å. d Ref 16. Resolution: 1.7 Å. e Ref 17. Resolution: 1.6 Å. f See from ref
18. Resolution: 1.7 Å. g It is Zn-O distance between Zn2+ and crystal water. h It is Zn-S distance between Zn2+ and inhibitor. i It is Zn-O
distance between Zn2+ and phosphate group in inhibitor. j It is Zn-O distance between Zn2+ and crystal water.

Table 2. Interaction Distances in the Zinc Coordination Sphere of HDAC8

models CN Zn-O (D178) r1 Zn-N (D180) r2 Zn-O (D267) r3 Zn-(water/SAHA) r4 Zn-(sub./SAHA) r5

expt (2 V5W)a 5 1.955 2.074 1.947 2.238 1.994
model 1 (Y306F) 4.4 ( 0.4 1.938 ( 0.047 1.996 ( 0.049 2.002 ( 0.085 2.422 ( 0.219 2.103 ( 0.064
expt (1T69)b 5 2.131 1.789 1.908 1.953 1.975
model 2 (SAHA) 4.8 ( 0.2 1.992 ( 0.056 2.154 ( 0.078 1.969 ( 0.052 2.247 ( 0.111 2.171 ( 0.083

a Reference 25. Resolution: 2.0 Å. b Reference 24. Resolution: 2.9 Å.
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thermostat method50 was used to control the system tem-
perature at 300 K. The last 20 ps trajectory, which has
achieved the equilibrated temperature (300 K), is adopted
as data analysis. To make sure that the fluctuation of the
zinc coordination shell is not due to the higher temperature
of the QM subsystem, we have monitored it along our QM/
MM MD simulation trajectories. We found that most of the
time the temperature of the QM subsystem is not higher than
300 K, and the fluctuation is reasonable. All ab initio QM/
MM calculations were performed with modified Q-Chem66

and Tinker67 programs.

Results and Discussion

For TLN, we simulated four enzyme complexes of TLN with
different coordinating ligands starting from their respective
crystal structures as illustrated in Figure 1a. In the model

Figure 3. The coordination number change during the DFT
QM/MM MD simulations.

Figure 2. The representative active site of TLN complex (TLNa) and HDAC8 (model 1). The coordination shell is indicated by
a dash line in orange (the most flexible bond is highlighted in purple), and the important hydrogen bonds are shown in green.
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TLNa, in which no substrate is bound to the active site, the
zinc ion is six-coordinated with a bidentate carboxyl group
and two water molecules in the crystal structure. From Table
1, we can see that our MD simulation results not only
reproduced the coordination shell very well but also clearly
indicated the flexibility and dynamics of the zinc catalytic
site. The coordination between Zn2+ and Glu166:OE1 is
demonstrated to be most dynamic, and the zinc-carboxylate
coordination fluctuates between mono- and bidentate manners
as shown in Figures 3 and 4. Interestingly, in the model
TLNb, in which the inhibitor is bound to Zn2+ with a thiolate,
its zinc coordination is much less flexible which is manifested
by the small standard deviation (SD) and is kept to be
tetrahedral as in the crystal structure most of the time (see
Figure 3). Meanwhile, in models TLNc and TLNd, which
have been suggested to mimic the reaction transition state
and product, respectively, their zinc active sites are found

to be even more flexible than that in model TLNa. For both
models, the zinc-carboxylate coordination is the most
flexible and continuously changes between monodentate and
bidentate manner dynamically. We can also see that the
ligand exchange in zinc coordination is very fast and can
occur at the picoseconds scale as illustrated in Figure. 4.

For HDAC8, a key distinct feature of its active site is that
there are two carboxylate groups coordinated to zinc instead
of only one carboxylate in TLN. From structural studies, only
monodentate mode of carboxylate coordination has been
observed.23-26 Considering the medical and biological
significance of HDACs, it would be of particular interest to
probe the dynamics of its zinc active site. Here, we have
simulated two HDAC8 complexes starting from their respec-
tive crystal structures: model 1 is a Y306F mutant in complex
with its substrate acetyl-lysine,25 and model 2 is the wild-
type HDAC8 binding with its superstar inhibitor SAHA24

Figure 4. The change of the coordination distance to zinc during the DFT QM/MM MD simulations.
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as shown in Figure 1b. From Table 2, we can see that the
average distances are consistent with the experimental data,
and fluctuations indicate the flexibility of the zinc coordina-
tion sphere. Although the zinc active sites in both models
are still quite dynamic, the carboxylate coordination is very
stable, which is manifested by the small fluctuation, and is
always kept in the monodentate mode. As shown in Figures
3 and 4, in the mutant-substrate complex (model 1), its zinc
coordination number fluctuates between 4 and 5 and its main
flexibility comes from the coordination of the water molecule.
In the HDAC8-SAHA complex, its 5-fold zinc coordination
is considerably more stable. SAHA is coordinated to the zinc
in the bidentate manner most of the time, but it remains to
be more flexible than other amino acid ligands, which is
indicated by the relatively large standard deviation in Table
2. Thus, our simulations clearly indicate that the dynamics
of the zinc active site of HDAC8 is quite different from
thermolysin and suggest that HDAC8 is not likely to employ
the carboxylate-shift mechanism in its catalytic cycle.

As noted in Figure 1, the first coordination shell in TLN
is 2His+Glu, and for HDAC8 is 1His+2Asp, so the total
charge for the coordination shell is different. This would be
an important factor which leads to their different flexibility
of zinc-binding sites. Such distinct dynamics in the zinc
coordination shell also suggests that the catalytic role of zinc
in TLN and HDAC8 is likely to be different in spite of the
fact that both catalyze the hydrolysis of amide bond.

In summary, with ab initio QM/MM MD simulations, we
have provided direct evidence regarding the inherent flex-
ibility of the catalytic zinc coordination in both TLN and
HDAC8 and have observed different coordination modes and
fast ligand exchange. For TLN, the coordination of the
carboxylate group of Glu166 is found to be most flexible,
which can continuously change between monodentate and
bidentate manner dynamically. For HDAC8, its coordination
to all three amino acid ligands, including two carboxylate
groups of Asp, is very stable. Its flexibility mainly comes
from a nonamino acid ligand. Such distinct dynamics in their
zinc coordination shell suggest that the catalytic role of zinc
in TLN and HDAC8 is likely to be different in spite of the
fact that both catalyze the hydrolysis of amide bond.
Furthermore, our work demonstrates the feasibility and
applicability of Born-Oppenheimer ab initio QM/MM MD
simulations in simulating metalloenzymes and sets the stage
for more detailed understanding of catalysis and inhibition
in TLN and HDAC8.
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Abstract: Semiempirical methods could offer a feasible compromise between ab initio and
empirical approaches for the calculation of large molecules with biological relevance. A key
problem for attempts in this direction is the rather bad performance of current semiempirical
methods for noncovalent interactions, especially hydrogen-bonding. On the basis of the recently
introduced PM6-DH method, which includes empirical corrections for dispersion (D) and
hydrogen-bond (H) interactions, we have developed an improved and transferable H-bonding
correction for semiempirical quantum chemical methods. The performance of the improved
correction is evaluated for PM6, AM1, OM3, and SCC-DFTB (enhanced by standard empirical
dispersion corrections) with several test sets for noncovalent interactions and is shown to reach
the quality of current DFT-D approaches for these types of problems.

1. Introduction

The ability to perform fast and accurate computer simulations
of biomolecular systems has the potential to bring new insight
and application opportunities in several scientific fields, for
example, the development of selective receptors, catalysts,
and enzyme inhibitors in computational drug design. Comple-
mentary computational methods for de novo drug design and
virtual screening have already made striking successes
possible, for example, through computer-aided drug lead
generation and optimization.1,2 Although these approaches
can support and complement drug design, they can not be
seen as fully mature, because both the modeling tools used
and our understanding of protein-ligand recognition prin-
ciples are still limited, especially regarding the effects of
protein flexibility and solvation.3

Even though many advanced and accurate computational
methods exist, their application to large-scale simulations
of biomolecules is not possible, because these methods are
computationally too demanding. As a result, the method of
choice for these applications is molecular mechanics (MM).
Although MM performs well in many cases, it has several
drawbacks: By design, it cannot describe quantum effects
like, for example, changes in electronic structure, such as
chemical reactions or charge transfer, and most MM models
also neglect polarization effects, which were shown to be
important, for example, for the solvation of biomolecules.4

Promising tools to overcome these limitations while main-
taining efficiency (allowing extensive sampling of biologi-
cally relevant molecular systems) are semiempirical (SE)
quantum mechanical methods.

The application of current SE methods to biochemical
problems is unfortunately not straightforward, because the
structure and function of biomacromolecules are dominantly
influenced by noncovalent interactions like dispersion and
hydrogen-bonding,5 that generally need very high-level
quantum chemical methods to be modeled with sufficient
accuracy.6 Despite this, the past few years have seen great
success with the incorporation of dispersion effects via
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empirical corrections for a wide range of DFT7,8 and also
SE (e.g., PM3-D, AM1-D9) methods. But because substrate
recognition and binding is most often dominated by elec-
trostatics, the accurate description of these effects and
especially the hydrogen-bond interactions are also of fun-
damental importance for any biomolecular modeling ap-
proach. Examples for the importance of hydrogen-bonding
for molecular recognition are, for example, DNA base
pairing, protein folding, enzyme activity, crystal structures,
properties of liquids, and pharmaceutical drug solubility and
activity. While electrostatics in general are not a problem
for SE methods, current SE methods are known to be
deficient in the description of hydrogen-bonding (with
hydrogen core-core terms, missing polarization functions
on hydrogen, missing orthogonalization corrections, and in
general parametrization as discussed reasons, see refs 10 and
11 and references therein). We see this to be the major
obstacle limiting the accuracy of SE methods when applied
to biomolecules.

As classical modeling approaches are further pushed to
their limit, and more and more pitfalls are coming to light,12

the interest in improving SE for biomolecular modeling
purposes grew substantially over the past few years and has
led to a number of related publications: As a result of the
first biomolecular application attempts with OMn13 and SCC-
DFTB14 and explorative approaches to describe protein
ligand docking with PM315,16 and AM1,17 it became clear
that the (earlier known) deficiencies of SE methods for the
description of hydrogen bonding18,19 are of crucial impor-
tance in these applications.16,20 On the other hand, first large-
scale SE modeling of protein structures gave promising
results21-23 and showed that the capability of SE methods
to detect native structures from collections of decoys is quite
remarkable.12 In order to surpass the accuracy of the
description of noncovalent interactions by MM force fields,
improving the description of hydrogen-bonding interactions
in SE methods is clearly necessary.

A number of approaches offering improvement in this
direction have been suggested in the literature so far, for
example, on the basis of additional or modified core-core
terms (like PM3-PIF24,25 and PDDG/PM326), third-order
terms, and modified parameters for SCC-DFTB27 and also
reformulated QM/MM interaction terms (to improve hydro-
gen bonding at the QM/MM interface28). An overview of
the problem and the proposed solutions can be found in refs
10 and 11. While a significantly better performance is
observed when applying these techniques, the results still
leave large space for further improvements. (It is nevertheless
hard to understand why a recent comparison of the perfor-
mance of semiempirical QM/MM approaches with force
fields29 ignores all developments except the PDDG ap-
proaches.) Concerning force field and ab initio results, the
following has to be kept in mind: A recent study that
evaluated the performance of a set of widely used force fields
by calculating the geometries and stabilization energies for
a large collection of intermolecular complexes showed that
the magnitude of hydrogen-bonding interactions are severely
underestimated by all of the force fields tested.30 And albeit
much better, also the performance of DFT methods for the

calculation of (especially the relative) strength of hydrogen-
bond interactions is not always of satisfactorily high accuracy
(see ref 31 and references therein).

Recently, our group managed to successfully open up a
new path to improve SE methods for hydrogen-bonding
interactions: We augmented the new PM6 method32 with
empirical corrections for dispersion and hydrogen-bonding
interactions (referred to as PM6-DH1 in the following)33 and
were able to achieve large improvements in accuracy for
interaction energies of biologically relevant, noncovalently
bound systems. PM6 was chosen, because this model is
parametrized for 80 elements and was shown to be one of
the most accurate SE approaches for a wide range of
problems.32 Furthermore, PM6 is implemented also as a
linear-scaling, localized molecular orbital algorithm (termed
MOZYME34) in Mopac200935 and VAMP 10.0, which
allows the modeling of most of the proteins in the PDB (with
less than about 5000 atoms) on standard desktop computers.34

While our first-generation H-bonding correction was already
a major step forward in accuracy, we have found further
improvement possible, to be presented in the following.

2. Empirical H-Bonding Corrections for
Semiempirical Quantum Chemical Methods

The First-Generation Correction. To incorporate the
major characteristics of hydrogen-bond interactions, the first-
generation correction made use of the charges q on the
acceptor (A) and hydrogen (H) atoms, the H-bond distance
r between these atoms, and a cosine term that promotes a
180° bonding situation for the A · · ·H-D (with the donor
atom D) angle:

EH-bond ) a[qA × qH

r2
× cos(θ) + b × cr] (1)

The parameters a, b, and c were optimized for eight
different bond types, leading to overall 24 parameters for
the description of common H bonds involving nitrogen and
oxygen acceptor and donor atoms. As the discussion of the
results in section 4 will illustrate, this approach leads to a
significantly improved performance of PM6 for the descrip-
tion of H-bond interactions.

An in-depth analysis of our correction revealed the
following improvement opportunities: While the H-bond
distance and the 180° condition for the A · · ·H-D angle are
the most important geometrical features of hydrogen-
bonding, two additional internal coordinates are needed to
complete the sterical description by taking care of the
“orientation of the lone pair” at the acceptor atom. We will
show later that the full description of all important geo-
metrical features of hydrogen-bonding in the second-genera-
tion correction is the major reason for its improved accuracy
and reliability. It turns out that the change to a physically
more sound description of hydrogen bonding allows us to
fix two other problems of the first-generation correction:
First, the second term in eq 1 is only dependent on the
H-bond distance coordinate. This leads to discontinuous
potentials around values of 90° for the A · · ·H-D angle.
Second, for some H-bond types, the secondsmeant to be
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repulsivesterm is of an attractive nature (the optimization
of the b parameter with constraints on the sign was tested
but discarded because of a diminished accuracy of the
results). By fixing these two problems in the new version,
we are able to significantly increase the robustness of our
empirical correction approach.

To prevent problems with the optimization of very strong
H bonds (like in the case of the formic acid dimer), we had
to keep the distance cutoff of the first-generation correction
(see ref 33 for a more detailed discussion of this approxima-
tion). The cutoff is applied in such a way that H-bond
distances below 1.8 Å are set to 1.8 Å for the calculation of
the hydrogen-bond energy. It acts like a damping function
that forces the correction to a constant value in the repulsive
region, where the description seems to be quite deficient
otherwise. For molecular dynamics simulations, this cutoff
will be implemented with an interpolating polynomial to
prevent kinks in the potential surface. We also tried
multiplication by a damping function for the second genera-
tion correction but found no advantages over the cutoff
distance solution.

The application of the above listed changes in the second-
generation correction furthermore allows us to change from
bond-type to atom-type parameters and to apply our ansatz
also to other semiempirical methods.

The Second-Generation Correction. The sterical ar-
rangement of the two system parts involved in a H bond
can be defined with six internal coordinates (see Figure 1
for an illustration of the following explanations): the H-bond
distance r, the two angles A · · ·H-D (termed Θ) and
R2-A · · ·H (termed Φ, with R2 being a donor “base atom”),
and the corresponding three torsional angles of which only
one directly influences the H-bond interaction energy,
R1R2A · · ·H (termed Ψ). The first two mentioned coordinates,
the H-bond distance and the angle Θ between acceptor,
hydrogen, and donor atoms were incorporated into the first-
generation correction. The second two mentioned coordinates
define the relative position of the acceptor atom system part

(or so to say the spatial arrangement of the acceptor lone
pair), which is important to prevent nonphysical contributions
to the H-bond interaction energies (e.g., through other atoms
or in the case of purely dispersion-bound complexes). Figure
1 shows r, Θ, Φ, and Ψ for two different cases, an sp2

oxygen-type acceptor atom (a) and sp2 nitrogen or general
sp3-type acceptor atoms (b), which require a different choice
of atoms for the definition of the torsion angle coordinate.
Note that, for our choice of coordinates, the out-of-plane
“movement” in case a (described by Ψ′) is actually realized
by a combined change of the two internal coordinates Φ
and Ψ. As a result of these considerations, the new version
of our empirical H-bonding correction takes the following
form:

EH-bond ) [a ×
qA × qH

rb
+ c × dr] ×

cos(θ) × cos(φ) × cos(ψ) (2)

with φ as the deviation of the R2-A · · ·H angle from the
idealized optimal H-bond angle (taken as 109.48° for sp3

and 120° for sp2 structures) and ψ as the deviation of the
R1R2A · · ·H torsion angle from the idealized optimal H-bond
torsion angle (taken to be 109.48° for N sp3, 109.48/2° for
other sp3 structures, and 0° for sp2 structures). Two special
cases arise: For sp2 oxygen acceptor atoms, not only 120°
but also 180° has to be considered as the idealized optimal
H-bond angle; the one with the smaller deviation to the actual
binding situation is chosen for the calculation. For NR3

nitrogen acceptor atoms, the possible planarization of this
group has to be taken into account; we chose to calculate
the idealized optimal φ and ψ values by linear extrapolation
between the tetrahedral and planar values (109.48 and 90
for φ, 109.48/2 and 90 for ψ) subject to the actual value of
the torsion angle between R1R2A and the remaining third of
the NR3 group. An alternative (but considering gradient
derivations unnecessarily complicated) implementation of our
general approach would be to use a cosine term for the angle
between the H-bond and an “idealized lone-pair orientation”
vector.

The resulting equation was analyzed for the importance
of the different terms and parametrized for acceptor atom
types in a stepwise optimization process that led to some
remarkable observations illustrated by data for the H-bonded
complexes of the S26 set (the S22 benchmark set6 for
noncovalent interactions, extended with four singly hydrogen-
bonded complexes,36 see also Figure 2) in Table 1:

• Even when using only the attractive term, (qA × qH)/
(rb) × cos (θ) × cos (φ) × cos (ψ), with overall only a
single parameter (termed P1 in Table 1: b ) 3.2) to correct
PM6-D for all different types of nitrogen and oxygen
hydrogen-bond interactions, our new correction leads to very
good (PM6-DH1-quality) values for almost all S26 H-bond
interaction energies (please note that the intermediate
parametrization results are given to show the robustness of
our approach and that the Pn parametrizations are therefore
not meant to be some kind of “intermediate” methods).

• The additional distinction between nitrogen and oxygen
acceptor atom types (resulting in overall two parameters

Figure 1. Illustration of the geometric features of hydrogen-
bonding; see text for explanation.
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(termed P2)), then leads to comparably small but still
significant improvements.

• In the case of PM6-D, the accurate description of
H-bonding interactions involving water and peptide systems
requires the inclusion of at least one additional atom-type
parameter (termed P3).

• Also for AM1-D* (not AM1-D, see next paragraph for
explanation), SCC-DFTB-D and OM3-D, a significant
improvement is found with only a single parameter (b )
2.2 for AM1, 3.2 for DFTB, and 3.1 for OM3). For these
methods, no additional parameters for water or peptide
systems are necessary, but one additional parameter is
required for the proper description of acid acceptor atoms.

We decided not to use the AM1-D method published by
McNamara and Hillier9 with our correction scheme, because
their method is not simply AM1 with a standard empirical
dispersion correction but is additionally based on a refit of
18 AM1 parameters that also account to some extent for

hydrogen bonding. The variant we use here, termed AM1-
D* in the following, refers to standard AM1 with a standard
empirical dispersion correction of the Jurečka type.8 The
optimization of the D parameters for the dispersion-bound
complexes of the S22 benchmark set led to the values sr )
0.91, R ) 56.0, and s6 ) 1.18. This way, the mean unsigned
error for the dispersion-bound S22 complexes was decreased
from 6.7 kcal/mol for AM1 to 0.4 kcal/mol for AM1-D*,
slightly lower than the 0.6 kcal/mol found for AM1-D.9

We also adjusted the dispersion correction for PM6,
because we have found that PM6-DH1 overestimates disper-
sion effects in saturated systems. The new parameters are sr

) 1.04, R ) 20.0, and s6 ) 0.89 (instead of sr ) 1.07, R )
11.0, and s6 ) 1.00 for the old version), in combination with
c6 ) 0.95 for sp3 carbon and c6 ) 1.65 for other carbon
atoms (instead of c6 ) 1.65 for all carbon atoms) and a
hydrogen van der Waals radius of 156 pm (instead of 120
pm). The effects of these changes are very small for the

Figure 2. The S22 benchmark set for noncovalent interactions.6

Table 1. Intermediate Results from the Optimization Processa

S26 entry reference PM6 PM6-D
PM6-
DH1 P1b P2b P3b

PM6-
DH2 AM1-D*

AM1-
D*/P1b DFTB-D

DFTB-
D/P1b OM3-D

OM3-
D/P1b

ammonia dimer -3.17 0.86 0.33 -0.55 -0.14 -0.32 -0.33 -0.04 1.45 0.55 2.57 2.23 -0.28 -0.89
water dimer -5.02 1.08 0.70 0.35 -1.18 -0.95 -0.05 0.12 1.16 -1.78 1.80 0.09 -5.44 4.15
formic acid dimer -18.61 7.47 6.47 1.23 -0.08 0.63 -0.08 -0.03 18.26 6.62 2.49 -3.57 -2.53 0.49
formamide dimer -15.96 3.40 2.18 0.56 -2.21 -1.70 0.34 0.09 7.74 -1.44 2.67 -0.33 -2.12 -0.66
uracil dimer C2h -20.65 7.32 5.55 1.82 0.37 0.96 0.37 -0.56 11.76 0.43 3.74 -0.17 -0.60 -0.07
2-pyridoxine/2-aminopyridine -16.71 6.72 4.50 -0.64 0.69 0.41 0.18 0.37 8.09 0.83 4.84 2.49 -2.47 1.08
adenine/thymine Watson/Crick -16.37 7.30 4.89 -1.46 0.67 0.20 -0.02 -0.09 7.65 -0.68 5.80 3.29 -0.49 -0.07
phenol dimer -7.05 3.67 1.32 0.31 0.06 0.21 0.06 -0.01 0.96 -0.93 3.02 1.96 -1.84 0.00
methanol dimer -5.70 2.20 1.35 0.26 -0.25 -0.06 -0.25 -0.55 2.45 -0.15 2.45 1.04 -1.42 0.88
methanol/formaldehyde -5.31 1.89 1.23 0.47 0.12 0.26 0.12 0.10 1.78 -0.09 2.46 1.62 -2.27 2.26
methyl amide dimer (R) -6.69 1.76 0.38 -0.34 -0.93 -0.84 -0.27 0.31 1.59 -1.48 0.92 0.07 -0.85 -0.01
methyl amide dimer (�) -7.65 1.78 0.72 -0.05 -1.00 -0.80 -0.01 -0.02 3.98 0.49 1.59 0.45 -0.68 -0.15
MSE 3.79 2.47 0.16 -0.32 -0.17 0.01 0.04 5.57 0.20 2.86 0.76 -1.75 0.60
MUE 3.79 2.47 0.67 0.64 0.61 0.19 0.19 5.57 1.29 2.86 1.44 1.75 0.89
RMSE 4.56 3.26 0.85 0.88 0.76 0.28 0.24 7.57 2.12 3.15 1.89 2.22 1.47
∆Max-Min 6.61 6.13 3.28 2.90 2.66 0.93 0.84 17.30 8.40 4.88 6.86 5.16 5.05

a Errors, mean signed error (MSE), mean unsigned error (MUE), root mean square error (RMSE), and the error span ∆Max-Min with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values in kcal/mol. AM1-D* refers to standard AM1 with a
standard empirical dispersion correction, unlike AM1-D, see text for details. b For explanation see text, PM6-D and PM6-D/Pn with
PM6-DH1 dispersion parameters.
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systems investigated here but become significant, for ex-
ample, for large, saturated hydrocarbon chains. We decided
to nevertheless include these changes here to avoid spreading
the details of PM6-DH2 over multiple publications.

As a training set for the stepwise H-bonding correction
parameter optimization procedure, the equilibrium structures
of the original H-correction training set33 (105 hydrogen-
bond interaction energies) were extended with the (non-
charged) 37 hydrogen-bonded DNA base pairs and 13
peptide interaction energies from the JSCH2005 set.6 Another
optimization run on the much smaller S26 test led to
essentially the same parameter values, showing on one hand
the stability of our approach with respect to the chosen
parameters and on the other hand the usefulness of this test
set for the parametrization of new methodological develop-
ments for H-bonding interactions. (Due to the implications
of the limited size of the S26 complexes we do not assume
this to be equally true for empirical dispersion corrections).

Because the fitting of correction terms only to equilibrium
structure data is prone to result in problems in real-life
applications, we extended in the next step the S26 set with
the S22 × 4 set,37 which contains four nonequilibrium
structures with high-level reference data for each of the S22
complexes. While not necessary at all for the description of
the equilibrium structures, the second (constrained to be
repulsive) term in eq 2 was included to further improve the
accuracy at short distances, especially in the case of very
strong hydrogen bonds like those found in the formic acid
dimer.

The inclusion of more parameters for a (reasonably) larger
number of acceptor atom types or additional parameters for
donor atom types led to no significant improvements. In
addition, it was found that method-independent values can
be chosen for the parameters b, c, and d in eq 2, because
slight differences are absorbed by the method-dependent a
parameters. For the final parametrization of the new correc-
tion for the PM6-D, AM1-D*, OM3-D, and SCC-DFTB-D
methods on the combined S26/S22 × 4 set, fixed values of
b, c, d, and five acceptor atom types with different a
parameters were chosen. Albeit a significant improvement
can already be found with only one a parameter, the
additional increase of accuracy (especially for water and
peptides in the case of PM6-D) outweighed our concerns of
using five different acceptor-atom-type-based a parameters.
This view was further supported by the rather well-behaved
nature of the parameters (that nicely reflect the capabilities
of the underlying SE methods to describe hydrogen bonding)
and the overall number of parameters in SE methods.

As a result, the outlined procedure led to three global and
five method-dependent parameters for the description of
common H bonds involving nitrogen and oxygen acceptor
and donor atoms. One additional method-dependent param-
eter for the description of H bonds involving sulfur acceptor
atoms was generated accordingly for every method (except
OM3, where no sulfur SE parameters were available to us),
using the sulfur hydrogen-bonded DNA base pairs from the
JSCH2005 set.6 The final parameters are shown in Table 2.
We believe that the differences of the individual parameter
values are more likely to reflect advantages and deficiencies

of the parametrization of the underlying SE methods, rather
than physical issues of different H-bonding interactions. As
noted before, the qualitative parameter differences between
methods nicely reflect the initial capability of the underlying
SE methods to describe hydrogen bonding (with a rather bad
performance of AM1 and a quite good performance of OM3
at the two ends of the scale).

We also tested our correction with third-order SCC-DFTB
with and without a modified γ parameter for an improved
description of hydrogen bonding27 but ended up with the
same accuracy as with SCC-DFTB-DH2 (which is signifi-
cantly higher than third-order SCC-DFTB with a modified
γ parameter, giving an MAD of 1.0 and an error span of 6.0
kcal/mol for the S26 test set).

As the last step, an analytical gradient for the proposed
correction was implemented. This was done analogously to
the first-generation correction, that is, without derivatives of
the atom charges. This approximation was found to have
only a minor impact for the cases investigated here and
allows us to keep our approach simple and fast but surely
needs deeper investigation in the future.

3. Computational Details

Semiempirical PM6 and AM1 calculations applying the
MOZYME algorithm were done with MOPAC2009,35 OM3
calculations with MNDO2005, and SCC-DFTB calculations
with DFTB+.38 TPSS39 and B3-LYP40,41 DFT calculations
with empirical dispersion corrections of the Jurecka type8

were done with Turbomole 5.1042 using TZVPP43 Gaussian
AO basis sets and the RI approximation44,45 for two-electron
integrals. The second-generation H-bonding correction is
implemented as an add-on correction to MOPAC2009,
mndo99 and DFTB+ in our own development code (the
latest version of this software can be obtained from the
authors upon request), and will be included in a future release
of MOPAC2009.

4. Results and Discussion

Tables 3-8 show results of PM6, AM1, OM3, and SCC-
DFTB calculations with dispersion correction and first- and
second-generation H-bonding corrections for the S26 (Table
3), S22 (Table 4, in additional comparison to literature data),
and S26+S22 × 4 benchmark sets (Table 5), the PM6-DH1
training set of 105 small hydrogen-bonded complexes (Table

Table 2. Final Parameters

parameter element PM6 AM1 OM3 DFTB

Global
b all 3.0
c all 0.65
d all 5.0

Method-Dependent
a N 1.48 4.54 0.86 4.41

O 1.56 3.75 0.75 1.84
Oacid 1.55 5.55 1.51 1.15
Opeptide 0.96 3.46 0.78 1.56
Owater 0.76 3.52 0.49 1.57
S 0.85 1.05 -a 0.53

a OM3 sulfur parameters unavailable.
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6), the 37 noncharged, H-bonded DNA base pair complexes
from the JSCH2005 set (table 7), and the 13 noncharged,

H-bonded peptide-structures from the JSCH2005 test set
(Table 8) with corresponding TPSS-D/TZVP and B3-LYP/
TZVP data for comparison. Each table shows the reference
interaction energy at the CCSD(T)/CBS level, errors relative
to these values for the investigated methods, followed by
statistical measures overs these errors: the mean signed error
(MSE), mean unsigned error (MUE), root-mean-square error
(RMSE), and the error span (∆Max-Min). The errors are
calculated so that a positive error means that the investigated
method underestimates the binding energy and vice versa.

The general trends for the different benchmark sets are
very similar, so that the observations can be summarized
altogether in the following way: The standard SE semiem-
pirical methods perform quite badly for both dispersion and
hydrogen-bonding interactions, but PM6, OM3, and SCC-
DFTB (S26 MUEs around 3 kcal/mol) are significantly more
accurate than AM1 (S26 MUE around 6 kcal/mol). The
inclusion of empirical dispersion corrections is a great
improvement for all tested semiempirical methods. With
these corrections, the semiempirical methods are able to
model dispersion bound complexes with comparably high
accuracy (MUEs between 1 and 3 kcal/mol), so that the
largest remaining errors are found for hydrogen-bond
interactions.

Table 3. Results for the S26 Seta

S26 entry
CCSD(T)/

CBS PM6
PM6-

D
PM6-
DH1

PM6-
DH2

TPSS-
Da

B3LYP-
Da AM1

AM1-
D*

AM1-
DH2 DFTB

DFTB-
D

DFTB-
DH2 OM3

OM3-
D

OM3-
DH2

ammonia dimer -3.17 0.86 0.57 -0.57 -0.04 0.57 0.71 2.38 1.45 0.67 2.82 2.57 1.12 1.24 0.49 0.06
water dimer -5.02 1.08 0.91 0.35 0.12 1.31 1.49 2.13 1.16 -1.43 1.82 1.80 -0.63 0.93 0.28 0.09
formic acid dimer -18.61 7.47 6.76 1.23 -0.03 0.85 0.70 20.14 18.26 1.09 2.74 2.49 -1.11 7.06 5.44 0.26
formamide dimer -15.96 3.40 2.49 0.56 0.09 0.17 0.47 10.23 7.74 -0.97 3.40 2.67 -0.32 4.28 2.53 1.07
uracil dimer C2h -20.65 7.32 5.88 1.82 -0.56 -0.14 0.37 14.85 11.76 -0.30 4.98 3.74 -1.64 4.47 2.12 0.28
2-pyridoxine/2-aminopyridine -16.71 6.72 4.97 -0.64 0.37 1.16 1.06 12.25 8.09 0.15 6.45 4.84 -0.91 5.36 2.47 1.51
adenine/thymine Watson/Crick -16.37 7.30 5.37 -1.46 -0.09 0.71 0.78 12.08 7.65 -2.27 7.58 5.80 -1.54 5.03 1.84 0.39
methane dimer -0.53 0.56 0.18 -0.10 0.18 0.17 -0.03 0.85 -0.18 -0.18 0.54 0.06 0.06 0.67 -0.08 -0.08
ethene dimer -1.51 1.11 0.45 -0.01 0.45 0.17 0.11 1.38 -1.25 -1.25 1.32 0.70 0.70 1.65 -0.17 -0.17
benzene/methane -1.50 1.02 0.11 -0.25 0.11 -0.39 -0.41 1.90 -0.70 -0.70 1.32 0.29 0.29 1.63 -0.01 -0.01
benzene dimer stacked -2.73 2.84 -0.85 -0.90 -0.85 -0.31 -0.88 6.24 -0.38 -0.38 3.10 -0.37 -0.37 3.86 -1.14 -1.14
pyrazine dimer -4.42 2.60 -0.93 -1.00 -0.93 -0.75 -0.98 6.91 -0.16 -0.16 4.11 0.79 0.79 3.74 -1.47 -1.47
uracil dimer C2 -10.12 5.66 0.70 0.42 0.67 -1.04 -0.52 10.23 -0.02 -0.06 6.17 1.94 1.92 6.16 -1.29 -1.30
indole/benzene stacked -5.22 5.28 0.16 0.01 0.16 -1.00 -1.64 10.60 0.77 0.77 5.46 0.63 0.63 6.60 -0.76 -0.76
adenine/thymine stacked -12.23 7.29 0.57 -0.55 0.54 -1.07 -0.84 15.14 0.08 0.04 8.34 2.10 2.08 8.93 -1.87 -1.89
ethene/ethine -1.53 0.98 0.58 0.42 0.58 0.02 -0.09 1.18 0.13 0.13 0.99 0.54 0.54 0.85 0.10 0.10
benzene/water -3.28 1.00 0.10 -0.13 0.10 0.49 0.43 2.59 0.54 0.54 2.00 1.62 1.62 1.53 -0.01 -0.01
benzene/ammonia -2.35 0.82 -0.20 -0.42 -0.20 -0.10 -0.13 2.02 -0.41 -0.41 1.84 0.77 0.77 1.58 -0.04 -0.04
benzene/HCN -4.46 2.48 1.48 1.27 1.48 -0.64 -0.77 3.65 1.53 1.53 2.73 1.64 1.64 2.78 0.77 0.77
benzene dimer T-shaped -2.74 1.98 0.15 -0.10 0.15 -0.81 -0.95 3.10 -0.53 -0.53 2.42 0.69 0.69 2.85 0.09 0.09
indole/benzene T-shaped -5.73 3.32 0.79 0.42 0.79 -0.84 -1.25 4.67 0.44 0.44 4.05 1.71 1.71 4.56 0.79 0.79
phenol dimer -7.05 3.67 1.84 0.31 -0.01 0.11 0.52 5.69 0.96 -0.85 4.25 3.02 1.19 3.89 0.60 0.24
methanol dimer -5.70 2.20 1.72 0.26 -0.55 1.28 1.51 4.00 2.45 -0.10 2.66 2.45 0.07 2.58 1.42 1.11
methanol/formaldehyde -5.31 1.89 1.51 0.47 0.10 0.12 0.61 3.39 1.78 0.16 2.77 2.46 1.29 3.28 2.27 2.38
methylamide dimer (R) -6.69 1.76 0.74 -0.34 0.31 0.08 0.34 3.81 1.59 0.49 1.98 0.92 0.39 2.44 0.85 0.53
methylamide dimer (�) -7.65 1.78 0.99 -0.05 -0.02 -0.15 0.36 5.85 3.98 0.36 2.38 1.59 0.40 1.93 0.68 0.03

Complete S26 Set
MSE 3.17 1.42 0.04 0.11 -0.00 0.04 6.43 2.57 -0.12 3.39 1.83 0.44 3.46 0.61 0.11
MUE 3.17 1.58 0.54 0.36 0.56 0.69 6.43 2.85 0.61 3.39 1.85 0.94 3.46 1.14 0.64
RMSE 3.94 2.46 0.71 0.51 0.69 0.82 8.18 5.17 0.81 3.93 2.31 1.10 4.04 1.63 0.91
∆Max-Min 6.91 7.69 3.28 2.41 2.38 3.15 19.29 19.51 3.80 7.80 6.17 3.72 8.26 7.31 4.27

Hydrogen-Bonded Systems
MSE 3.79 2.81 0.16 -0.03 0.51 0.74 8.07 5.57 -0.25 3.65 2.86 -0.14 3.54 1.75 0.66
MUE 3.79 2.81 0.67 0.19 0.55 0.74 8.07 5.57 0.74 3.65 2.86 0.88 3.54 1.75 0.66
RMSE 4.56 3.55 0.85 0.27 0.73 0.84 9.77 7.57 0.96 4.05 3.15 1.01 3.95 2.22 0.96
∆Max-Min 6.61 6.19 3.28 0.93 1.46 1.17 18.01 17.30 3.36 5.76 4.88 2.93 6.13 5.16 2.35

a TZVP basis set. a Errors, mean signed error (MSE), mean unsigned error (MUE), root mean square error (RMSE), and the error span
∆Max-Min with respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values in kcal/mol.

Table 4. Results for the S22 Seta

method MUE

MP2/CBS 0.8c

B3LYP-D/TZVP 0.7
TPSS-D/TZVP 0.6
M08-HX/6-311+G(3df,2p)/CP 0.5c

M06-2X/6-311+G(3df,2p)/CP 0.4c

TPSS-D/6-311++G(3df,3pdf) 0.3d

B2-PLYP-D/TZVPP/0.5CP 0.3e

PM3BP 5.2f

SCC-DFTB-D 1.9
OM3-D 1.1
PM3-Db 0.9f

AM1-Db 0.9f

PM6-DH1 0.6
SCC-DFTB-DH2 1.0
AM1-DH2 0.7
OM3-DH2 0.6
PM6-DH2 0.4

a Comparison of mean unsigned errors (MUE) with respect to
the benchmark CCSD(T)/CBS interaction energies for various
wave function theory, density-function theory and enhanced
semiempirical quantum chemical methods are presented. All
values in kcal/mol. (0.5)CP stands for (half) counter-poise
corrected values. b With 18 adjusted AM1/PM3 parameters, see
ref 9. c From ref 46. d From ref 8. e From ref 47. f From ref 9.
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As mentioned before, the inclusion of our first-generation
H-bonding correction in PM6-DH1 is already a major step
toward a higher accuracy for these interactions (with a MUE
of 0.7 kcal/mol for the hydrogen-bonding interactions in the
S26 set). The largest errors are found for double hydrogen
bonds, because of the parametrization to single hydrogen
bonds and the higher likeliness of nonphysical contributions
to the H-bonding correction in these cases.

The new correction manages to reach even higher accuracy
(with a corresponding MUE of 0.2 kcal/mol) and greatly
reduced error span (from 3.3 to 0.8 kcal/mol). Furthermore,
it can be seen that the new H-bonding correction does not
lead to nonphysical interaction energy contributions for
purely dispersion-bound complexes (the values for PM6-DH
being essentially the same as for PM6-D). Albeit a less
accurate final performance is found for AM1, OM3, and
DFTB when compared to PM6, the large decrease of errors
(especially for AM1) is still impressive for these SE methods.
As we focused on PM6 during the initial development phase,
we do not want to exclude the possibility that further
improvements are possible, especially for AM1, for which
the chosen repulsive term seems to fit least well.

While the results for the hydrogen-bonded complexes of
the PM6-DH1 training set and the hydrogen-bonded
JSCH2005 peptides (both with smaller interaction energies
of -6.2 and -4.4 kcal/mol and quite good values already
for the “pure” SE methods) are less impressive, the hydrogen-
bonded JSCH2005 DNA base pairs set (with an average
interaction energy of -19.5 kcal/mol) shows how large the
gain of applying the second generation H-bonding correction
can be, if H-bonding interaction energies become larger. We
believe that the rather poor performance for the peptide test
set stems at least partly from an unbalanced description of
dispersion and hydrogen-bond interactions through the
combination of the two empirical corrections, which will be
addressed in our future work.

It can nevertheless be stated that the obtained quality of
the PM6-DH2, AM1-DH2, OM3-DH2, and DFTB-DH2
calculations reaches the accuracy of DFT-D methods (with
TPSS-D/TZVP being one of the most accurate for the
noncovalent interactions) for a large part of the investigated
cases, while being several orders of magnitude faster. For
the S22 set (included in our fit set, but also used as fit set
for DFT corrections), PM6-DH2 (MUE 0.4 kcal/mol) nearly

Table 5. Results for the Combined S26+S22 × 4 Sets (114 Entries)a

PM6 PM6-D PM6-DH2 TPSS-Db B3LYP-Db AM1 AM1-D* AM1-DH2 DFTB DFTB-D DFTB-DH2 OM3 OM3-D OM3-DH2

MSE 2.23 1.04 0.14 -0.56 -0.63 4.43 1.86 0.06 2.42 1.34 0.38 2.20 0.51 -0.10
MUE 2.23 1.17 0.36 0.58 0.63 4.43 2.23 0.89 2.42 1.49 0.68 2.20 0.88 0.72
RMSE 3.21 2.07 0.61 0.69 0.72 7.00 4.87 1.72 3.20 2.18 0.88 2.98 1.49 1.29
∆Max-Min 9.62 9.69 4.96 1.68 1.46 28.52 29.15 14.40 10.21 10.64 4.35 8.97 9.76 7.71

a Mean signed error (MSE), mean unsigned error (MUE), root mean square error (RMSE), and the error span ∆Max-Min with respect to the
benchmark CCSD(T)/CBS interaction energies are presented. All values in kcal/mol. b TZVP basis set.

Table 6. Results for 105 Small, Hydrogen-Bonded Complexes of the PM6-DH1 Training Seta

PM6 PM6-D PM6-DH2 TPSS-Db B3LYP-Db AM1 AM1-D* AM1-DH2 DFTB DFTB-D DFTB-DH2 OM3 OM3-D OM3-DH2

MSE -2.63 -1.66 -0.43 0.90 1.01 -5.06 -2.55 -0.12 -3.19 -2.33 -0.40 -2.67 -0.88 -0.51
MUE 2.64 1.76 1.15 0.91 1.01 5.06 2.70 1.59 3.21 2.36 0.85 2.67 0.91 0.66
RMSE 3.16 2.35 1.54 1.08 1.15 6.07 4.03 2.12 3.56 2.79 1.06 2.87 1.14 0.86
∆Max-Min 9.22 9.61 7.37 3.66 3.52 22.75 22.64 12.13 10.32 10.47 5.15 6.73 6.52 4.48

a Mean signed error (MSE), mean unsigned error (MUE), root mean square error (RMSE), and the error span ∆Max-Min with respect to the
benchmark CCSD(T)/CBS interaction energies are presented. All values in kcal/mol. b TZVP basis set.

Table 7. Results for the Noncharged Hydrogen-Bonded JSCH2005 DNA Base Pairs (37 Entries)a

PM6 PM6-D
PM6-
DH2 TPSS-Db B3LYP-Db AM1 AM1-D*

AM1-
DH2 DFTBc DFTB-Dc

DFTB-
DH2c OM3d OM3-Dd

OM3-
DH2d

MSE -8.07 -6.06 -0.83 0.42 0.55 -14.08 -9.56 -0.01 -7.21 -5.34 2.09 -5.67 -2.41 -0.80
MUE 8.07 6.06 1.85 0.72 0.70 14.08 9.56 2.20 7.21 5.34 2.78 5.67 2.49 1.21
RMSE 8.23 6.23 2.36 0.97 0.97 14.71 10.33 2.84 7.47 5.64 3.25 5.89 2.79 1.44
∆Max-Min 8.73 7.67 8.84 3.97 3.86 18.85 16.43 12.43 7.88 6.85 9.58 7.01 6.81 4.53

a Mean signed error (MSE), mean unsigned error (MUE), root mean square error (RMSE), and the error span ∆Max-Min with respect to the
benchmark CCSD(T)/CBS interaction energies are presented. All values in kcal/mol. b TZVP basis set. c Without adenine/fluorotoluene
Watson/Crick complex because of missing fluorine parameters. d Without seven thio base pairs because of missing sulfur parameters.

Table 8. Results for the Hydrogen-Bonded JSCH2005 Peptides (13 Entries)a

PM6 PM6-D
PM6-
DH2 TPSS-Db B3LYP-Db AM1 AM1-D*

AM1-
DH2 DFTB DFTB-D

DFTB-
DH2 OM3c OM3-Dc

OM3-
DH2c

MSE -2.97 -0.19 -0.13 -0.35 -0.45 -4.49 1.40 1.47 -3.77 -0.80 -0.72 -3.96 0.33 0.36
MUE 2.97 0.68 0.71 0.67 0.60 4.49 1.49 1.56 3.77 0.87 0.79 3.96 0.60 0.62
RMSE 3.24 0.87 0.89 0.80 0.82 4.95 1.91 2.00 4.01 1.01 0.94 4.21 0.80 0.81
∆Max-Min 4.56 3.44 3.41 2.53 2.59 7.31 4.30 4.27 5.34 2.91 2.84 5.20 2.81 2.79

a Mean signed error (MSE), mean unsigned error (MUE), root mean square error (RMSE), and the error span ∆Max-Min with respect to the
benchmark CCSD(T)/CBS interaction energies are presented. All values in kcal/mol. b TZVP basis set. c Without seven thio base pairs
because of missing sulfur parameters.
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catches up even with very sophisticated DFT approaches,
like B2-PLYP-D/TZVPP/0.5CP47 (MUE 0.3 kcal/mol) and
M06-2X/6-311+G(3df,2p)/CP46 (MUE 0.4 kcal/mol).

5. Concluding Remarks

With the presented work, we have made an attempt to
alleviate the problem of the deficient description of H
bonding in semiempirical quantum-chemical methods, a
problem that is of vital importance for any application of
these methods in computer simulations of biomolecular
systems. We have proposed a transferable H-bonding cor-
rection for semiempirical methods that was shown to improve
the performance of PM6, AM1, OM3, and SCC-DFTB for
several test sets of H-bonding interactions by up to an order
of magnitude.

The most appealing features of the new H-bonding
correction are as follows:

1. Compared to the existing core-core term modifications
for the improvement of the description of hydrogen bonding,
our solution is able to achieve higher accuracy through the
incorporation of the geometric features of H bonding.

2. Compared to the first version of our correction scheme,
the new version avoids physically unsound equation terms
and parameters and is now more robust and furthermore
transferable between different semiempirical methods.

3. Even with only a single parameter, the new correction
scheme gives significantly better results than most published
correction schemes.

4. With the final parametrization (based on three global
and five method-dependent parameters), the new scheme
outperforms all other published H-bonding corrections by a
significant margin and yields results comparable with current
DFT-D approaches for a large part of the investigated cases.

5. Several details (e.g., well-behaved parameter values
within and between methods, etc.) indicate the robustness
of our general idea (it should nevertheless be kept in mind
that our purely additive scheme cannot correct possible
artifacts of the underlying methods, for example, in the case
of dissociation curves).

A remaining major drawback, and subject to our future
work, is the inability of our scheme to model processes where
the acceptor atom-type changes, for example, proton transfer
reactions. A second important step would be the combination
of the second-generation H-bonding correction with an
improved dispersion correction beyond a simple parameter
refit of the current approach (as now the dispersion correction
has become the overall less accurate part of PM6 with
empirical dispersion and H-bonding corrections). From a
longer perspective, we would expect it to be fruitful to
incorporate empirical DH corrections directly into the
parametrization process of semiempirical methods to avoid
double counting and allow for a better balance of the different
interactions types.
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